Operational Amplifier, 36 V, $3 \mathrm{MHz}, 0.95 \mathrm{mV}$ Input Offset Voltage, Rail-to-Rail
 NCS20231, NCV20231, NCS20232, NCV20232, NCS20234, NCV20234

The NCS2023x series of op amps feature a wide supply range of 2.7 V to 36 V with an input offset voltage as low as $\pm 0.95 \mathrm{mV}$ max. These op amps are available in single, dual, and quad channel configurations. Automotive qualified options are available under the NCV prefix with an optional extended operating temperature range from $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. All other versions are specified over the operating temperature range from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Features

- Supply Voltage Range: 2.7 V to 36 V
- Temperature Range: $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- Unity Gain Bandwidth: 3 MHz
- Input Offset Voltage: $\pm 1.2 \mathrm{mV}$ max, $\mathrm{T}_{\mathrm{A}}=-40$ to $150^{\circ} \mathrm{C}$
- Input Offset Voltage Drift: $\pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- Common-Mode Input Voltage Range
- Optimal: $\mathrm{V}_{\mathrm{SS}}-0.1$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$
- Functional: $\mathrm{V}_{\mathrm{SS}}-0.1$ to $\mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}$
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Telecom Equipment
- Power Supply Designs
- Diesel Injection Control
- Automotive
- Motor Control

SOT-553, 5 LEAD
UDFN8 CASE 517AW

SOIC-14 NB
CASE 751A-03

DEVICE MARKING INFORMATION
See general marking information in the device marking section on page 2 of this data sheet.

PIN CONNECTIONS

See pin connections on page 3 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

TSOP-5 CASE 483

SC-88A / SC70-5 CASE 419A-02

SOT-553, 5 LEAD CASE 463B

UDFN8, 2×2, 0.5P
CASE 517AW

SOIC-8 NB
CASE 751-07

SOIC-14 NB
CASE 751A-03

14 ABABABA

1 昭昭
TSSOP-14 WB
CASE 948G

XX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
W	= Work Week
M	$=$ Date Code
G or •	Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Temperature	Channels	Package	Device Part Number	Marking	Shipping ${ }^{\dagger}$
Industrial and Commercial					
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Single	TSOP-5	NCS20231SN2T1G	AAC	3000 / Tape \& Reel
		SC-88	NCS20231SQ3T2G	AAG	3000 / Tape \& Reel
		SOT-553	NCS20231XV53T2G	AC	4000 / Tape \& Reel
	Dual	SOIC-8	NCS20232DR2G*	N232	2500 / Tape \& Reel
		UDFN-8	NCS20232MUTBG*	DGA	3000 / Tape \& Reel
	Quad	SOIC-14	NCS20234DR2G*	234G	2500 / Tape \& Reel
		TSSOP-14	NCS20234DTBR2G*	N234	2500 / Tape \& Reel

Automotive Qualified, Grade 1

$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	Single	TSOP-5	NCV20231SN2T1G	AAC	$3000 /$ Tape \& Reel
		SC-88	NCV20231SQ3T2G	AAG	$3000 /$ Tape \& Reel
		SOT-553	NCV20231XV53T2G	AC	$4000 /$ Tape \& Reel
	Dual	SOIC-8	NCV20232DR2G*	N232	$2500 /$ Tape \& Reel
	Quad	SOIC-14	NCV20234DR2G*	$234 G$	$2500 /$ Tape \& Reel
		TSSOP-14	NCV20234DTBR2G*	N234	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*In Development. Contact local sales office for more information.

