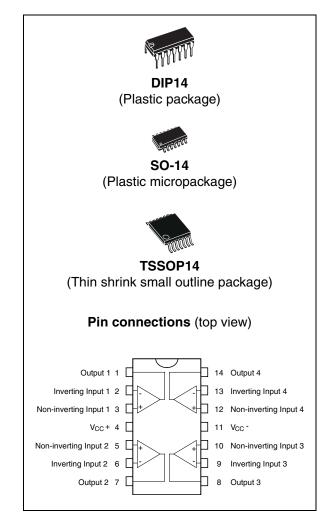


TS27L4

Very low power precision CMOS quad operational amplifiers

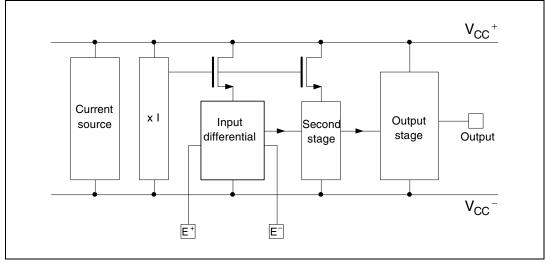
Features

- Very low power consumption: 10 µA/op
- Output voltage can swing to ground
- Excellent phase margin on capacitive loads
- Unity gain stable
- Two input offset voltage selections


Description

The TS27L4 series are low-cost, low-power quad operational amplifiers designed to operate with single or dual supplies. These operational amplifiers use the ST silicon gate CMOS process allowing an excellent consumption-speed ratio. These series are ideally suited for low consumption applications.

Three power consumptions are available enabling the best consumption-speed ratio:


 $I_{CC} = 10 \ \mu A/amp$: TS27L4 (very low power), $I_{CC} = 150 \ \mu A/amp$: TS27M4 (low power), $I_{CC} = 1 \ m A/amp$: TS274 (standard).

These CMOS amplifiers offer very high input impedance and extremely low input currents. The major advantage versus JFET devices is the very low input current drift with temperature (see *Figure 4*).

1 Circuit schematics

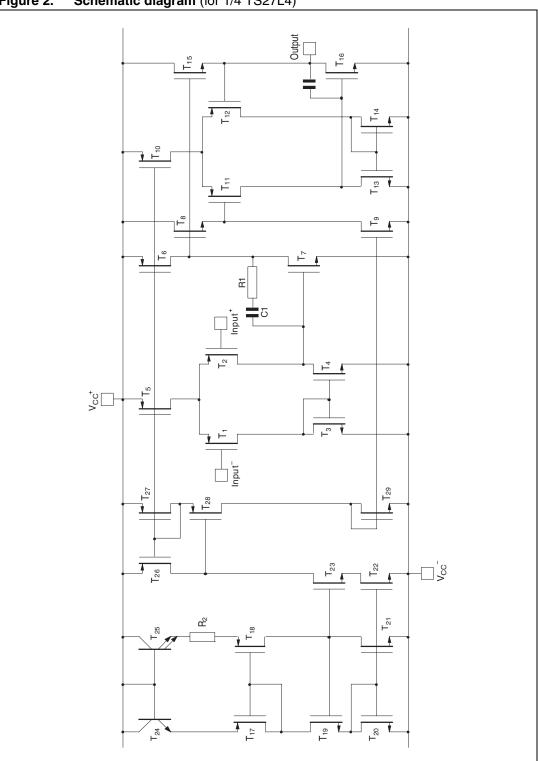


Figure 2. Schematic diagram (for 1/4 TS27L4)

2 Absolute maximum ratings and operating conditions

able I.	Absolute maximum ratings						
Symbol	Parameter	Value	Unit				
V_{CC+}	Supply voltage ⁽¹⁾	18	V				
V _{id}	Differential input voltage ⁽²⁾	±18	V				
V _{in}	Input voltage ⁽³⁾	-0.3 to 18	V				
۱ _o	Output current for $V_{CC}^+ \ge 15V$	±30	mA				
l _{in}	Input current	±5	mA				
T _{stg}	Storage temperature range	-65 to +150	°C				
R _{thja}	Thermal resistance junction to ambient ⁽⁴⁾ SO-14 TSSOP14 DIP14	105 100 80	°C/W				
R _{thjc}	Thermal resistance junction to case ⁽⁴⁾ SO-14 TSSOP14 DIP14	31 32 33	°C/W				
	HBM: human body model ⁽⁵⁾	1	kV				
ESD	MM: machine model ⁽⁶⁾	100	V				
	CDM: charged device model ⁽⁷⁾	1.5	kV				

