

ESD protection for enhanced micro USB interface

Datasheet - production data

Features

- D+/D- and ID lines protection with 7 V low voltage diodes (LV)
- V_{BUS} line protection with 32 V high voltage diodes (HV)
- Ultra low capacitance 0.2 pF on low voltage diodes
- 10 GHz bandwidth at -3 dB
- 1.35 mm width and 0.4 mm height package
- RoHS compliant

Complies with following standards

- IEC 61000-4-2 level 4
 - 15 kV (air discharge)
 - 8 kV (contact discharge)

Applications

Where transient over-voltage protection in ESD sensitive equipment is required for enhanced micro USB, such as:

- Cellular phone handsets and accessories
- Portable multimedia players and accessories
- Notebooks
- Digital cameras and camcorders
- Communication systems

Description

The USBP01-5M8 is an application specific discrete device dedicated to ESD protection of an enhanced mini / micro USB interface able to manage USB, audio, TV out and FM signals.

The device is ideal for applications where both reduced printed circuit board space and low power absorption capability are required.

This is information on a product in full production.

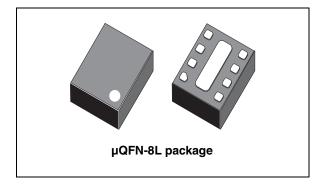


Figure 1. Pin configuration (top view)

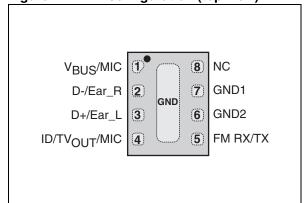
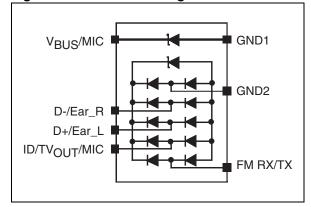



Figure 2. Functional diagram

www.st.com

June 2012 Doc ID 023287 Rev 1 1/12

Downloaded from Arrow.com.

Characteristics USBP01-5M8

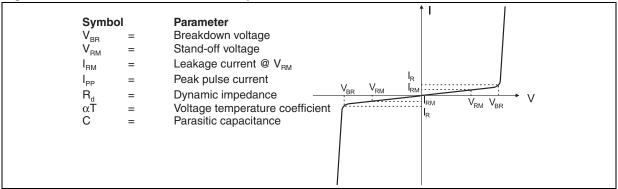

1 Characteristics

Table 1. Absolute maximum ratings $T_{amb} = 25$ °C

Symbol	Parameter			Unit
V _{PP_VBUS}	Peak pulse voltage on pin 1 (V _{BUS} - GND1)	IEC 61000-4-2 contact discharge IEC 61000-4-2 air discharge	30 30	kV
V _{PP_Data}	Peak pulse voltage between pins 2 to 5 and GND2 IEC 61000-4-2 contact discharge IEC 61000-4-2 air discharge		8 15	kV
P _{PP_VBUS}	Peak pulse power (8/20 μ s) - pin V _{BUS} to pin GND1 ⁽¹⁾ Peak pulse power (8/20 μ s) - pin GND1 to pin V _{BUS} ⁽¹⁾		200 90	W
I _{PP_VBUS}	Peak pulse current (8/20 μs) on V _{BUS}		6	Α
T _j	Operating junction temperature range			°C
T _{stg}	Storage temperature range	-65 to +150	°C	
T _L	Maximum lead temperature for soldering du	260	°C	

^{1.} For a surge greater than the maximum values, the diode will fail in short-circuit

Figure 3. Electrical characteristics - parameter definitions

1.1 V_{BUS} pin (pin 1)

Table 2. Electrical characteristics T_{amb} = 25 °C, otherwise specified

Symbol	Test conditions	Min.	Тур.	Max.	Unit	
V	I _R = 1 mA - pin V _{BUS} to pin GND1		35		V	
V_{BR}	I _R = 1 mA - pin GND1 to pin V _{BUS}		16		v	
I _{RM}	V _{RM} = 28 V - pin V _{BUS} to pin GND1		30	100	nA	
	V _{RM} = 12.5 - pin GND1 to pin V _{BUS}		30	100	IIA	
C _{line}	F = 1 MHz, V _R = 0 V		30	40	pF	
V _{CL}	I _{PP} = 1 A - pin V _{BUS} to pin GND1			40	V	
	I _{PP} = 1 A - pin GND1 to pin V _{BUS}			20	V	

USBP01-5M8 Characteristics

Figure 4. ESD response to IEC 61000-4-2 (+8 kV contact discharge on V_{BUS})