Dual Channel

SOIC-8 / UDFN8

Quad Channel

> NCS20231, NCV20231, NCS20232, NCV20232, NCS20234, NCV20234

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Supply Voltage Range ($\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}$)	V_{S}	-0.3 to 40	V
Input Common-Mode Voltage	V_{CM}	$\mathrm{V}_{S S}-0.2$ to $\mathrm{V}_{\mathrm{DD}}+0.2$	V
Differential Input Voltage	$\mathrm{V}_{\text {ID }}$	$\pm \mathrm{V}_{\mathrm{S}}$	V
Maximum Input Current	1	± 10	mA
Maximum Output Current	10	± 100	mA
Continuous Total Power Dissipation	P_{D}	200	mW
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J} \text { (max) }}$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
ESD Capability, Human Body Model (Note 2)	HBM	± 2000	V
ESD Capability, Charge Device Model (Note 2)	CDM	± 1000	V
Moisture Sensitivity Level	MSL	Level 1	
Lead Temperature Soldering Reflow (SMD Styles Only), Pb-Free Versions (Note 3)	TSLD	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area
2. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per JEDEC standard JS-001-2017 (AEC-Q100-002)
ESD Charged Device Model tested per JEDEC standard JS-002-2014 (AEC-Q100-011)
3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

THERMAL CHARACTERISTICS (Note 4)

Package	```0JA Junction-to-Ambient Thermal Resistance```	$\begin{gathered} \Psi_{\mathrm{JT}} \\ \text { Junction-to-Case Top } \\ \text { Thermal Characteristic } \end{gathered}$	$\begin{gathered} \Psi_{\mathrm{JB}} \\ \text { Junction-to-Board } \\ \text { Thermal Characteristic } \end{gathered}$	Unit
TSOP-5 / SOT23-5	254	78	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SC-88A / SC-70-5 / SOT-353	902	70	810	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SOT-553	238	14	134	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SOIC-8				${ }^{\circ} \mathrm{C} / \mathrm{W}$
UDFN-8				${ }^{\circ} \mathrm{C} / \mathrm{W}$
SOIC-14				${ }^{\circ} \mathrm{C} / \mathrm{W}$
TSSOP-14				${ }^{\circ} \mathrm{C} / \mathrm{W}$

4. Thermal parameters are based on a 2 s 2 p board following JESD51-7 (JEDEC)

RECOMMENDED OPERATING RANGES (Note 5)

Parameter	Symbol	Min	Max	Unit
Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$	V_{S}	2.7	36	
Differential Input Voltage $\left(\mathrm{V}_{\mathrm{IN}+}-\mathrm{V}_{\mathrm{IN}-}\right)$	V_{ID}		V	
Input Common-Mode Range (Note 7)	V_{CM}	$\mathrm{V}_{\mathrm{SS}}-0.1$	$\mathrm{~V}_{\mathrm{DD}}-2 \mathrm{~V}$	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
5. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area

6 . The differential voltage may not exceed the supply voltage, $\pm \mathrm{V}_{\mathrm{S}}$. For supplies greater than $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, differential voltages up to $\pm \mathrm{V}_{\mathrm{S}}$ will consume more input current. See APPLICATION INFORMATION.
7. The specified input common mode range yields the best performance. However, the input common mode range is functional up to $\mathrm{V}_{\mathrm{DD}}+$ 0.1 V. See APPLICATION INFORMATION.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 36 V)
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to midsupply, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=$ midsupply, unless otherwise noted.
Boldface limits apply over the specified temperature range, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Supply Voltage (V)	Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	Min	Typ	Max	Unit

