NSR0115CQP6T5G

Two Dual 15 V, 0.1 A Common Cathode Schottky Diodes

These Schottky barrier diodes are designed for high speed switching applications, circuit protection, and voltage clamping. Extremely low forward voltage reduces conduction loss. Industry leading smallest surface mount package is excellent for hand-held and portable applications where space is limited.

Features

- Extremely Fast Switching Speed
- Low Forward Voltage 0.4 V (Max) @ $I_F = 10 \text{ mA}$
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Portable Devices (Digital Cameras, MP3 Players ... etc)
- Mobile Phones
- Keyboards
- Low Voltage Motor Control (Disc Drives)

MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Reverse Voltage	V_R	15	V
Forward Current (DC)	I _F	100	mA
Repetitive Peak Forward Current	I _{FRM}	0.3	Α
Non-Repetitive Peak Forward Current (t < 1.0 s)	I _{FSM}	2.0	Α

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$	P _D (Note 1)	260	mW
Derate above 25°C	, ,	2.1	mW/°C
Thermal Resistance, Junction to Ambient	R _{θJA} (Note 1)	480	°C/W
Total Device Dissipation $T_{\Delta} = 25^{\circ}C$	P _D (Note 2)	360	mW
Derate above 25°C	(14010 2)	2.9	mW/°C
Thermal Resistance, Junction to Ambient	R _{θJA} (Note 2)	347	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

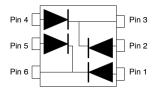
- 1. FR-4 @ 10 mm², 1 oz. copper trace, still air.
- 2. FR-4 @ 100 mm², 1 oz. copper trace, still air.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

SOT-963 CASE 527AD



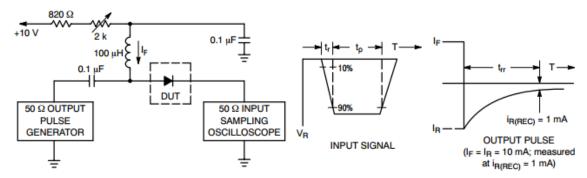
XM

= Specific Device Code

= Month Code

PIN CONFIGURATION

ORDERING INFORMATION


Device	Package	Shipping
NSR0115CQP6T5G	SOT-963 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NSR0115CQP6T5G

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, Single Diode)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•		•	•
Reverse Breakdown Voltage (I _R = 20 μA)	$V_{(BR)R}$	15	-	Vdc
Total Capacitance (V _R = 1.0 V, f = 1.0 MHz)	C _T	-	8.0	pF
Reverse Leakage (V _R = 10 V)	I _R	-	15	uA
Forward Voltage (I _F = 10 μA)	V _F		0.18	V
Forward Voltage (I _F = 10 mA)	V _F	-	0.4	V
Reverse Recovery Time $(I_F = I_R = 10 \text{ mA}, I_{R(REC)} = 1.0 \text{ mA}, Figure 1)$	t _{rr}	-	5.0	ns

Notes: 1. A 2.0 $k\Omega$ variable resistor adjusted for a Forward Current (I_F) of 10 mA.

2. Input pulse is adjusted so IR(peak) is equal to 10 mA.

3. t_p » t_n

Figure 1. Recovery Time Equivalent Test Circuit

NSR0115CQP6T5G

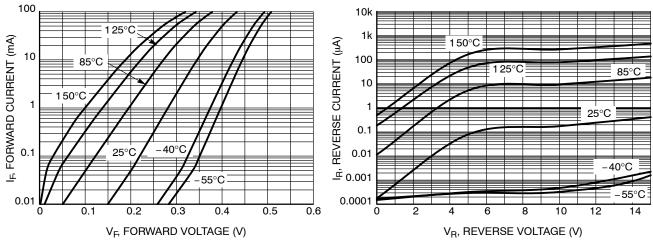


Figure 2. Forward Voltage

Figure 3. Leakage Current

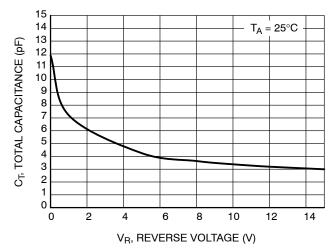
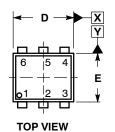
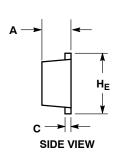


Figure 4. Total Capacitance

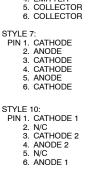
MECHANICAL CASE OUTLINE






SOT-963 CASE 527AD-01 ISSUE E

DATE 09 FEB 2010



S

 BASE 1 COLLECTOR 2 EMITTER 2 BASE 2 COLLECTOR 1
STYLE 4: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR
STYLE 7: PIN 1. CATHODE 2. ANODE

STYLE 1: PIN 1. EMITTER 1

TYLE 2	2:
PIN 1.	EMITTER 1
2.	EMITTER2
3.	BASE 2
4.	COLLECTOR 2
5.	BASE 1
6.	COLLECTOR 1

STYLE 5: PIN 1. CATHODE 2. CATHODE 3. ANODE 4. ANODE 5. CATHODE 6. CATHODE

STYLE 8: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN

STYLE 3:

PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 2 4. CATHODE 2 5. CATHODE 2 6. ANODE/ANODE 1

STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE

STYLE 9: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1

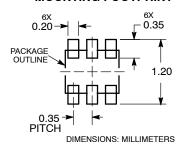
NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: MILLIMETERS
- 2. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

4.	DIMENSIONS D AND E DO NOT INCLUDE MOLD
	FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.34	0.37	0.40	
b	0.10	0.15	0.20	
С	0.07	0.12	0.17	
D	0.95	1.00	1.05	
E	0.75	0.80	0.85	
е	0.35 BSC			
HE	0.95	1.00	1.05	
L	0.19 REF			
L2	0.05	0.10	0.15	

GENERIC MARKING DIAGRAM*



= Specific Device Code = Month Code M

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98AON26456D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-963, 1X1, 0.35P		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

TECHNICAL SUPPORT

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative