NCP1597B

Buck Regulator Synchronous

1 MHz, 2 A

The NCP1597B is a fixed 1 MHz , high-output-current, synchronous PWM converter that integrates a low-resistance, high-side P-channel MOSFET and a low-side N-channel MOSFET. The NCP1597B utilizes internally compensated current mode control to provide good transient response, ease of implementation and excellent loop stability. It regulates input voltages from 4.0 V to 5.5 V down to an output voltage as low as 0.8 V and is able to supply up to 2 A .

The NCP1597B has features including fixed internal switching frequency (Fsw), and an internal soft-start to limit inrush current. Using the EN pin, shutdown supply current is reduced to $3 \mu \mathrm{~A}$ maximum.

Other features include cycle-by-cycle current limiting, shortcircuit protection, power saving mode and thermal shutdown.

Features

- Input Voltage Range: from 4.0 V to 5.5 V
- Internal $140 \mathrm{~m} \Omega$ High-Side Switching P-Channel MOSFET and $90 \mathrm{~m} \Omega$ Low-Side N-Channel MOSFET
- Fixed 1 MHz Switching Frequency
- Cycle-by-Cycle Current Limiting
- Overtemperature Protection
- Internal Soft-Start
- Start-up with Pre-Biased Output Load
- Adjustable Output Voltage Down to 0.8 V
- Power Saving Mode During Light Load
- These are Pb -Free Devices

Applications

- DSP Power
- Hard Disk Drivers
- Computer Peripherals
- Home Audio
- Set-Top Boxes
- Networking Equipment
- LCD TV
- Wireless and DSL/Cable Modem
- USB Power Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
MARKING
DFN10
CASE 485C

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping †
NCP1597BMNTWG	DFN10 (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BLOCK DIAGRAM

Figure 1. Block Diagram

PIN DESCRIPTIONS

Pin No	Symbol	
1	EN	Description
2	$V_{\text {CC }}$	Logic input to enable the part. Logic high turns on the part and a logic low disables it. An internal pullup forces the part into an enable state when no external bias is present on the pin.
this pin.		

NCP1597B

APPLICATION CIRCUIT

Figure 2. Recommended Schematic for NCP1597B

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Pin (Pin 4, 5) to GND	$\mathrm{V}_{\text {in }}$	$\begin{gathered} \hline 6.5 \\ -0.3(\mathrm{DC}) \\ -1.0(\mathrm{t}<100 \mathrm{~ns}) \end{gathered}$	V
LX to GND		$\begin{gathered} \hline V_{\text {in }}+0.7 \\ V_{\text {in }}+1.0(\mathrm{t}<20 \mathrm{~ns}) \\ -0.7(\mathrm{DC}) \\ -5.0(\mathrm{t}<100 \mathrm{~ns}) \end{gathered}$	V
All other pins		$\begin{gathered} 6.0 \\ -0.3(\mathrm{DC}) \\ -1.0(\mathrm{t}<100 \mathrm{~ns}) \end{gathered}$	V
Operating Temperature Range	TA	-40 to +85	${ }^{\circ} \mathrm{C}$
Junction Temperature	TJ	-40 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Ts	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction-to-Air (Note 1)	Rөja	68.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Reja measured on approximately 1×1 inch sq. of 1 oz . Copper.

NCP1597B

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {in }}=4.0 \mathrm{~V}-5.5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=1.2 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right.$ for typical value; $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ for $\mathrm{min} / \mathrm{max}$ values unless noted otherwise)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {in }}$ Input Voltage Range	$\mathrm{V}_{\text {in }}$		4.0		5.5	V
$\mathrm{~V}_{\mathrm{CC}}$ UVLO Threshold			3.2	3.5	3.8	V
UVLO Hysteresis				335		mV
V_{CC} Quiescent Current	$\mathrm{l}_{\text {inVCC }}$	$\mathrm{V}_{\text {in }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.5 \mathrm{~V}$, (No Switching)		1.7	2.0	mA
$\mathrm{~V}_{\mathrm{CCP}}$ Quiescent Current	$\mathrm{I}_{\text {inVCCP }}$	$\mathrm{V}_{\text {in }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.5 \mathrm{~V}$, (No Switching)		25		$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {in }}$ Shutdown Supply Current (Note 2)	$\mathrm{I}_{\text {QSHDN }}$	$\mathrm{EN}=0 \mathrm{~V}$		1.8	3.0	$\mu \mathrm{~A}$

FEEDBACK VOLTAGE

Reference Voltage	V_{FB}		0.788	0.800	0.812
Feedback Input Bias Current	I_{FB}	$\mathrm{V}_{\mathrm{FB}}=0.8 \mathrm{~V}$		10	100
Feedback Voltage Line Regulation		$\mathrm{V}_{\text {in }}=4.0 \mathrm{~V}$ to 5.5 V			0.06

PWM

Maximum Duty Cycle (regulating)			82	85		$\%$
Minimum Controllable ON Time (Note 2)				50		ns

PULSE-BY-PULSE CURRENT LIMIT

Pulse-by-Pulse Current Limit (Regulation)	I LIM		2.7	3.9	4.3	A
Pulse-by-Pulse Current Limit (Soft-Start)	ILIMSS		4.0	5.3	6.1	A

OSCILLATOR

Oscillator Frequency	F SW		0.87	1.0	1.13	MHz

MOSFET

High Side MOSFET ON Resistance	$\begin{gathered} \mathrm{R}_{\mathrm{DS}(\mathrm{on})} \\ \mathrm{HS} \end{gathered}$	$\mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}$	140	200	$\mathrm{m} \Omega$
High Side MOSFET Leakage (Note 2)		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=0 \mathrm{~V}$		10	$\mu \mathrm{A}$
Low Side MOSFET ON Resistance	$\begin{aligned} & \text { RDS(on) } \\ & \text { LS } \end{aligned}$	$\mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}$	90	125	$\mathrm{m} \Omega$
Low Side MOSFET Leakage (Note 2)		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=5 \mathrm{~V}$		10	$\mu \mathrm{A}$

ENABLE

EN HI Threshold	ENHI		1.4		
EN LO Threshold	ENLO				
EN Hysteresis					
EN Pullup Current			200		

Soft-Start Ramp Time	t_{SS}	$\mathrm{F}_{\mathrm{SW}}=1 \mathrm{MHz}$		1.0	
Hiccup Timer			ms		

THERMAL SHUTDOWN

Thermal Shutdown Threshold				185	
Thermal Shutdown Hysteresis				${ }^{\circ} \mathrm{C}$	

2. Guaranteed by design. Not production tested.

TYPICAL OPERATING CHARACTERISTICS

Figure 3. Undervoltage Lockout vs. Temperature

Figure 5. Switching Frequency vs.
Temperature

Figure 7. Quiescent Current Into $\mathbf{V}_{\mathbf{C C}}$ vs. Temperature

Figure 4. Feedback Input Threshold vs. Temperature

Figure 6. Current Limit vs. Temperature

Figure 8. Quiescent Current Into $\mathbf{V}_{\mathbf{C c}}$ vs. Temperature

Figure 9. Load Regulation for $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$

Figure 11. Load Regulation for $\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$

Figure 13. Load Regulation for $\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$

Figure 10. Efficiency vs. Output Current for $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$

Figure 12. Efficiency vs. Output Current for $\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$

Figure 14. Efficiency vs. Output Current for $\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$

$\left(\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~L}=3.3 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}\right)$ Upper Trace: Lx Pin Switching Waveform, $2 \mathrm{~V} / \mathrm{div}$
Middle Trace: Output Ripple Voltage, 20 mV /div Lower Trace: Inductor Current, 1 A/div
Time Scale: $1.0 \mu \mathrm{~s} / \mathrm{div}$
Figure 15. DCM Switching Waveform for $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$