INPUT CHARACTERISTICS

Offset Voltage	V_{OS}	$\mathrm{V}_{\mathrm{CM}}=$ mid-supply	2.7, 5, 10, 36	25		± 0.3	± 0.95	mV
				-40 to 125			± 1.2	
				-40 to 150			± 1.2	
Offset Voltage Drift over Temperature	$\mathrm{dV}_{\mathrm{OS}} / \mathrm{dT}$	$\mathrm{V}_{\mathrm{CM}}=$ mid-supply	2.7, 5, 10, 36	-40 to 125		± 0.5	± 2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
				-40 to 150		± 0.5	± 5	
Input Bias Current (Note 8)	I_{B}		2.7, 5, 10, 36	25		± 5	± 60	pA
				-40 to 125			± 3000	
				150		± 10000		
Input Offset Current (Note 8)	los		2.7	25		± 0.5	± 60	pA
				-40 to 125			± 500	
				-40 to 150			± 2000	
			5, 10	25		± 0.5	± 60	
				-40 to 125			± 800	
				-40 to 150			± 2500	
			36	25		± 0.5	± 60	pA
				-40 to 125			± 2000	
				-40 to 150			± 2500	
Channel Separation		$\begin{aligned} & \text { NCS20232, } \\ & \text { NCS20234 } \end{aligned}$	2.7, 5, 10, 36	25		130		dB
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{IN}+$	2.7, 36	25		1		pF
		IN -	2.7, 36	25		6		
Common Mode Rejection Ratio	CMRR	$\begin{gathered} V_{C M}=V_{S S}-0.1 V \text { to } \\ V_{D D}-2 V \end{gathered}$	2.7	25	80	98		dB
				-40 to 125	75			
				-40 to 150	69			
			$\begin{gathered} 5 \\ (\text { Note 8) } \end{gathered}$	25	90	105		
				-40 to 125	85			
				-40 to 150	80			
			$\begin{gathered} 10 \\ (\text { Note 8) } \end{gathered}$	25	100	117		
				-40 to 125	100			
				-40 to 150	94			
			36	25	110	122		
				-40 to 125	110			
				-40 to 150	107			
		$\begin{gathered} \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{SS}}+1.8 \mathrm{~V} \\ \text { to } \mathrm{V}_{\mathrm{DD}}-2.4 \mathrm{~V} \end{gathered}$	36	25	$\begin{gathered} 117 \\ \text { (Note 8) } \end{gathered}$	125		dB
EMI Rejection Ratio	EMIRR		2.7, 36	25		See Figure 29		dB

8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 36 V) (continued)
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to midsupply, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=$ midsupply, unless otherwise noted.
Boldface limits apply over the specified temperature range, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Supply Voltage (V)	Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	Min	Typ	Max	Unit

Open Loop Voltage Gain	Avol	$\mathrm{V}_{\mathrm{CM}}=$ mid-supply	2.7	25	100	115		dB
				-40 to 125	90			
				-40 to 150	90			
			$\begin{gathered} 5 \\ \text { (Note 9) } \end{gathered}$	25	120	135		
				-40 to 125	115			
				-40 to 150	115			
			$\begin{gathered} 10 \\ (\text { Note 9) } \end{gathered}$	25	130	145		
				-40 to 125	120			
				-40 to 150	120			
			36	25	135	154		
				-40 to 125	130			
				-40 to 150	130			
Open Loop Output Impedance	$\mathrm{Z}_{\text {OUT }}$					See Figure 28		Ω
High Level Output Voltage Swing from $V_{D D}$	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OH}}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	2.7, 5, 10, 36	25		60	80	mV
				-40 to 125			120	
				-40 to 150			150	
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~mA}$	2.7, 5, 10, 36	25		40	60	
				-40 to 125			80	
				-40 to 150			100	
		$\mathrm{R}_{\mathrm{L}}=5 \mathrm{~mA}$	10	25		165	200	
				-40 to 125			350	
				-40 to 150			400	
Low Level Output Voltage Swing from V_{SS}	$\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\text {SS }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	2.7, 5, 10	25		16	30	mV
				-40 to 125			50	
				-40 to 150			50	
			36	25		55	80	
				-40 to 125			250	
				-40 to 150			120	
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~mA}$	2.7, 5, 10, 36	25		35	50	
				-40 to 125			80	
				-40 to 150			80	
		$\mathrm{R}_{\mathrm{L}}=5 \mathrm{~mA}$	10	25		150	170	
				-40 to 125			300	
				-40 to 150			300	
Output Current Capability	Iout	Output to V_{DD} rail, sinking current	2.7, 5, 10, 36	25		28		mA
		Output to $\mathrm{V}_{\text {SS }}$ rail, sourcing current	2.7, 5, 10, 36	25		28		
Capacitive Load Drive	C_{L}	Phase margin $=35^{\circ}$	2.7 to 36	25		140		pF

9. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 36 V) (continued)
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to midsupply, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=$ midsupply, unless otherwise noted.
Boldface limits apply over the specified temperature range, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Supply Voltage (V)	Temp (${ }^{\circ} \mathrm{C}$)	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE								
Gain Bandwidth Product	GWBP	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	2.7, 5, 10, 36	25		3		MHz
Gain Margin	A_{m}	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	2.7, 5, 10, 36	25		16		dB
Phase Margin	Φ_{m}	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	2.7, 5, 10, 36	25		60		\bigcirc
Slew Rate	SR	Unity gain, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.7, 5, 10, 36	25		4		V/us
Settling Time to 0.1%	$\mathrm{t}_{\text {s }}$	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$ step	2.7	25		7		$\mu \mathrm{s}$
		$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ step	5	25		7		
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$ step	10	25		7		
		$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$ step	36	25		6		
Settling Time to 0.01%	$\mathrm{t}_{\text {s }}$	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$ step	2.7	25		20		$\mu \mathrm{s}$
		$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ step	5	25		10		
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$ step	10	25		9		
		$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$ step	36	25		9		

NOISE PERFORMANCE

Total Harmonic Distortion + Noise	THD+N	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}_{\mathrm{pp}}, \\ \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=1 \end{gathered}$	2.7	25	0.009	\%
		$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{pp}}, \\ \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=1 \end{gathered}$	5	25	0.0004	
		$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=7.5 \mathrm{~V}_{\mathrm{pp}}, \\ \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=1 \end{gathered}$	10	25	0.0002	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=28.5 \mathrm{~V}_{\mathrm{pp}}, \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=1 \end{aligned}$	36	25	0.0002	
Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$	2.7, 5, 10, 36	25	20	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}=10 \mathrm{kHz}$			20	
Current Noise Density	i_{n}	$\mathrm{f}=1 \mathrm{kHz}$	2.7, 5, 10, 36	25	30	$\mathrm{f} \mathrm{A} / \sqrt{ } \mathrm{Hz}$
Voltage Noise, Peak to Peak	e_{pp}	$\mathrm{f}_{\mathrm{I}}=0.1 \mathrm{~Hz}$ to 10 Hz	2.7, 5, 10, 36	25	700	$n V_{p p}$

POWER SUPPLY

Power Supply Rejection Ratio	PSRR	$\mathrm{Vs}=2.7 \mathrm{~V}$ to 36 V	2.7, 36	25	125	138		dB
				-40 to 125	120			
				-40 to 150	120			
Quiescent Current	${ }^{\text {a }}$	No load, per channel	2.7, 5	25		0.37	0.595	mA
				-40 to 125			0.650	
				-40 to 150			0.7	
			10	25		0.375	0.595	
				-40 to 125			0.650	
				-40 to 150			0.75	
			36	25		0.41	0.595	
				-40 to 125			0.650	
				-40 to 150			0.8	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NCS20231, NCV20231, NCS20232, NCV20232, NCS20234, NCV20234

TYPICAL CHARACTERISTICS

Typical Performance at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{VCM}=$ mid-supply, $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to mid-supply, unless otherwise noted

Figure 1. Input Offset Voltage Distribution

Figure 3. Input Offset Voltage vs. Common Mode Voltage

Figure 5. Input Current vs. Common Mode Voltage

Figure 2. Input Offset Voltage Drift Distribution

Figure 4. Input Offset Voltage vs. Common Mode Voltage, Performance Region

Figure 6. Input Current vs. Temperature

NCS20231, NCV20231, NCS20232, NCV20232, NCS20234, NCV20234
TYPICAL CHARACTERISTICS
Typical Performance at $T_{A}=25^{\circ} \mathrm{C}, V C M=$ mid-supply, $C_{L}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to mid-supply, unless otherwise noted

Figure 7. Open Loop Gain and Phase vs. Frequency

Figure 9. PSRR vs. Frequency

Figure 11. Gain Margin vs. Capacitive Load

Figure 8. CMRR vs. Frequency

Figure 10. Phase Margin vs. Capacitive Load

Figure 12. Output Voltage Swing High vs.
Output Current at $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$

TYPICAL CHARACTERISTICS
Typical Performance at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{VCM}=$ mid-supply, $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to mid-supply, unless otherwise noted

Figure 13. Output Voltage Swing vs. Output Current at $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$

Figure 15. Output Voltage Swing vs. Output Current at $\mathrm{V}_{\mathrm{S}}=36 \mathrm{~V}$

