# NCV898031 Automotive Grade High-Frequency SEPIC Controller Evaluation Board User's Manual



ON Semiconductor®

http://onsemi.com

#### **EVAL BOARD USER'S MANUAL**

#### **Description**

This NCV898031 evaluation board provides a convenient way to evaluate a high-frequency current-mode control SEPIC converter design. The topology uses two inductors. No additional components are required, other than dc supplies for the input and enable voltages. The output is rated 7 V/8.5 W with a 2 MHz switching frequency over the typical 6 V to 18 V automotive input voltage range.

#### **Key Features**

- 7 V/1.22 A Output
- 2 MHz Switching Frequency
- Input Undervoltage Lockout
- Internal Soft-Start
- Wide Input Voltage of 6 V to 40 V
- Regulates through Load Dump Conditions
- Automotive Grade



Figure 1. NCV898031 SEPIC Evaluation Board

**Table 1. EVALUATION BOARD TERMINALS** 

| Terminal         | Function                    |  |  |
|------------------|-----------------------------|--|--|
| V <sub>IN</sub>  | Positive DC Input Voltage   |  |  |
| GND              | Common DC Return            |  |  |
| V <sub>OUT</sub> | Regulated DC Output Voltage |  |  |
| EN               | Enable Input                |  |  |

Table 2. ABSOLUTE MAXIMUM RATINGS (Voltages are with respect to GND)

| Rating                                 | Value      | Unit |
|----------------------------------------|------------|------|
| DC Supply Voltage (V <sub>IN</sub> )   | -0.3 to 40 | V    |
| DC Supply Voltage (EN)                 | -0.3 to 6  | V    |
| Junction Temperature                   | -40 to 150 | °C   |
| Ambient Temperature (Evaluation Board) | -40 to 105 | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### **Table 3. ELECTRICAL CHARACTERISTICS**

 $(T_A = 25^{\circ}C,~4.5~V \leq V_{IN} \leq 40~V,~V_{EN} = 2~V,~V_{OUT} = 3.3~V,~0 \leq I_{OUT} \leq 1.2~A,~unless~otherwise~specified)$ 

| Characteristic                     | Condition                  | Typical Value | Unit |
|------------------------------------|----------------------------|---------------|------|
| Switching                          |                            |               |      |
| Switching Frequency                | -                          | 2             | MHz  |
| Soft-Start Time                    | -                          | 650           | μs   |
| Current Limit                      |                            |               |      |
| Cycle-by-Cycle Current Limit (FET) | -                          | 4             | Α    |
| Protections                        |                            |               |      |
| Input Undervoltage Lockout (UVLO)  | V <sub>IN</sub> Decreasing | < 6 (Note 1)  | V    |
| Input Undervoltage Lockout (UVLO)  | V <sub>IN</sub> Increasing | 6.7           | V    |
| Thermal Shutdown                   | T <sub>A</sub> Increasing  | 170           | °C   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### **PCB LAYERS**

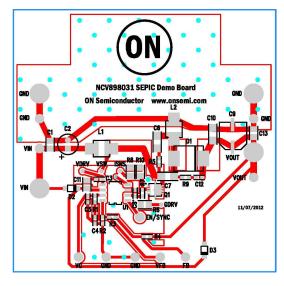



Figure 2. Top View

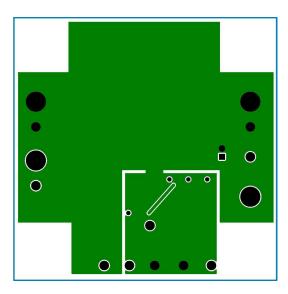



Figure 3. Bottom View

NCV898031 IC UVLO is 3.05 V (V<sub>IN</sub> falling). The demo board current limit resistor was selected to limit power when V<sub>IN</sub> is reduced below 6 V. See Point 3 from Test Procedure.