Table 1. Absolute maximum ratings

1. All values, except differential voltage are with respect to network ground terminal.

2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

- 3. The magnitude of the input and the output voltages must never exceed the magnitude of the positive supply voltage.
- 4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- 5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Symbol	Parameter	TS27L4C TS27L4I		Unit
V _{CC} ⁺	Supply voltage	3 to 16		V
V _{icm}	Common mode input voltage range	0 to V _{CC} ⁺ - 1.5		V
T _{oper}	Operating free-air temperature range	0 to +70	-40 to +125	°C

Table 2. Operating conditions

3 Electrical characteristics

Table 3.	V_{CC}^+ = +10 V, V_{CC}^- = 0 V, T_{amb} = +25° C (unless otherwise specified)
----------	---

Cumhal	umbol Devemptor		TS27L4C/AC			TS27L4I/AI		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage $V_o = 1.4V, V_{ic} = 0V$ TS27L4 TS27L4A $T_{min} \leq T_{amb} \leq T_{max}$ TS27L4 TS27L4 TS27L4		1.1 0.9	10 5 12 6.5		1.1 0.9	10 5 12 6.5	mV
DVio	Input offset voltage drift		2			2		µV/°C
l _{io}	Input offset current ⁽¹⁾ $V_{ic} = 5V, V_O = 5V$ $T_{min} \le T_{amb} \le T_{max}$		1	100		1	200	рА
l _{ib}	Input bias current ⁽¹⁾ $V_{ic} = 5V$, $V_O = 5V$ $T_{min} \le T_{amb} \le T_{max}$		1	150		1	300	pА
V _{OH}		8.8 8.7	9		8.8 8.6	9		v
V _{OL}	Low level output voltage V _{id} = -100mV			50			50	mV
A _{vd}	Large signal voltage gain $V_{iC} = 5V$, $R_L = 1M\Omega$, $V_o = 1V$ to $6V$ $T_{min} \le T_{amb} \le T_{max}$	60 45	100		60 40	100		V/mV
GBP	Gain bandwidth product $A_v = 40$ dB, $R_L = 1M\Omega$, $C_L = 100$ pF, $f_{in} = 100$ kHz		0.1			0.1		MHz
CMR	Common mode rejection ratio $V_{iC} = 1V$ to 7.4V, $V_o = 1.4V$	65	80		65	80		dB
SVR	Supply voltage rejection ratio $V_{CC}^{+} = 5V$ to 10V, $V_{o} = 1.4V$	60	80		60	80		dB
Icc	Supply current (per amplifier) $A_v = 1$, no load, $V_o = 5V$ $T_{min} \le T_{amb} \le T_{max}$		10	15 17		10	15 18	μA
۱ _٥	Output short circuit current $V_o = 0V$, $V_{id} = 100mV$		60			60		mA
I _{sink}	Output sink current $V_o = V_{CC}, V_{id} = -100mV$		45			45		mA
SR	Slew rate at unity gain $R_L = 1M\Omega$, $C_L = 100pF$, $V_i = 3$ to 7V		0.04			0.04		V/µs

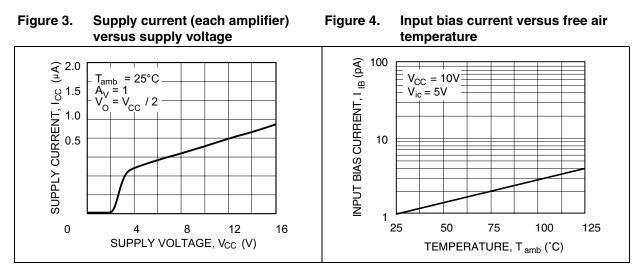
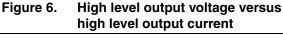
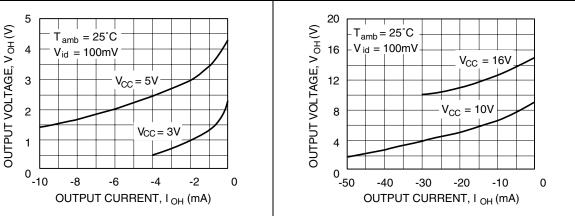
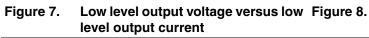
57