Figure 5. ESD response to IEC 61000-4-2 (-8 kV contact discharge on V_{BUS})

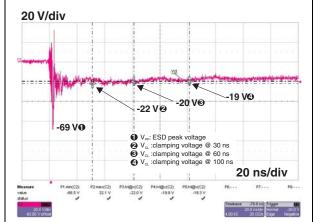
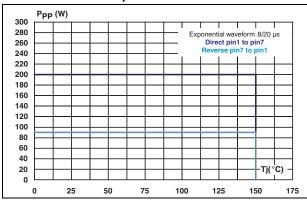
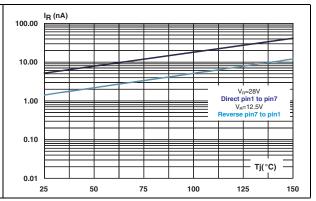




Figure 6. Peak pulse power versus initial junction temperature (maximum values)

Figure 7. Leakage current versus junction temperature (typical values)

Characteristics USBP01-5M8

1.2 D/Ear (pin 2 and 3), FM Tx/Tx (pin5), ID/TV out/MIC (pin 4)

Table 3. Electrical characteristics $T_{amb} = 25$ °C, otherwise specified

Symbol	Test conditions	Min.	Тур.	Max.	Unit
V _{BR}	I _R = 1 mA	6	9		V
I _{RM}	V _{RM} = 3 V			70	nA
BW	Bandwidth (-3 dB)		10		GHz
C _{line}	F = 200 to 3000 MHz, V _R = 0 V		0.2	0.3	pF

Figure 8. ESD response to IEC 61000-4-2 (+8 kV contact discharge)

Figure 9. ESD response to IEC 61000-4-2 (-8 kV contact discharge)

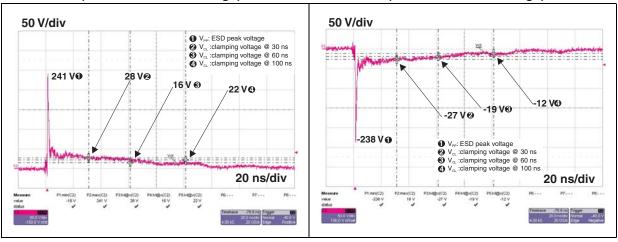
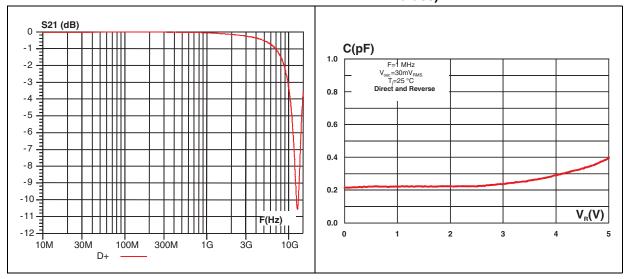
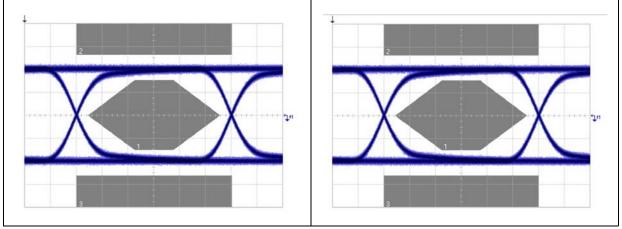


Figure 10. S21 attenuation measurement

Figure 11. Junction capacitance versus reverse applied voltage (typical values)

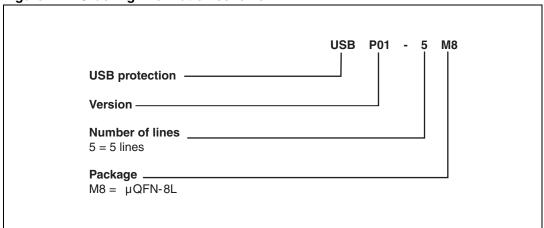
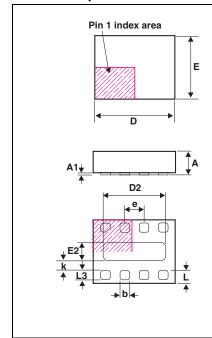