#### **TYPICAL PERFORMANCE**

#### Start-up

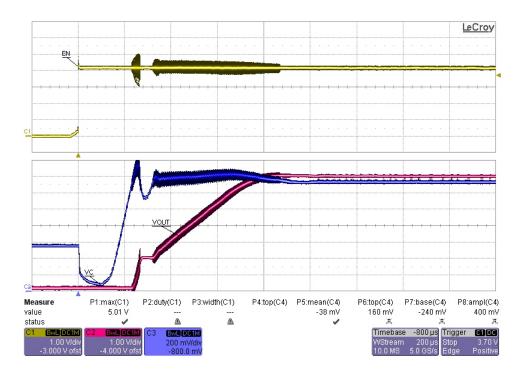



Figure 4. Typical Start-up with  $V_{IN}$  = 12 V,  $I_{OUT}$  = 1.22 A

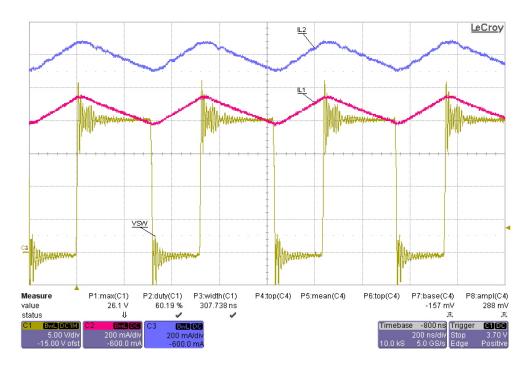



Figure 5. Operational Waveforms,  $V_{IN}$  = 12 V,  $RI_{OUT}$  = 1.22 A

## **SCHEMATIC**

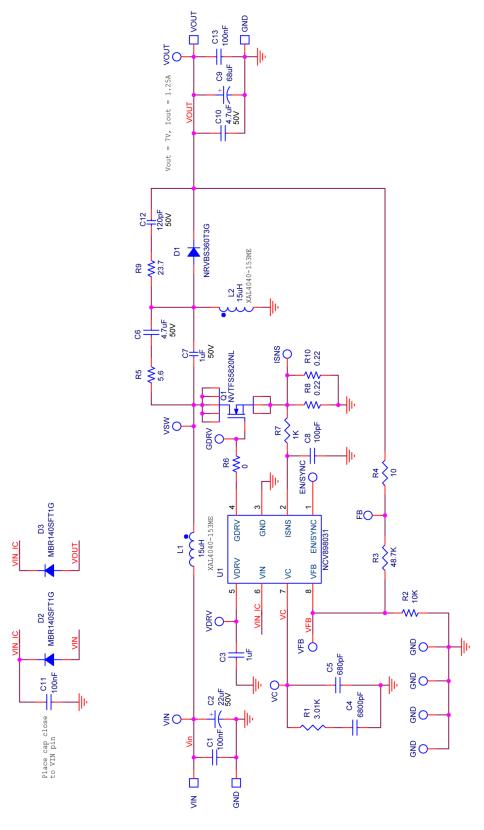



Figure 6. NCV898031 SEPIC Evaluation Board Schematic

#### **Table 4. BILL OF MATERIALS**

| Reference<br>Designator(s)                               | Quantity | Description                                     | Footprint     | Manufacturer's<br>Part Number | Vendor Part #        |
|----------------------------------------------------------|----------|-------------------------------------------------|---------------|-------------------------------|----------------------|
| C1, C11, C13                                             | 3        | CAP CER 0.1 μF 50 V 10% X7R 0805                | 805           | GRM21BR71H104KA01L            | 490-1666-1-ND        |
| C2                                                       | 1        | CAP ALUM 10 μF 50 V 20% RADIAL                  | CAP_RAD_5X11  | EKZE500ELL100ME07D            | 565-1702-ND          |
| C3                                                       | 1        | CAP CER 1 μF 16 V 10% X7R 0603                  | 603           | GCM188R71C105KA64D            | 490-5241-1-ND        |
| C4                                                       | 1        | CAP CER 6800PF 50 V 10% X7R 0603                | 603           | GRM188R71H682KA01D            | 490-1508-1-ND        |
| C5                                                       | 1        | CAP CER 680PF 50 V 5% NP0 0603                  | 603           | GRM1885C1H681JA01D            | 490-1447-1-ND        |
| C6, C10                                                  | 2        | CAP CER 4.7 μF 50 V 10% X7R 1206                | 1206          | C3216X7R1H475K                | 445-8032-1-ND        |
| C7                                                       | 1        | CAP CER 1 μF 50 V 10% X7R 1206                  | 1206          | GCM31MR71H105KA55L            | 490-4795-1-ND        |
| C8                                                       | 1        | CAP CER 100 pF 50 V 5% NP0 0603                 | 603           | GCM1885C1H101JA16D            | 490-4767-1-ND        |
| C9                                                       | 1        | CAP HYBRID CONDUCTIVE POLYMER<br>68 μF 10 V 20% | SUNCON_6p6CAP | 10HVA68M                      | SUNCON               |
| C12                                                      | 1        | CAP CER 120 pF 50 V 5% NP0 0603                 | 603           | GRM1885C1H121JA01D            | 490-1429-1-ND        |
| D1                                                       | 1        | 60 V, 3.0 A Schottky Rectifier                  | SMC_DIODE     | NRVBS360T3G                   | ON Semiconductor     |
| D2, D3                                                   | 2        | DIODE SCHOTTKY 40 V 1 A SOD123FL                | SOD_123       | MBR140SFT1G                   | ON Semiconductor     |
| L1, L2                                                   | 2        | High Temp SMT Power Inductor 15 μH 2.8 A        | XAL4040       | XAL4040-153ME                 | XAL4040-153ME        |
| Q1                                                       | 1        | N-CHANNEL MOSFET, LL, 60 V 11.5 mΩ              | WDFN8         | NVTFS5820NL                   | ON Semiconductor     |
| R1                                                       | 1        | RES 3.01 kΩ 1/10 W 1% 0603 SMD                  | 603           | CRCW06033K01FKEA              | 541-3.01KHCT-ND      |
| R2                                                       | 1        | RES 10.0 kΩ 1/10 W 1% 0603 SMD                  | 603           | CRCW060310K0FKEA              | 541-10.0KHCT-ND      |
| R3                                                       | 1        | RES 48.7 kΩ 1/10 W 1% 0603 SMD                  | 603           | CRCW060348K7FKEA              | 541-48.7KHCT-ND      |
| R4                                                       | 1        | RES 10.0 Ω 1/10 W 1% 0603 SMD                   | 603           | CRCW060310R0FKEA              | 541-10.0HCT-ND       |
| R5                                                       | 1        | RES 5.6 Ω 1/10 W 5% 0603 SMD                    | 603           | CRCW06035R60JNEA              | 541-5.6GCT-ND        |
| R6                                                       | 1        | RES 0.0 Ω 1/8 W 0805 SMD                        | 805           | CRCW08050000Z0EA              | 541-0.0ACT-ND        |
| R7                                                       | 1        | RES 1.00 kΩ 1/10 W 1% 0603 SMD                  | 603           | CRCW06031K00FKEA              | 541-1.00KHCT-ND      |
| R8, R10                                                  | 2        | RES .22 Ω 1/3 W 1% 0805 SMD                     | 805           | RL1220S-R22-F                 | CSR1206FK25L0TR-ND   |
| R9                                                       | 1        | RES 23.7 Ω 1/10 W 1% 0603 SMD                   | 603           | CRCW060323R7FKEA              | 541-23.7HCT-ND       |
| TP1, TP3, TP4,<br>TP7, TP8,<br>TP14, TP15,<br>TP16, TP17 | 9        | PIN INBOARD .042" HOLE 1000/PKG                 | TP            | K24C/M                        | V1055-ND             |
| TP2, TP5, TP6,<br>TP9                                    | 4        | CIRCUIT PIN PRNTD .020"D .425"L                 | SMALLTP       | 3128-2-00-15-00-00-08-0       | ED90324-ND           |
| TP10, TP11,<br>TP12, TP13                                | 4        | TERM SOLDER TURRET .219" .109"L                 | TURRET        | 2501-2-00-44-00-00-07-0       | 2501-200440000070-ND |
| U1                                                       | 1        | 2 MHz Non-Synchronous SEPIC/Boost<br>Controller | SOIC8_N_ADJ   | NCV898031D1R2G                | ON Semiconductor     |

#### **TEST PROCEDURE**

- 1. Connect a DC input voltage, within the 6 V to 40 V range, between V<sub>IN</sub> and GND.
- 2. Connect a DC enable voltage, within the 2.0 V to 5.0 V range, between EN/SYNC and GND.
- 3. The evaluation board feedback components were selected to for continuous operation at rated 7 V/1.22 A output power at a minimum input voltage of 6 V. The NCV898031  $V_{\rm IN}$  has its operational voltage diode-ored between the

converter output and input voltages. The converter turns-on typically at 6.7 V ( $V_{IN}$  rising). Once energized, the output voltage supplies power to the IC when the battery voltage is less than the IC  $V_{IN}$  input voltage. The decreasing  $V_{IN}$  UVLO voltage depends on load current as well as  $V_{IN}$ , and will be less than 6 V when operating below rated output current.

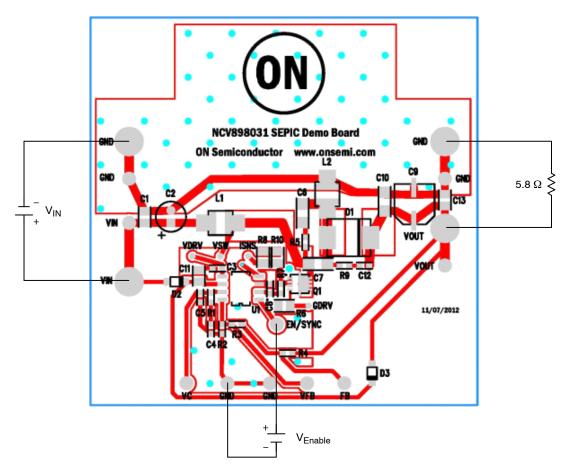



Figure 7. Evaluation Board Connections

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliate and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a> onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by onsemi shall not constitute any representation or warranty by onsemi, and no additional obligations or liabilities shall arise from onsemi having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING - This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by onsemi to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: onsemi shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if onsemi is advised of the possibility of such damages. In no event shall onsemi's aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per onsemi's standard terms and conditions of sale. For more information and documentation, please visit

#### **PUBLICATION ORDERING INFORMATION**

Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

LITERATURE FULFILLMENT:

onsemi Website: www.onsemi.com

 $\Diamond$