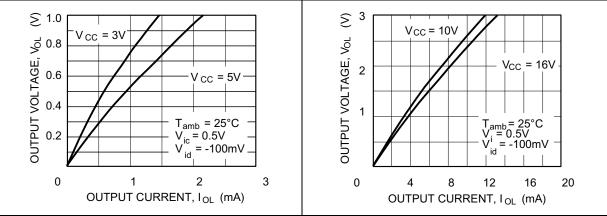
Symbol	Parameter		TS27L4C/AC			TS27L4I/AI		
Symbol			Тур.	Max.	Min.	Тур.	Max.	Unit
φm	Phase margin at unity gain $A_v = 40$ dB, $R_L = 1M\Omega$, $C_L = 100$ pF		45			45		Degrees
K _{ov}	Overshoot factor		30			30		%
e _n	Equivalent input noise voltage $f = 1 \text{ kHz}, R_s = 100\Omega$		68			68		<u>nV</u> √Hz
V _{o1} /V _{o2}	Channel separation		120			120		dB

Table 3. $V_{CC}^+ = +10 \text{ V}, V_{CC}^- = 0 \text{ V}, T_{amb} = +25^{\circ} \text{ C}$ (unless otherwise specified) (continued)

1. Maximum values include unavoidable inaccuracies of the industrial tests.

4 Typical characteristics


Figure 5. High level output voltage versus high level output current

Low level output voltage versus low level output current

57

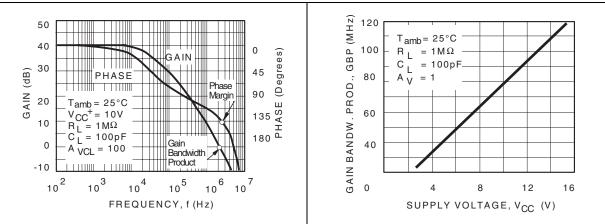


Figure 11. Phase margin versus supply voltage

 $T_{amb} = 25^{\circ}C$

4

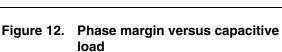
= 100pF

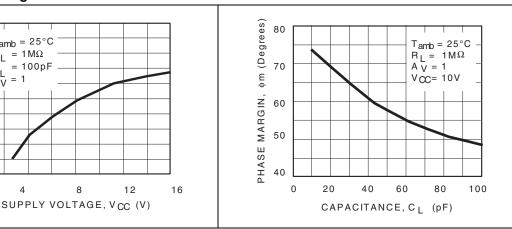
 $R_L = 1M\Omega$

 $A_V^L = 1$

С

PHASE MARGIN, ϕ m (Degrees)