Figure 12. Eye diagram PCB only

Figure 13. Eye diagram PCB + USBP01-5M8

2 Ordering information scheme

Figure 14. Ordering information scheme

577


Package information USBP01-5M8

3 Package information

- Epoxy meets UL94, V0
- Lead-free package

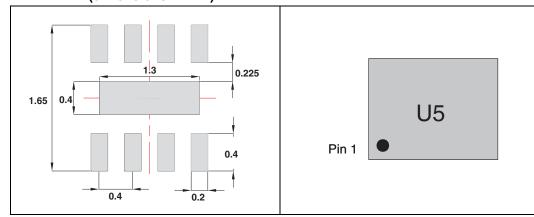

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 4. µQFN-8L dimensions

	Dimensions					
Ref	f Millimeter		rs	s Inches		
	Min	Тур	Max	Min	Тур	Max
Α	0.31	0.38	0.40	0.012	0.015	0.016
A1	0.00	0.02	0.05	0.00	0.001	0.002
b	0.15	0.20	0.25	0.006	0.008	0.010
D	1.60	1.7	1.80	0.063	0.067	0.071
D2	1.15	1.30	1.40	0.045	0.051	0.055
Е	1.25	1.35	1.45	0.049	0.053	0.057
E2	0.25	0.40	0.50	0.010	0.016	0.020
е	0.35	0.40	0.45	0.014	0.016	0.018
k	0.15	0.23	0.30	0.006	0.009	0.012
L	0.175	0.25	0.325	0.007	0.010	0.013
L3	0.15	0.20	0.25	0.006	0.008	0.010

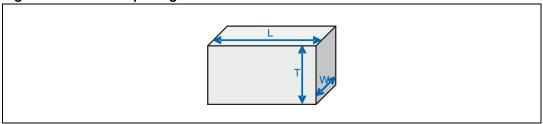
Figure 15. Foot print recommendations Figure 16. Marking (dimensions in mm)

USBP01-5M8 Package information



Figure 17. µQFN-8L tape and reel specifications

Note:


Product marking may be rotated by 90° for assembly plant differentiation. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.

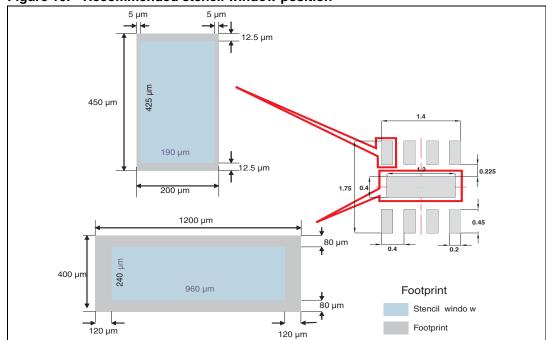
4 Recommendation on PCB assembly

4.1 Stencil opening design

- 1. General recommendation on stencil opening design
 - a) Stencil opening dimensions: L (Length), W (Width), T (Thickness).

Figure 18. Stencil opening dimensions

b) General design rule


Stencil thickness (T) = 75 \sim 125 μm

Aspect Ratio =
$$\frac{W}{T} \ge 1.5$$

Aspect Area =
$$\frac{L \times W}{2T(L+W)} \ge 0.66$$

- 2. Reference design
 - a) Stencil opening thickness: 100 µm
 - b) Stencil opening for central exposed pad: Opening to footprint ratio is 50%.
 - c) Stencil opening for leads: Opening to footprint ratio is 90%.

Figure 19. Recommended stencil window position

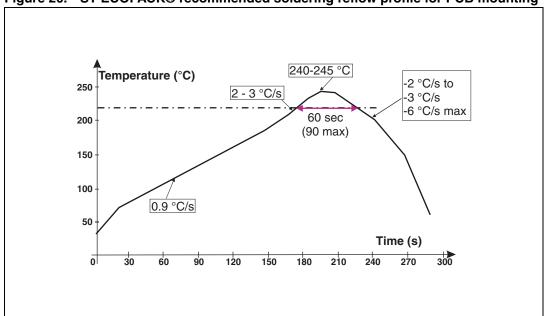
57

4.2 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed.
- 4. Solder paste with fine particles: powder particle size is 20-45 μm.

4.3 Placement

- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering.
- 3. Standard tolerance of \pm 0.05 mm is recommended.
- 4. 3.5 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- 6. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.


4.4 PCB design preference

- To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. The symmetrical layout is recommended, in case any tilt phenomena caused by asymmetrical solder paste amount due to the solder flow away.

5/

4.5 Reflow profile

Figure 20. ST ECOPACK® recommended soldering reflow profile for PCB mounting

Note: Minimize air convection currents in the reflow oven to avoid component movement.

5 Ordering information

Table 5. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
USBP01-5M8	U5 ⁽¹⁾	μQFN-8L	2.17 mg	400	Tape and reel (7")

^{1.} The marking can be rotated by 90° to differentiate assembly location

6 Revision history

Table 6. Document revision history

Date	Revision	Changes
08-Jun-2012	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