$\left(\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~L}=3.3 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}\right)$ Upper Trace: L_{X} Pin Switching Waveform, $2 \mathrm{~V} / \mathrm{div}$ Middle Trace: Output Ripple Voltage, $20 \mathrm{mV} / \mathrm{div}$ Lower Trace: Inductor Current, $200 \mathrm{~mA} /$ div Time Scale: $1.0 \mu \mathrm{~s} / \mathrm{div}$

Figure 17. DCM Switching Waveform for

$$
\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}
$$

$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~L}=3.3 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}\right)$
Upper Trace: EN Pin Voltage, $2 \mathrm{~V} /$ div
Middle Trace: Output Voltage, $1 \mathrm{~V} / \mathrm{div}$
Lower Trace: Inductor Current, 100 mA /div
Time Scale: 500 us/div
Figure 19. Soft-Start Waveforms for $\mathrm{V}_{\text {Oit }}=3.3 \mathrm{~V}$

$\left(\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=700 \mathrm{~mA}, \mathrm{~L}=3.3 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}\right)$ Upper Trace: L_{X} Pin Switching Waveform, $2 \mathrm{~V} /$ div Middle Trace: Output Ripple Voltage, $20 \mathrm{mV} / \mathrm{div}$ Lower Trace: Inductor Current, 1 A/div Time Scale: $1.0 \mu \mathrm{~s} / \mathrm{div}$

Figure 16. CCM Switching Waveform for $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$

$\left(\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=400 \mathrm{~mA}, \mathrm{~L}=3.3 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}\right)$ Upper Trace: L_{X} Pin Switching Waveform, $2 \mathrm{~V} /$ div Middle Trace: Output Ripple Voltage, $20 \mathrm{mV} / \mathrm{div}$ Lower Trace: Inductor Current, $1 \mathrm{~A} / \mathrm{div}$ Time Scale: $1.0 \mu \mathrm{~s} / \mathrm{div}$

Figure 18. CCM Switching Waveform for $\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$

$\left(\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~L}=3.3 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}\right)$ Upper Trace: EN Pin Voltage, 2 V/div Middle Trace: Output Voltage, $1 \mathrm{~V} / \mathrm{div}$ Lower Trace: Inductor Current, 100 mA /div
Time Scale: $500 \mu \mathrm{~s} / \mathrm{div}$
Figure 20. Soft-Start Waveforms for $\mathrm{V}_{\text {Out }}=1.2 \mathrm{~V}$

$\left(\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~L}=3.3 \mu \mathrm{H}, \mathrm{C}_{\text {OUt }}=2 \times 22 \mu \mathrm{~F}\right)$ Upper Trace: Output Dynamic Voltage, $100 \mathrm{mV} /$ div Lower Trace: Output Current, $500 \mathrm{~mA} /$ div Time Scale: 200 us/div

Figure 21. Transient Response for $\mathrm{V}_{\text {OUT }}=$ 3.3 V

$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~L}=3.3 \mathrm{H}, \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}\right)$ Upper Trace: Output Dynamic Voltage, $100 \mathrm{mV} / \mathrm{div}$ Lower Trace: Output Current, $500 \mathrm{~mA} /$ /div
Time Scale: $200 \mu \mathrm{~s} / \mathrm{div}$
Figure 23. Transient Response for $\mathrm{V}_{\text {OUT }}=$ 1.2 V

$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~L}=3.3 \mu \mathrm{H}, \mathrm{C}_{\text {OUt }}=2 \times 22 \mu \mathrm{~F}\right)$ Upper Trace: Output Dynamic Voltage, $100 \mathrm{mV} /$ div Lower Trace: Output Current, $500 \mathrm{~mA} /$ div
Time Scale: 200 us/div
Figure 22. Transient Response for $\mathrm{V}_{\text {OUT }}=$ 3.3 V

