

Datasheet

Low-power, rail-to-rail output, 36 V operational amplifiers

SO8

MiniSO8

SOT23-5

Features

- Low offset voltage: 1 mV max
- Low current consumption: 125 µA max. per amplifier at 36 V
- Wide supply voltage: 2.7 to 36 V
- Gain bandwidth product: 560 kHz typ
- Unity gain stable
- Rail-to-rail output
- Input common mode voltage includes ground
- High tolerance to ESD: 4 kV HBM
- Extended temperature range: -40 °C to 125 °C
- Automotive qualification

Applications

- Industrial
- Power supplies
- Automotive

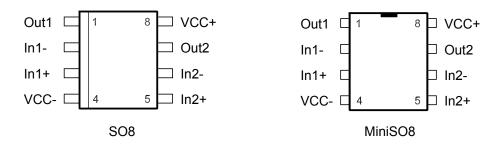
Description

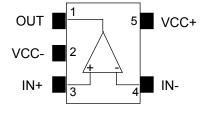
The TSB611, TSB612 operational amplifiers (op amps) offer an extended supply voltage operating range and rail-to-rail output. They also offer an excellent speed/ power consumption ratio with 560 kHz gain bandwidth product while consuming less than 125 µA per amplifier at 36 V supply voltage.

The TSB611, TSB612 operate over a wide temperature range from -40 °C to 125°C making this device ideal for industrial and automotive applications.

Thanks to their small package size, the TSB611, TSB612 can be used in applications where space on the board is limited. They can thus reduce the overall cost of the PCB.

Maturity status link


TSB611, TSB612



1 Pin connection

Figure 1. Pin connection (top view)

SOT23-5

DS11136 - Rev 4 page 2/22

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit		
V _{cc}	Supply voltage (1)		40		
V _{id}	Differential input voltage (2)		±V _{cc}	V	
V _{in}	Input voltage	Input voltage		•	
l _{in}	Input current (3)	Input current (3)			
T _{stg}	Storage temperature	-65 to 150	°C		
	Thermal resistance junction to ambient (4)	SOT23-5	250		
R _{thja}		MiniSO8	190	°C/W	
		SO-8	125		
Тј	Maximum junction temperature	150	°C		
ECD	HBM: human body model (6)		4000	V	
ESD	CDM: charged device model (7)	1500	V		

- 1. All voltage values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. Input current must be limited by a resistor in series with the inputs.
- 4. R_{th} are typical values.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. According to JEDEC standard JESD22-A114F.
- 7. According to ANSI/ESD STM5.3.1.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{cc}	Supply voltage	2.7 to 36	V
V _{icm}	Common mode input voltage range	(V_{cc-}) - 0.1 to (V_{cc+}) - 1	V
T _{oper}	Operating free air temperature range	-40 to 125	°C