TIME (2 $\mu \mathrm{s} / \mathrm{div}$)
Figure 17. Large Signal Step Response

Figure 14. Output Voltage Swing vs. Output Current at $\mathrm{V}_{\mathrm{S}}=36 \mathrm{~V}$

Figure 16. Quiescent Current vs. Temperature

Figure 18. Large Signal Step Response

NCS20231, NCV20231, NCS20232, NCV20232, NCS20234, NCV20234

TYPICAL CHARACTERISTICS
Typical Performance at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{VCM}=$ mid-supply, $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to mid-supply, unless otherwise noted

TIME (1 $\mu \mathrm{s} / \mathrm{div}$)
Figure 19. Small Signal Step Response

TIME ($1 \mu \mathrm{~s} / \mathrm{div}$)
Figure 20. Small Signal Step Response

TIME (2 $\mu \mathrm{s} / \mathrm{div}$)
Figure 21. Settling Time

TIME (2 $\mu \mathrm{s} / \mathrm{div}$)
Figure 23. No Phase Reversal

Figure 22. Output Overload Recovery Response

Figure 24. THD+n vs. Frequency

TYPICAL CHARACTERISTICS
Typical Performance at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{VCM}=$ mid-supply, $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to mid-supply, unless otherwise noted

Figure 25. 0.1 Hz to 10 Hz Noise

Figure 27. Current Noise Density vs. Frequency

Figure 29. EMIRR vs. Frequency

Figure 26. Voltage Noise Density vs. Frequency

Figure 28. Open Loop Output Impedance vs.
Frequency

Figure 30. Channel Separation vs. Frequency

APPLICATION INFORMATION

Input and ESD Structure

The NCS20231 series amplifiers have back-to-back Zener diodes, which allow for normal operation with the differential voltage up to $\pm 5 \mathrm{~V}$. Differential voltages beyond this are permitted, up to $\pm \mathrm{V}_{\mathrm{S}}$, but increased input leakage
current should be expected. Internal current limiting resistors in series with the input pins limit the current to $\pm 10 \mathrm{~mA}$ in scenarios where the differential voltage is as high as $\pm 36 \mathrm{~V}$.

Figure 31. Representative Schematic of the Op Amp

Each input pin is diode clamped to the rails. In case of an input overvoltage, input currents must be limited to within $\pm 10 \mathrm{~mA}$ to prevent excessive current from damaging the part.

Rail-to-Rail Performance

The functional common mode input voltage spans 100 mV beyond the rails. High precision performance, as
shown throughout the ELECTRICAL CHARACTERISTICS table, is achieved in the $\mathrm{V}_{\mathrm{SS}}-0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ common mode voltage range. The input common mode extends further up to $\mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}$ to ensure functionality near the upper rail, though without precision performance in that region. The typical performance within the $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}$ range is shown in the table below.

Parameter	Symbol	Conditions	Typ	Units
Input Offset Voltage	V_{OS}	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	± 9	mV
Input Offset Voltage over Temperature	dV ${ }_{\text {OS }} / \mathrm{dT}$		± 24	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.1 \mathrm{~V}$	75	dB
Open Loop Voltage Gain	Avol	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	90	dB
Gain Bandwidth Product	GBWP	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	2.5	MHz
Slew Rate	SR	Unity gain, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$	1.2	V/us
Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$	1000	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

The NCS2023x does not exhibit output phase reversal. Phase reversal occurs in some amplifiers when the input voltage exceeds the recommended input common mode voltage range, causing the output to flip to the opposite rail.

Instead, when the input common mode voltage range is exceeded on the NCS2023x, the output becomes clipped at the output, limited by the output voltage swing.