$\left(\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~L}=3.3 \mathrm{H}, \mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F}\right)$ Upper Trace: Output Dynamic Voltage, $100 \mathrm{mV} / \mathrm{div}$ Lower Trace: Output Current, $500 \mathrm{~mA} / \mathrm{div}$
Time Scale: $200 \mu \mathrm{~s} / \mathrm{div}$
Figure 24. Transient Response for $\mathrm{V}_{\mathrm{OUT}}=$ 1.2 V

DETAILED DESCRIPTION

Overview

The NCP1597B is a synchronous PWM controller that incorporates all the control and protection circuitry necessary to satisfy a wide range of applications. The NCP1597B employs internally compensated current mode control to provide good transient response, ease of implementation and excellent stability. The features of the NCP1597B include a precision reference, fixed 1 MHz switching frequency, a transconductance error amplifier, an integrated high-side P -channel MOSFET and low-side N-Channel MOSFET, internal soft-start, and very low shutdown current. The protection features of the NCP1597B include internal soft-start, pulse-by-pulse current limit, and thermal shutdown.

Reference Voltage

The NCP1597B incorporates an internal reference that allows output voltages as low as 0.8 V . The tolerance of the internal reference is guaranteed over the entire operating temperature range of the controller. The reference voltage is trimmed using a test configuration that accounts for error amplifier offset and bias currents.

Oscillator Frequency

A fixed precision oscillator is provided. The oscillator frequency range is 1 MHz with $\pm 13 \%$ variation.

Transconductance Error Amplifier

The transconductance error amplifier's primary function is to regulate the converter's output voltage using a resistor divider connected from the converter's output to the FB pin of the controller, as shown in the applications Schematic. If a Fault occurs, the amplifier's output is immediately pulled to GND and PWM switching is inhibited.

Internal Soft-Start

To limit the startup inrush current, an internal soft start circuit is used to ramp up the reference voltage from 0 V to its final value linearly. The internal soft start time is 1 ms typically.

Output MOSFETs

The NCP1597B includes low $\mathrm{R}_{\mathrm{DS}(\text { on })}$, both high-side P-channel and low-side N -channel MOSFETs capable of
delivering up to 2.0 A of current. When the controller is disabled or during a Fault condition, the controller's output stage is tri-stated by turning OFF both the upper and lower MOSFETs.

Adaptive Dead Time Gate Driver

In a synchronous buck converter, a certain dead time is required between the low side drive signal and high side drive signal to avoid shoot through. During the dead time, the body diode of the low side FET freewheels the current. The body diode has much higher voltage drop than that of the MOSFET, which reduces the efficiency significantly. The longer the body diode conducts, the lower the efficiency. In NCP1597B, the drivers and MOSFETs are integrated in a single chip. The parasitic inductance is minimized. Adaptive dead time control method is used in NCP1597B to prevent the shoot through from happening and minimizing the diode conduction loss at the same time.

Pulse Width Modulation

A high-speed PWM comparator, capable of pulse widths as low as 50 ns , is included in the NCP1597B. The inverting input of the comparator is connected to the output of the error amplifier. The non-inverting input is connected to the the current sense signal. At the beginning of each PWM cycle, the CLK signal sets the PWM flip-flop and the upper MOSFET is turned ON. When the current sense signal rises above the error amplifier's voltage then the comparator will reset the PWM flip-flop and the upper MOSFET will be turned OFF.

Power Save Mode

If the load current decreases, the converter will enter power save mode operation automatically. During power save mode, the converter skips switching and operates with reduced frequency, which minimizes the quiescent current and maintain high efficiency.

Current Sense

The NCP1597B monitors the current in the upper MOSFET. The current signal is required by the PWM comparator and the pulse-by-pulse current limiter.

NCP1597B

PROTECTIONS

Undervoltage Lockout (UVLO)

The under voltage lockout feature prevents the controller from switching when the input voltage is too low to power the internal power supplies and reference. Hysteresis must be incorporated in the UVLO comparator to prevent resistive drops in the wiring or PCB traces from causing ON/OFF cycling of the controller during heavy loading at power up or power down.

Overcurrent Protection (OCP)

NCP1597B detects high side switch current and then compares to a voltage level representing the overcurrent threshold limit. If the current through the high side FET exceeds the overcurrent threshold limit for seven consecutive switching cycles, overcurrent protection is triggered.

Once the overcurrent protection occurs, hiccup mode engages. First, hiccup mode, turns off both FETs and discharges the internal compensation network at the output of the OTA. Next, the IC waits typically 2 ms and then resets the overcurrent counter. After this reset, the circuit attempts another normal soft-start. During soft-start, the overcurrent protection threshold is increased to prevent false
overcurrent detection while charging the output capacitors. Hiccup mode reduces input supply current and power dissipation during a short circuit. It also allows for much improved system up-time, allowing auto-restart upon removal of a temporary short-circuit.

Pre-Bias Startup

In some applications the controller will be required to start switching when its output capacitors are charged anywhere from slightly above 0 V to just below the regulation voltage. This situation occurs for a number of reasons: the converter's output capacitors may have residual charge on them or the converter's output may be held up by a low current standby power supply. NCP1597B supports pre-bias start up by holding the low side FETs off till soft start ramp reaches the FB Pin voltage.

Thermal Shutdown

The NCP1597B protects itself from over heating with an internal thermal monitoring circuit. If the junction temperature exceeds the thermal shutdown threshold both the upper and lower MOSFETs will be shut OFF.

APPLICATION INFORMATION

Programming the Output Voltage

The output voltage is set using a resistive voltage divider from the output voltage to FB pin (see Figure 25). So the output voltage is calculated according to Eq.1.

$$
\begin{equation*}
V_{\text {out }}=V_{F B} \cdot \frac{R_{1}+R_{2}}{R_{2}} \tag{eq.1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{\mathrm{OUT}(\text { min })}=\frac{\mathrm{I}_{\text {ripple }}}{8 \cdot f \cdot \mathrm{~V}_{\text {ripple }}} \tag{eq.3}
\end{equation*}
$$

Where $\mathrm{V}_{\text {ripple }}$ is the allowed output voltage ripple.
The required ESR for this amount of ripple can be calculated by equation 5 .

$$
\begin{equation*}
\mathrm{ESR}=\frac{V_{\text {ripple }}}{I_{\text {ripple }}} \tag{eq.4}
\end{equation*}
$$

Based on Equation 2 to choose capacitor and check its ESR according to Equation 3. If ESR exceeds the value from Eq.4, multiple capacitors should be used in parallel.

Ceramic capacitors can be used in most of the applications. In addition, both surface mount tantalum and through-hole aluminum electrolytic capacitors can be used as well.

Maximum Output Capacitor

NCP1597B family has internal 1 ms fixed soft-start and overcurrent limit. It limits the maximum allowed output capacitor to startup successfully. The maximum allowed output capacitor can be determined by the equation:

$$
\begin{equation*}
\mathrm{C}_{\text {out (max })}=\frac{\mathrm{I}_{\text {limss(min) }}-\mathrm{I}_{\text {load(max) }}-\frac{\Delta_{\mathrm{p}-\mathrm{p}}}{2}}{\mathrm{~V}_{\text {out }} / \mathrm{T}_{\mathrm{SS}(\min)}} \tag{eq.5}
\end{equation*}
$$

Where $\mathrm{T}_{\mathrm{SS}(\min)}$ is the soft-start period (1ms); Δ_{iPP} is the current ripple.

This is assuming that a constant load is connected. For example, with $3.3 \mathrm{~V} / 2.0$ A output and 20% ripple, the max allowed output capacitance is $546 \mu \mathrm{~F}$.