DS11136 - Rev 4 page 3/22

3 Electrical characteristics

Table 3. Electrical characteristics at V $_{cc}$ + = 2.7 V with V $_{cc}$ = 0 V, V $_{icm}$ = V $_{cc}$ /2, T $_{amb}$ = 25 °C, and R $_{L}$ = 10 k Ω connected to V $_{cc}$ /2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
OC performa	nce						
V.	Input offset voltage		-1		1	m\/	
V_{io}	Input offset voltage	-40 °C < T< 125 °C	-1.6		1.6	mV	
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T< 125 °C		1.8	6	μV/°C	
I.	langual official commonst			1	5		
l _{io}	Input offset current	-40 °C < T< 125 °C			10		
I	Input bias current			5	10	- nA	
IID		-40 °C < T< 125 °C			15		
CMR	Common mode rejection ratio:	$V_{icm} = 0 V to V_{cc+} -1 V, V_{out} = V_{cc}/2$	90	115			
CIVIR	$20 \log (\Delta V_{icm}/\Delta V_{io})$	-40 °C < T< 125 °C	85				
		V _{out} = 0.5 V to (V _{CC+} - 0.5 V)					
		TSB611	98	102		dB	
A_{vd}	Large signal voltage gain	- 40 °C< T < 125 °C	94				
		TSB612	90	100			
		- 40 °C< T < 125 °C	87				
V _{OH}	High level output voltage			13	25		
VOH	(voltage drop from V _{CC+})	-40 °C < T< 125 °C			30	mV	
V _{OL}	Low level output voltage			26	30		
VOL	Low level output voltage	-40 °C < T< 125 °C			35		
	1	V _{out} = V _{cc}	13	20			
1	Isink	-40 °C < T< 125 °C	10			- A	
l _{out}	1	V _{out} = 0 V	20	28		mA	
	Isource	-40 °C < T< 125 °C	7				
	Overally average (many allowers)	No load, V _{out} = V _{cc} /2		92	110		
I _{CC}	Supply current (per channel)	-40 °C < T< 125 °C			125	μA	
C performa	ince						
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		480			
Fu	Unity gain frequency	R _L = 10 kΩ, C _L = 100 pF		430		kHz	
φ _m	Phase margin	R _L = 10 kΩ, C _L = 100 pF		60		Degrees	
G _m	Gain margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		18		dB	
SR+	Positive slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}, V_{out} = 0.5 \text{ V}$ to V_{CC} - 0.5 V	0.13	0.18		V/µs	
SR-	Negative slew rate	R_L = 10 k Ω , C_L = 100 pF, V_{out} = 0.5 V to V_{CC} - 0.5 V	0.10	0.14			
	Environment in a control of	f = 1 kHz		37		-> 11 /1 :	
e _n	Equivalent input noise voltage	f = 10 kHz		32		nV/√Hz	

DS11136 - Rev 4 page 4/22

Downloaded from Arrow.com.

Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
THD+N	Total harmonic distortion + noise	$\begin{split} f_{in} &= 1 \text{ kHz, Gain} = 1, \text{ R}_L = 100 \text{ k}\Omega, \\ V_{icm} &= (V_{cc} - 1 \text{ V})/2, \text{ BW} = 22 \text{ kHz,} \\ V_{out} &= 1 \text{ V}_{pp} \end{split}$		0.005		%
t _{rec}	Overload recovery time			2		μs

DS11136 - Rev 4 page 5/22

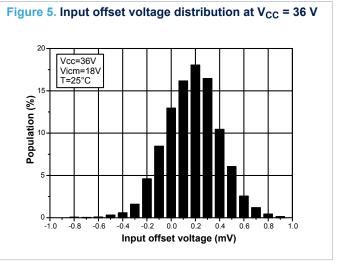
Table 4. Electrical characteristics at V_{cc+} = 12 V with V_{cc-} = 0 V, V_{icm} = $V_{cc}/2$, T_{amb} = 25 °C, and R_L = 10 k Ω connected to $V_{cc}/2$ (unless otherwise specified)

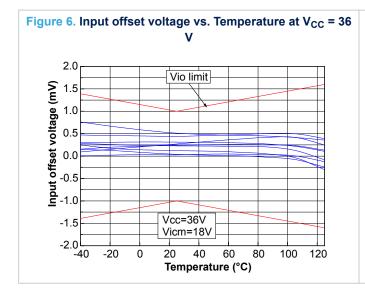
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
OC performa	ince				'		
V	land to the standing of		-1		1	\/	
V_{io}	Input offset voltage	-40 °C < T< 125 °C	-1.6		1.6	- mV	
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T< 125 °C		1.6	6	μV/°C	
				1	5		
l _{io}	Input offset current	-40 °C < T< 125 °C			15		
I	land this a compant			5	10	- nA	
l _{ib}	Input bias current	-40 °C < T< 125 °C			15		
OMP	Common mode rejection ratio:	$V_{icm} = 0 V to V_{cc+} - 1 V, V_{out} = V_{cc}/2$	95	126			
CMR	20 log ($\Delta V_{icm}/\Delta V_{io}$)	-40 °C < T< 12 5°C	90			-	
0) (5	Supply voltage rejection ratio:	V _{cc} = 2.8 to 12 V	95	124			
SVR	$20 \log (\Delta V_{cc}/\Delta V_{io})$	-40 °C < T< 125 °C	90			dB	
		V _{out} = 0.5 V to (V _{cc+} - 0.5 V)	105	115		-	
A_{vd}	A _{vd} Large signal voltage gain	-40 °C < T< 125 °C	100			-	
.,	High level output voltage drop			37	60		
V_{OH}	from V _{cc+}	-40 °C < T< 125 °C			65		
.,,	V			56	65	mV	
V_{OL}	Low level output voltage	-40 °C < T< 125 °C			75		
		V _{out} = V _{cc}	24	35		^	
	Isink	-40 °C < T< 125 °C	10				
l _{out}		V _{out} = 0 V	28	40		- mA	
	I _{source}	-40 °C < T< 125 °C	10			-	
		No load, V _{out} = V _{cc} /2		97	115		
I _{CC}	Supply current (per channel)	-40 °C < T< 125 °C			130	μA	
AC performa	nce						
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		510			
Fu	Unity gain frequency	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		460		kHz	
φ _m	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		60		Degrees	
G _m	Gain margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		18		dB	
SR+	Positive slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $V_{out} = 0.5 \text{ V}$ to V_{CC} - 0.5 V	0.13	0.19			
SR-	Negative slew rate	R_L = 10 k Ω , C_L = 100 pF, V_{out} = 0.5 V to V_{CC} - 0.5 V	0.11	0.15		V/µs	
		f = 1 kHz		31		/-	
e _n	Equivalent input noise voltage	f = 10 kHz		30		nV/√Hz	
THD+N	Total harmonic distortion + noise	f_{in} = 1 kHz, Gain = 1, R _L = 100 k Ω , V_{icm} = (V_{cc} - 1 V)/2, BW = 22 kHz, V_{out} = 2 V_{pp}		0.004		%	
t _{rec}	Overload recovery time			2		μs	

DS11136 - Rev 4 page 6/22

Table 5. Electrical characteristics at V_{cc+} = 36 V with V_{cc-} = 0 V, V_{icm} = $V_{cc}/2$, T_{amb} = 25 °C, and R_L = 10 k Ω connected to $V_{cc}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
OC performa	nce					
V	land to the state of the state of		-1		1	
V_{io}	Input offset voltage	-40 °C < T< 125 °C	-1.6		1.6	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T< 125 °C		1.3	6	μV/°C
I.	Input offset surrent			1	5	
l _{io}	Input offset current	-40 °C < T< 125 °C			20	nA
I _{ib}	Input hige current			5	10	IIA
ID	Input bias current	-40 °C < T< 125 °C			20	
CMR	Common mode rejection ratio:	$V_{icm} = 0 V to V_{cc+} - 1 V, V_{out} = V_{cc}/2$	105	130		
CIVIR	20 log ($\Delta V_{icm}/\Delta V_{io}$)	-40 °C < T< 125 °C	100			
SVR	Supply voltage rejection ratio 20	V _{cc} = 12 to 36 V	100	124		dD.
SVK	$\log (\Delta V_{cc}/\Delta V_{io})$	-40 °C < T< 125 °C	95			dB
^	Laura di mada malia	V _{out} = 0.5 V to (V _{cc+} - 0.5 V)	110	120		
A_{vd}	A _{vd} Large signal voltage gain	-40 °C < T< 125 °C	105			
M	High level output voltage drop			80	110	
V_{OH}	from V _{CC+}	-40 °C < T< 125 °C			150	mV
V				90	110	
V_{OL}	Low level output voltage	-40 °C < T< 125 °C			150	
	1	V _{out} = V _{cc}	40	60		mA
	Isink	-40 °C < T< 125 °C	10			
l _{out}	1	V _{out} = 0 V	40	70		
	Isource	-40 °C < T< 125 °C	20			
	0 1 1/	No load, V _{out} = V _{cc} /2		103	125	
I _{CC}	Supply current (per channel)	-40 °C < T< 125 °C			140	μA
C performa	nce					
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		560		
Fu	Unity gain frequency	R _L = 10 kΩ, C _L = 100 pF		500		kHz
φ _m	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		58		Degrees
G _m	Gain margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		18		dB
SR+	Positive slew rate	R_L = 10 k Ω , C_L = 100 pF, V_{out} = 0.5 V to V_{CC} - 0.5 V	0.15	0.20		
SR-	Negative slew rate	R_L = 10 k Ω , C_L = 100 pF, V_{out} = 0.5 V to V_{CC} - 0.5 V	0.12	0.16		V/µs
	Equivalent input asias walts	f = 1 kHz		29		nV/√Hz
e _n	Equivalent input noise voltage	f = 10 kHz		28		nv/VHZ
THD+N	Total harmonic distortion + noise	$\begin{split} f_{in} &= 1 \text{ kHz, Gain} = 1, \text{ R}_L = 100 \text{ k}\Omega, \\ V_{icm} &= (V_{cc} - 1 \text{ V})/2, \text{ BW} = 22 \text{ kHz,} \\ V_{out} &= 2 \text{ V}_{pp} \end{split}$		0.004		%
t _{rec}	Overload recovery time	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF, Gain} = 1$		2		μs


DS11136 - Rev 4 page 7/22



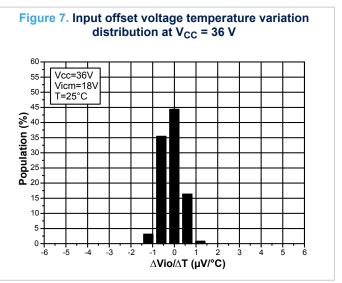

Figure 2. Supply current vs. supply voltage at V_{icm} = V_{CC}/2 200 Vicm=Vcc/2 175 Supply Current (µA) 120 125 100 75 50 T=-40°C T=25°C 50 T=125°C 25 12 16 20 24 32 Supply Voltage (V)

Figure 3. Input offset voltage distribution at V_{CC} = 2.7 V

Figure 4. Input offset voltage distribution at V_{CC} = 12 V

DS11136 - Rev 4 page 8/22

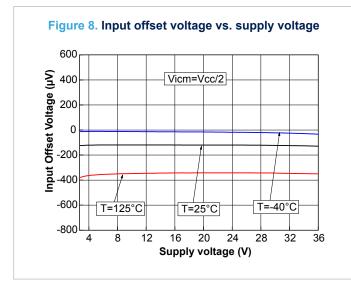
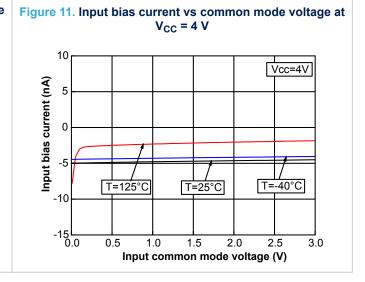
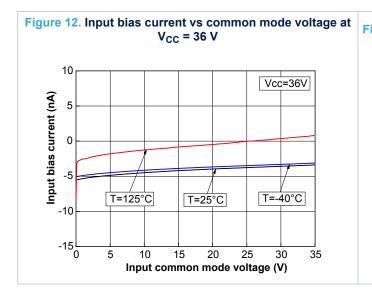
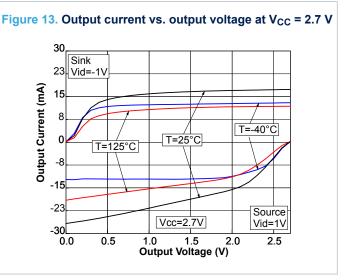





Figure 9. Input offset voltage vs. common-mode voltage at $V_{CC} = 2.7 \text{ V}$ 400 Input Offset Voltage (µV) Vcc=2.7V 200 0 -200 -400 T=125°C T=25°C T=-40°C -600 -800 0.0 1.5 1.0 Input Common Mode Voltage (V)

Figure 10. Input offset voltage vs. common-mode voltage at $V_{CC} = 36 \text{ V}$ 600 Input Offset Voltage (µV) 400 Vcc=36V 200 0 -200 -400 T=125°C T=25°C T=-40°C -600L 16 20 24 28 Input Common Mode Voltage (V)

DS11136 - Rev 4 page 9/22

Figure 14. Output current vs. output voltage at V_{CC} = 36 V

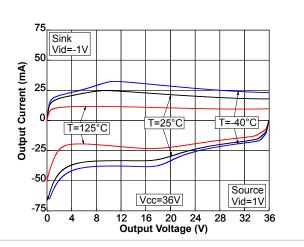


Figure 15. Output voltage (Voh) vs. supply voltage

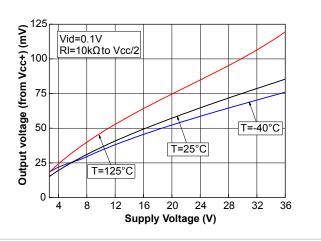


Figure 16. Output voltage (Vol) vs. supply voltage

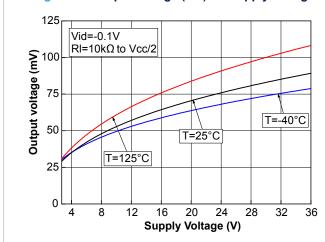


Figure 17. Amplifier behavior close to negative rail at V_{CC}

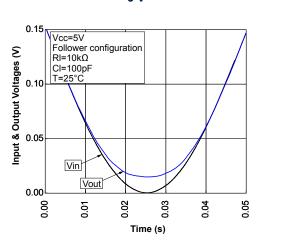


Figure 18. Amplifier behavior close to positive rail at V_{CC}

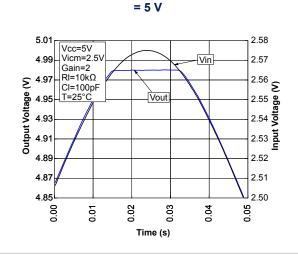
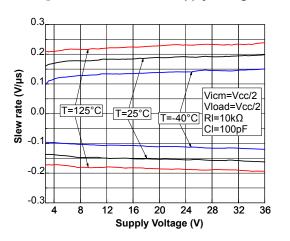



Figure 19. Slew rate vs. supply voltage

DS11136 - Rev 4 page 10/22

Figure 20. Negative slew rate behavior vs. temperature at $V_{CC} = 36 V$ Vcc=36V 6 Vicm=Vcc/2 RI=10kΩ Signal Amplitude (V) CI=100pF T=-40°C T=25°C 0

T=125°C

80

100

120

Figure 21. Positive slew rate behavior vs. temperature at $V_{CC} = 36 V$ Signal Amplitude (V) T=125°C T=25°C Vcc=36V Vicm=Vcc/2 T=-40°C RI=10kΩ CI=100pF

Figure 22. Small step response vs. time at V_{CC} = 36 V

40

60

Time (µs)

0

-20

20

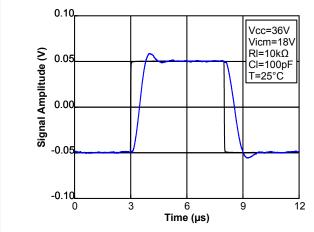


Figure 23. Output desaturation vs. time

40

Time (µs)

60

80

20

0

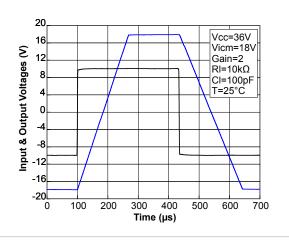


Figure 24. Gain and phase vs. frequency at $V_{CC} = 2.7 \text{ V}$

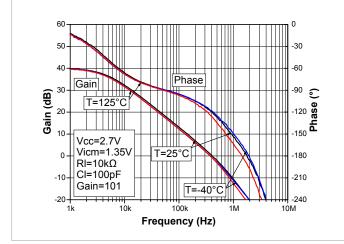
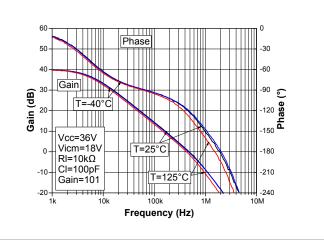