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	
G	0.026 BSC		0.65	

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

```
```

STYLE 1:

```
```

STYLE 1:
PIN 1. BASE
PIN 1. BASE
2. EMITTER
2. EMITTER
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

```
```

 5. COLLECTOR
    ```
```

```
STYLE 2:
    PIN 1. ANODE
        STYLE 3
```

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3
PIN 1. ANODE
2. EMITTER 2. N/C
3. ANODE 2
4. CATHODE
5. CATHODE

STYLE 8

PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

SOLDER FOOTPRINT

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:

PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 20 MAR 2013

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL

| | MILLIMETERS | | | INCHES | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | NOM | MAX | MIN | NOM | MAX | |
| A | 0.50 | 0.55 | 0.60 | 0.020 | 0.022 | 0.024 | |
| b | 0.17 | 0.22 | 0.27 | 0.007 | 0.009 | 0.011 | |
| c | 0.08 | 0.13 | 0.18 | 0.003 | 0.005 | 0.007 | |
| D | 1.55 | 1.60 | 1.65 | 0.061 | 0.063 | 0.065 | |
| E | 1.15 | 1.20 | 1.25 | 0.045 | 0.047 | 0.049 | |
| e | 0.50 BSC | | | | 0.020 BSC | | |
| L | 0.10 | 0.20 | 0.30 | 0.004 | 0.008 | 0.012 | |
| $\mathbf{H}_{\mathbf{E}}$ | 1.55 | 1.60 | 1.65 | 0.061 | 0.063 | 0.065 | |

RECOMMENDED

SOLDERING FOOTPRINT*

GENERIC MARKING DIAGRAM*

XX = Specific Device Code
M = Date Code

- \quad Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:
PIN 1. BAS
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
2. BASE 2 3. EMITTER
3. EMITTER 1
4. COLLECTOR 1
4. COLLECTOR 1
5. COLLECTOR $2 / B A S E 1$

STYLE 2
PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

STYLE 7:
PIN 1. BASE
2. EMITTER
2. EMITT
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

STYLE 3:
PIN 1. ANODE 1
2. N / C
3. ANODE 2
4. CATHODE
5. CATHODE 1

STYLE 8:
PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:
PIN 1. ANODE 2. EMITTER
3. BASE
4. COLLECTOR 5. CATHODE

| DOCUMENT NUMBER: | 98AON11127D | Electronic versions are uncontrolled except when
 accessed directly from the Document Repository. Printed
 versions are uncontrolled except when stamped
 "CONTROLLED COPY" in red. | |
| ---: | :--- | :--- | :--- |
| STATUS: | ON SEMICONDUCTOR STANDARD | | |
| NEW STANDARD: | | | PAGE 1 OF 2 |

| ON Semiconductor | | DOCUMENT NUMBER: 98AON11127D | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2 OF 2 | |
| ISSUE | REVISION | | DATE |
| A | ADDED STYLES 3-9. REQ. BY D. BARLOW | | 11 NOV 2003 |
| B | ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO | | 27 MAY 2005 |
| C | UPDATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN. | | 20 MAR 2013 |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

[^0] arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME

Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH

THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD

FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

| DIM | MILLIMETERS | |
| :---: | :---: | :---: |
| | MIN | MAX |
| \mathbf{A} | 2.85 | 3.15 |
| \mathbf{B} | 1.35 | 1.65 |
| \mathbf{C} | 0.90 | 1.10 |
| \mathbf{D} | 0.25 | 0.50 |
| \mathbf{G} | 0.95 | BSC |
| \mathbf{H} | 0.01 | 0.10 |
| \mathbf{J} | 0.10 | 0.26 |
| \mathbf{K} | 0.20 | 0.60 |
| \mathbf{M} | 0 | 10° |
| \mathbf{S} | 2.50 | 3.00 |

GENERIC MARKING DIAGRAM*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

UDFN8, 2x2
CASE 517AW
ISSUE A
DATE 13 NOV 2015

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINALS AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP
COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
FOR DEVICE OPN CONTAINING W OPTION,
DETAIL B ALTERNATE CONSTRUCTION IS NOT APPLICABLE.