Input Capacitor Selection

The input capacitor can be calculated by Equation 6.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{in}(\min)}=\mathrm{I}_{\mathrm{out}(\max)} \cdot \mathrm{D}_{\max } \cdot \frac{1}{f \cdot \mathrm{~V}_{\mathrm{in}(\text { ripple) }}} \tag{eq.6}
\end{equation*}
$$

Where $\mathrm{V}_{\mathrm{in}(\text { ripple) }}$ is the required input ripple voltage.

$$
\begin{equation*}
D_{\max }=\frac{V_{\text {out }}}{V_{\text {in(min) }}} \text { is the maximum duty cycle. } \tag{eq.7}
\end{equation*}
$$

Power Dissipation

The NCP1597B is available in a thermally enhanced $6-$ pin, DFN package. When the die temperature reaches $+185^{\circ} \mathrm{C}$, the NCP1597B shuts down (see the Thermal-Overload Protection section). The power dissipated in the device is the sum of the power dissipated from supply current (PQ), power dissipated due to switching the internal power MOSFET (P_{SW}), and the power dissipated due to the RMS current through the internal power MOSFET (PON). The total power dissipated in the package must be limited so the junction temperature does not exceed its absolute maximum rating of $+150^{\circ} \mathrm{C}$ at
maximum ambient temperature. Calculate the power lost in the NCP1597B using the following equations:

1. High side MOSFET

The conduction loss in the top switch is:

$$
P_{\text {HSON }}=I_{\text {RMS_HSFET }}^{2} \times R_{\text {DS(on)HS }}
$$

Where:

$$
\begin{equation*}
\mathrm{I}_{\text {RMS_FET }}=\sqrt{\left(\mathrm{I}_{\mathrm{out}}^{2}+\frac{\Delta \mathrm{I}_{\mathrm{PP}}^{2}}{12}\right) \times \mathrm{D}} \tag{eq.9}
\end{equation*}
$$

$\Delta \mathrm{I}_{\mathrm{PP}}$ is the peak-to-peak inductor current ripple.
The power lost due to switching the internal power high side MOSFET is:

$$
\begin{equation*}
\mathrm{P}_{\text {HSSW }}=\frac{\mathrm{V}_{\text {in }} \cdot \mathrm{I}_{\text {out }} \cdot\left(\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{f}\right) \cdot f_{\mathrm{SW}}}{2} \tag{eq.10}
\end{equation*}
$$

t_{r} and t_{f} are the rise and fall times of the internal power MOSFET measured at SW node.
2. Low side MOSFET

The power dissipated in the top switch is:

$$
\begin{equation*}
P_{\text {LSON }}=I_{\text {RMS_LSFET }} 2 \cdot R_{\text {DS(on)LS }} \tag{eq.11}
\end{equation*}
$$

Where:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{RMS} \text { _LSFET }}=\sqrt{\left(\mathrm{I}_{\mathrm{out}}^{2}+\frac{\Delta \mathrm{I}_{\mathrm{PP}}{ }^{2}}{12}\right) \cdot(1-\mathrm{D})} \tag{eq.12}
\end{equation*}
$$

$\Delta \mathrm{I}_{\mathrm{PP}}$ is the peak-to-peak inductor current ripple.
The switching loss for the low side MOSFET can be ignored.
The power lost due to the quiescent current (Io) of the device is:

$$
\begin{equation*}
P_{Q}=V_{\text {in }} \cdot I_{Q} \tag{eq.13}
\end{equation*}
$$

IQ is the switching quiescent current of the NCP1597B.

$$
\mathrm{P}_{\mathrm{TOTAL}}=\mathrm{P}_{\mathrm{HSON}}+\mathrm{P}_{\mathrm{HSSW}}+\mathrm{P}_{\mathrm{LSON}}+\mathrm{P}_{\mathrm{Q}}
$$