Figure 25. Gain and phase vs. frequency at V_{CC} = 36 V

page 11/22

Figure 26. Phase margin vs. output current at V_{CC} = 2.7 V | Figure 27. Phase margin vs. capacitive load at V_{CC} = 2.7 V and 36 V 90 80 70 Phase margin (°) Vcc=2.7V Vcc=36V Vicm=Vcc/2 RI=10kΩ 20 CI=100pF 10 T=25°C

and 36 V 50 Phase margin (°) Vcc=2.7V Vcc=36V Vicm=Vcc/2 RI=10kΩ 10 T=25°C 100 300 400 500 1000 Capacitive load (pF)

Figure 28. Overshoot vs. capacitive load at V_{CC} = 2.7 V and 36 V

0.00

Output current (pF)

-0.25

0.25 0.50 0.75

-0.75 -0.50

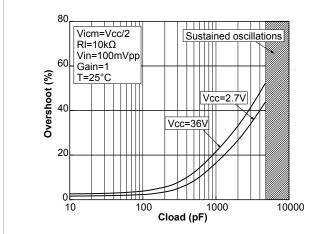


Figure 29. Noise vs. frequency at V_{CC} = 36 V

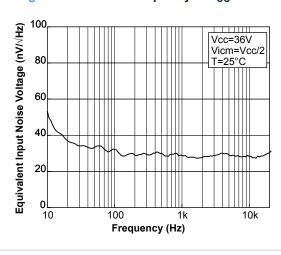


Figure 30. Noise vs. time at V_{CC} = 36 V

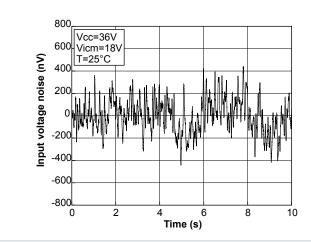
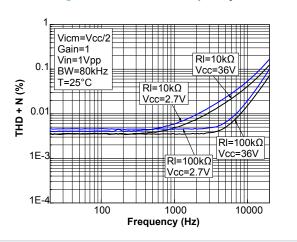
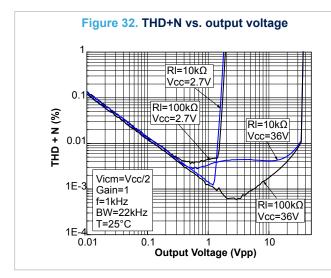




Figure 31. THD+N vs. frequency

page 12/22

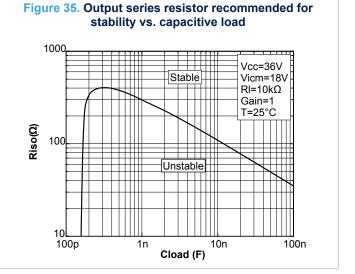



Figure 34. Output impedance vs. frequency at V_{CC} = 2.7 V and 36 V 1000 ____ Vicm=Vcc/2 Gain=1 Output impedance (Ohm) Vosc=30mV 100 T=25°C 10 100 10k 100k 1M 10M Frequency (Hz)

DS11136 - Rev 4 page 13/22

4 Application information

4.1 Operating voltages

The TSB611, TSB612 operational amplifiers can operate from 2.7 V to 36 V. The parameters are fully specified at 2.7 V, 12 V, and 36 V power supplies. However, parameters are very stable in the full $V_{\rm CC}$ range. Additionally, main specifications are guaranteed in the extended temperature range from -40 to 125 °C.

4.2 Input common-mode range

The TSB611, TSB612 have an input common-mode range that includes ground. The input common-mode range is extended from (V_{CC^-}) - 0.1 V to (V_{CC^+}) - 1 V.

