This Site uses cookies for marketing and analytics. By continuing to use this site 30 seconds after this banner appears, clicking the "Got it" button or closing the box at the "X", you agree to the placement of cookies pursuant to our cookie policy and privacy policy

简体中文 | 日本 🕌

Q

Energy Efficient Innovations

💽 Products 🜔 SensL 🜔 Applications 🜔 Design Support 🕞 About 🜔 MyON

Home > Support > Design Support > Design Resources & Documents > Evaluation/Development Tools

NCV8843MNR2GEVB: Buck Regulator Demonstration Evaluation Board

The NCV8843 Demonstration Board provides a convenient way to implement and evaluate a complete practical buck regulator design. No additional components are required other than the DC input source and load. The board has an input voltage range of 5 V - 16 V and is preset for a nominal output voltage of 3.3 V. Included are SHDNB and SYNC terminals for logic on-off control of the regulator and

synchronization of the internal controller to an external frequency source in place of the internal 340KHz oscillator.

Previously Viewed Previously	oducts			
Select Product	•	Go		
	Cle	ar List		
Design Support				
Technical Documentation	n			
Design Resources & Documents				
Technical Support				

Sales Support

Features and Applications

Features

- V2 Control Method for Uncomplicated Loop Compensation, Fast Transient Response, and Reduced Board Area
- A Total of 12 Components, Including the IC, to Realize a Complete Buck Regulator
- Shutdown Terminal to Disable the Output and Provide a Low Current Drain Standby Mode
- Sync Terminal to Permit Controller Synchronization to an External Source
- 1.5 A Peak Inductor Current
- Soft Start Function to Reduce Inrush Current
- 82% Efficiency at 1 A Load Current
- Line Regulation Better Than 0.02%
- Load Regulation Better Than 0.2%

Evaluation/Development Tool Information

· · ·					
Product	Status	Compliance	Short Description	Parts Used	Action
NCV8843MNR2GEVB	Active	Pb-free	Buck Regulator Demonstration Evaluation Board	NCV8843MNR2G	Contact Local Sales Office >> Inventory

Technical Documents								
Туре	Document Title	Document ID/Size	Rev					
Eval Board: BOM	NCV8843MNR2GEVB Bill of Materials ROHS Compliant	NCV8843MNR2GEVB_BOM_ROHS.PDF - 70.0 KB	0					
Eval Board: Gerber	NCV8843MNR2GEVB Gerber Layout Files (Zip Format)	NCV8843MNR2GEVB_GERBER.ZIP - 124.0 KB	0					
Eval Board: Schematic	NCV8843MNR2GEVB Schematic	NCV8843MNR2GEVB_SCHEMATIC.PDF - 130.0 KB	0					
Eval Board: Test Procedure	NCV8843MNR2GEVB Test Procedure	NCV8843MNR2GEVB_TEST_PROCEDURE.PDF - 220.0 KB	0					

Privacy Policy | Terms of Use | Site Map | Careers | Contact Us | Terms and Conditions | Mobile App | Subscribe Copyright © 1999-2018 ON Semiconductor