| | MILLIMETERS | | | |
| :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | | |
| A | 0.45 | 0.55 | | |
| A1 | 0.00 | 0.05 | | |
| A3 | 0.13 | | | REF |
| b | 0.18 | 0.30 | | |
| D | 2.00 | | | |
| D2 | 1.50 | | | |
| | 1.70 | | | |
| E | 2.00 | | | |

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON34462E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN8, 2X2 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any ans
rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

| DIM | MILLIMETERS | | INCHES | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX |
| | 4.80 | 5.00 | 0.189 | 0.197 |
| B | 3.80 | 4.00 | 0.150 | 0.157 |
| C | 1.35 | 1.75 | 0.053 | 0.069 |
| D | 0.33 | 0.51 | 0.013 | 0.020 |
| G | 1.27 BSC | | 0.050 BSC | |
| H | 0.10 | 0.25 | 0.004 | 0.010 |
| J | 0.19 | 0.25 | 0.007 | 0.010 |
| K | 0.40 | 1.27 | 0.016 | 0.050 |
| M | 0 | 0° | 8° | 0 |
| | \circ | 8 | | |
| N | 0.25 | 0.50 | 0.010 | 0.020 |
| S | 5.80 | 6.20 | 0.228 | 0.244 |

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

| PIN 1. | EMITTER |
| ---: | :--- |
| 2. | COLLECTOR |
| 3. | COLLECTOR |
| 4. | EMITTER |
| 5. | EMITTER |
| 6. | BASE |
| 7. | BASE |
| 8. | EMITTER |
| STYLE 5: | |
| PIN 1. | DRAIN |
| 2. | DRAIN |
| 3. | DRAIN |
| 4. | DRAIN |
| 5. | GATE |
| 6. | GATE |
| 7. | SOURCE |
| 8. | SOURCE |

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5-DRAIN
. P-DRAIN
7. N -DRAIN
8. N-DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
N 1. DRAIN, DIE
2. DRAIN, \#1
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24:

PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| :---: | :---: | :---: |
| DESCRIPTION: | SOIC-8 NB | - PAGE 2 OF2 |

onsemi and OnSeMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

| DIM | MILLIMETERS | | | INCHES | |
| :---: | ---: | :---: | ---: | ---: | :---: |
| | MIN | MAX | MIN | MAX | |
| | 1.35 | 1.75 | 0.054 | 0.068 | |
| A1 | 0.10 | 0.25 | 0.004 | 0.010 | |
| A3 | 0.19 | 0.25 | 0.008 | 0.010 | |
| b | 0.35 | 0.49 | 0.014 | 0.019 | |
| D | 8.55 | 8.75 | 0.337 | 0.344 | |
| E | 3.80 | 4.00 | 0.150 | 0.157 | |
| e | 1.27 BSC | 0.050 | BSC | | |
| H | 5.80 | 6.20 | 0.228 | 0.244 | |
| h | 0.25 | 0.50 | 0.010 | 0.019 | |
| L | 0.40 | 1.25 | 0.016 | 0.049 | |
| M | 0 | 7° | 7° | 0° | |

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE
STYLE $5:$

PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE

1. COMMON CATHODE
2. COMMON ANODE
3. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Documment Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE $\mathbf{2}$ OF 2 |

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSSOP-14 WB
CASE 948G
ISSUE C
DATE 17 FEB 2016

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

| DIM | MILLIMETERS | | INCHES | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX |
| A | 4.90 | 5.10 | 0.193 | 0.200 |
| B | 4.30 | 4.50 | 0.169 | 0.177 |
| C | --- | 1.20 | --- | 0.047 |
| D | 0.05 | 0.15 | 0.002 | 0.006 |
| F | 0.50 | 0.75 | 0.020 | 0.030 |
| G | 0.65 | BSC | 0.026 | |
| BSC | | | | |
| H | 0.50 | 0.60 | 0.020 | 0.024 |
| J | 0.09 | 0.20 | 0.004 | 0.008 |
| J1 | 0.09 | 0.16 | 0.004 | 0.006 |
| K | 0.19 | 0.30 | 0.007 | 0.012 |
| K1 | 0.19 | 0.25 | 0.007 | 0.010 |
| L | 6.40 BSC | 0.252 | BSC | |
| M | 00° | 8° | 0° | 8° |

GENERIC MARKING DIAGRAM*

SOLDERING FOOTPRINT

| |
| :---: |
| | |
| | |
| | |
| | |
| | |

| A | $=$ Assembly Location |
| :--- | :--- |
| L | $=$ Wafer Lot |
| Y | $=$ Year |
| W | $=$ Work Week |
| - | $=$ Pb-Free Package |

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

onsemi and ONSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability

[^1]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