4.3 Rail-to-rail output

The operational amplifier's output levels can go close to the rails: 100 mV maximum below the positive rail and 110 mV maximum above the negative rail when connected to a 10 k Ω resistive load to $V_{CC}/2$ for a power supply voltage of 36 V.

4.4 Input offset voltage drift over temperature

The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using Equation 1.

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \text{max} \left| \frac{V_{io}(T) - V_{io}(25 \,^{\circ}\text{C})}{T - 25 \,^{\circ}\text{C}} \right|$$

Where T = -40 °C and 125 °C.

The datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 2.

DS11136 - Rev 4 page 14/22

4.5 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- · Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2.

Equation 2

$$A_{FV} = e^{\beta \cdot (V_S - V_U)}$$

Where:

AFV is the voltage acceleration factor

 β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)

V_S is the stress voltage used for the accelerated test

V_U is the voltage used for the application

The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.

Equation 3

$$A_{FT} = e^{\frac{E_a}{k} \cdot \left(\frac{1}{T_U} - \frac{1}{T_S}\right)}$$

Where:

A_{FT} is the temperature acceleration factor

Ea is the activation energy of the technology based on the failure rate

k is the Boltzmann constant (8.6173 x 10⁻⁵ eV.K⁻¹)

 T_{IJ} is the temperature of the die when V_{IJ} is used (K)

T_S is the temperature of the die under temperature stress (K)

The final acceleration factor, A_F , is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4).

Equation 4

$$A_F = A_{FT} \times A_{FV}$$

 A_F is calculated using the temperature and voltage defined in the mission profile of the product. The A_F value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

Equation 5

Months =
$$A_F \times 1000 \text{ h} \times 12 \text{ months} / (24 \text{ h} \times 365.25 \text{ days})$$

To evaluate the op amp reliability, a follower stress condition is used where V_{CC} is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).

The V_{io} drift (in μV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6).

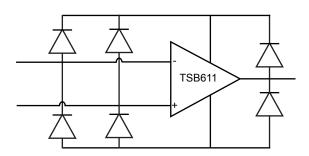
Equation 6

$$V_{CC} = maxV_{op} \text{ with } V_{icm} = V_{CC}/2$$

The long term drift parameter (ΔV_{io}), estimating the reliability performance of the product, is obtained using the ratio of the V_{io} (input offset voltage value) drift over the square root of the calculated number of months (Equation 7).

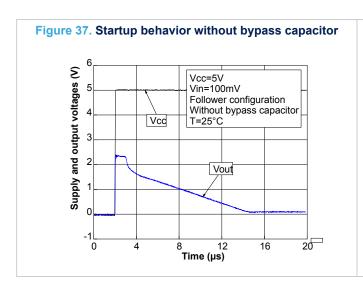
Equation 7

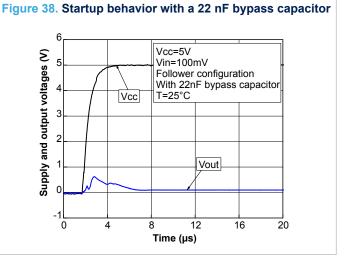
DS11136 - Rev 4 page 15/22


$$\Delta V_{io} = \frac{V_{io} drift}{\sqrt{(month s)}}$$

Where V_{io} drift is the measured drift value in the specified test conditions after 1000 h stress duration.

4.6 ESD structure of TSB611, TSB612


The TSB611, TSB611 are protected against electrostatic discharge (ESD) with dedicated diodes (see Figure 36. ESD structure). These diodes must be considered at application level especially when signals applied on the input pins go beyond the power supply rails (V_{CC+} or V_{CC-}). Current through the diodes must be limited to a maximum of 10 mA as stated in Table 1. Absolute maximum ratings (AMR). A serial resistor or a Schottky diode can be used on the inputs to improve protection but the 10 mA limit of input current must be strictly observed.