Calculate the temperature rise of the die using the following equation:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{C}}+\left(\mathrm{P}_{\mathrm{TOTAL}} \cdot \theta_{\mathrm{JC}}\right) \tag{eq.15}
\end{equation*}
$$

θ_{JC} is the junction-to-case thermal resistance equal to $1.7^{\circ} \mathrm{C} / \mathrm{W} . \mathrm{T}_{\mathrm{C}}$ is the temperature of the case and TJ is the junction temperature, or die temperature. The case-to-ambient thermal resistance is dependent on how well heat can be transferred from the PC board to the air. Solder the underside-exposed pad to a large copper GND plane. If the die temperature reaches the thermal shutdown threshold the NCP1597B shut down and does not restart again until the die temperature cools by $30^{\circ} \mathrm{C}$.

Layout

As with all high frequency switchers, when considering layout, care must be taken in order to achieve optimal electrical, thermal and noise performance. To prevent noise both radiated and conducted, the high speed switching current path must be kept as short as possible. Shortening the current path will also reduce the parasitic trace inductance of approximately $25 \mathrm{nH} / \mathrm{inch}$. At switch off, this parasitic inductance produces a flyback spike across the NCP1597B switch. When operating at higher currents and input voltages, with poor layout, this spike can generate voltages across the NCP1597B that may exceed its absolute maximum rating. A ground plane should always be used under the switcher circuitry to prevent interplane coupling and overall noise.

The FB component should be kept as far away as possible from the switch node. The ground for these components should be separated from the switch current path. Failure to do so will result in poor stability or subharmonic like oscillation.

Board layout also has a significant effect on thermal resistance. Reducing the thermal resistance from the ground pin and exposed pad onto the board will reduce die temperature and increase the power capability of the NCP1597B. This is achieved by providing as much copper area as possible around the exposed pad. Adding multiple thermal vias under and around this pad to an internal ground plane will also help. Similar treatment to the inductor pads will reduce any additional heating effects.

SCALE 2:1

DETAIL

GENERIC
MARKING DIAGRAM*

${ }^{\circ}$ XXXXX XXXXX ALYW:

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)

DFN10, 3x3, 0.5P
CASE 485C
ISSUE F
DATE 16 DEC 2021
NDTES:

1. DIMENSION AND TQLERANCING PER ASME Y14.5, 2009.
2. CONTRDLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TI PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
4. CDPLANARITY APPLIES TI THE EXPOSED PAD AS WELL AS THE TERMINALS.
5. TERMINAL b MAY HAVE MDLD CIMPDUND MATERIAL ALING SIDE EDGE. mILD FLASH MAY Nat EXCEED 30 micrans anta battam Surface af TERMINAL.
6. FOR DEVICE DPN CZNTAINING W \quad PTIUN, DETAIL A AND DETAIL B alternate constructions are nat applicable. wettable flank construction is detail b as shown an side view of package.

	DIM	MILLIMETERS		
		MIN.	NDM.	MAX.
	A	0.80	0.90	1.00
	Al	0.00	--	0.05
	A3	0.20 REF		
	b	0.18	0.23	0.30
	D	2.90	3.00	3.10
ALTERNATE b-1 ALTERNATE b-2	D2	2.40	2.50	2.60
DETAIL B	E	2.90	3.00	3.10
ALTERNATE CINSTRUCTİN	E2	1.70	1.80	1.90
	e	0.50 BSC		
EXPDSED	K	0.20 REF		
CIPPER -- $A 3$	L	0.30	0.40	0.50
- Al^{1}	L1	--	---	0.03

DETAIL B
WETTABLE FLANK CONSTRUCTICN

alternate a-1
DETAIL A
alternate construction

	RECDMMENDED
MDUNTING FDDTPRINT	

RECDMMENDED
For additional information on our Pb-Free strategy and soldering details, please download the GN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

| DOCUMENT NUMBER: | 98AON03161D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DFN10, 3X3 MM, 0.5 MM PITCH | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