Figure 36. ESD structure

4.7 Initialization time

The TSB611, TSB612 have a good power supply rejection ratio (PSRR), but as with all devices, it is recommended to use a 22 nF bypass capacitor as close as possible to the power supply pins. It prevents the noise present on the power supply impacting the signal conditioning. In addition, this bypass capacitor enhances the initialization time (see Figure 37. Startup behavior without bypass capacitor and Figure 38. Startup behavior with a 22 nF bypass capacitor).

DS11136 - Rev 4 page 16/22

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

5.1 SOT23-5 package information

Figure 39. SOT23-5 package outline

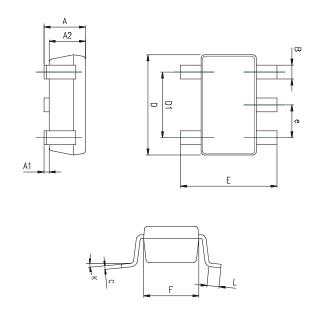


Table 6, SOT23-5 mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.90	1.20	1.45	0.035	0.047	0.057
A1			0.15			0.006
A2	0.90	1.05	1.30	0.035	0.041	0.051
В	0.35	0.40	0.50	0.014	0.016	0.020
С	0.09	0.15	0.20	0.004	0.006	0.008
D	2.80	2.90	3.00	0.110	0.114	0.118
D1		1.90			0.075	
е		0.95			0.037	
E	2.60	2.80	3.00	0.102	0.110	0.118
F	1.50	1.60	1.75	0.059	0.063	0.069
L	0.10	0.35	0.60	0.004	0.014	0.024
K	0 degrees		10 degrees	0 degrees		10 degrees

DS11136 - Rev 4 page 17/22

5.2 SO-8 package information

Figure 40. SO-8 package outline

Table 7. SO-8 mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
A			1.75
A1	0.10		0.25
A2	1.25		
b	0.31		0.51
b1	0.28		0.48
С	0.10		0.25
c1	0.10		0.23
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27	
h	0.25		0.50
L	0.40		1.27
L1		1.04	
L2		0.25	
k	0°		8°
ccc			0.10

DS11136 - Rev 4 page 18/22

5.3 MiniSO8 package information

Figure 41. MiniSO8 package outline

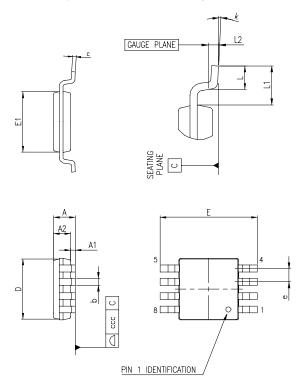


Table 8. MiniSO8 mechanical data

Dim.	Millim	neters		Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.1			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.03	0.033	0.037
b	0.22		0.4	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.8	3	3.2	0.11	0.118	0.126
Е	4.65	4.9	5.15	0.183	0.193	0.203
E1	2.8	3	3.1	0.11	0.118	0.122
е		0.65			0.026	
L	0.4	0.6	0.8	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.01	
k	0°		8°	0°		8°
ccc			0.1			0.004

DS11136 - Rev 4 page 19/22

6 Ordering information

Table 9. Order codes

Order code	Temperature range	Package	Packing	Marking
TSB611ILT		COTOO F		K191
TSB611IYLT (1)	-40 °C to 125 °C	SOT23-5		K194
TSB612IDT		S08	Tana and real	TSB612I
TSB612IYDT (1)			Tape and reel	TSB612IY
TSB612IST				K191
TSB612IYST (1)	TSB612IYST (1) MiniSO8			K194

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.

DS11136 - Rev 4 page 20/22

Revision history

Table 10. Document revision history

Date	Revision	Changes
17-Aug-2015	1	Initial release
15-May-2017	2	Updated automotive footnote in Table 11. Order codes
12-Nov-2020	3	Added new part number TSB612, new Section 1 Pin connection Updated Section 6 Ordering information Minor text changes
21-Jun-2021	4	Updated Table 1, A _{vd} min. and typ. values in Table 3

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS11136 - Rev 4 page 22/22