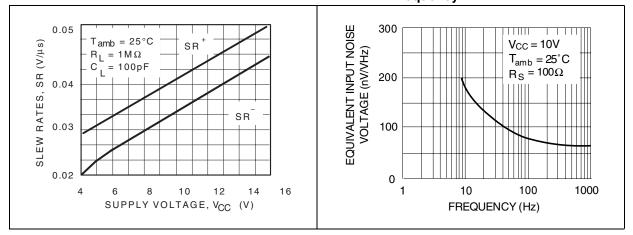

60

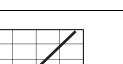

50


40

30

0



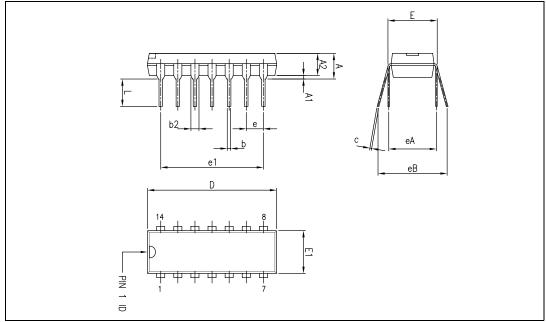


8

Figure 14. Input voltage noise versus frequency

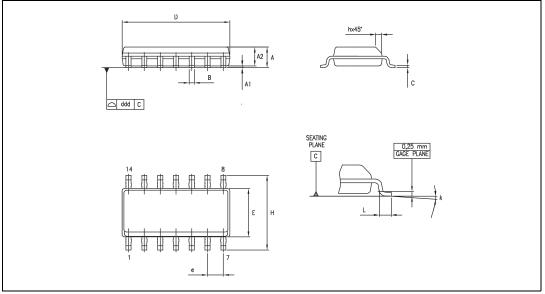
8/15

57


5 Package information

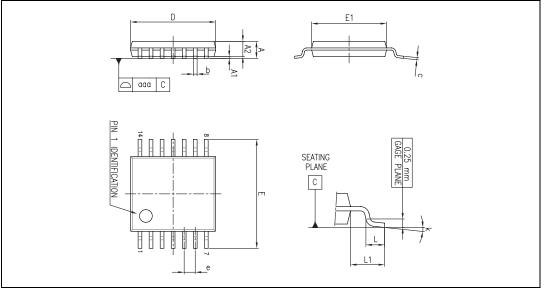
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

5.1 DIP14 package information


Table 4. DIP14 package mechanical data

			Dimensions			
Def		Millimeters			Inches	
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			5.33			0.21
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.11	0.13	0.19
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.04	0.06	0.07
с	0.20	0.25	0.36	0.007	0.009	0.01
D	18.67	19.05	19.69	0.73	0.75	0.77
E	7.62	7.87	8.26	0.30	0.31	0.32
E1	6.10	6.35	7.11	0.24	0.25	0.28
е		2.54			0.10	
e1		15.24			0.60	
eA		7.62			0.30	
eB			10.92			0.43
L	2.92	3.30	3.81	0.11	0.13	0.15

5.2 SO-14 package information


Table 5. SO-14 package mechanical data

	Dimensions					
Def		Millimeters			Inches	
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	1.35		1.75	0.05		0.068
A1	0.10		0.25	0.004		0.009
A2	1.10		1.65	0.04		0.06
В	0.33		0.51	0.01		0.02
С	0.19		0.25	0.007		0.009
D	8.55		8.75	0.33		0.34
E	3.80		4.0	0.15		0.15
е		1.27			0.05	
Н	5.80		6.20	0.22		0.24
h	0.25		0.50	0.009		0.02
L	0.40		1.27	0.015		0.05
k		•	8° (I	max.)	•	•
ddd			0.10			0.004

5.3 TSSOP14 package information

Table 6. TSSOP14 package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.20			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
с	0.09		0.20	0.004		0.0089
D	4.90	5.00	5.10	0.193	0.197	0.201
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.176
е		0.65			0.0256	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
k	0°		8°	0°		8°
aaa			0.10			0.004

Ordering information 6

Table 7.	Order codes
	01401 00400

Table 7. Order codes						
Order code	Temperature range	Package	Packing	Marking		
TS27L4CD TS27L4CDT		SO-14	Tube or	27L4C		
TS27L4ACD TS27L4ACDT		30-14	Tape & reel	27L4AC		
TS27L4CN	0°C, +70°C	DIP14	Tube	TS27L4CN		
TS27L4ACN		DIF 14	lube	TS27L4ACN		
TS27L4CPT		TSSOP14	Tape & reel	27L4C		
TS27L4ACPT			Tape & Teel	27L4AC		
TS27L4ID TS27L4IDT		SO-14	Tube or	27L4I		
TS27L4AID TS27L4AIDT		30-14	Tape & reel	27L4AI		
TS27L4IN	-40°C, +125°C	DIP14	Tube	TS27L4IN		
TS27L4AIN			labe	TS27L4AIN		
TS27L4IPT		TSSOP14	Tape & reel	27L4I		
TS27L4AIPT		1000114	Tape & Teel	27L4AI		

7 Revision history

Table 8.	Document revision history	/
----------	---------------------------	---

Date	Revision	Changes
11-Nov-2001	1	Initial release.
08-Sep-2008	2	Removed TS27L4B version of device. Added R _{thja} , R _{thjc} , and ESD parameters in <i>Table 1: Absolute</i> <i>maximum ratings</i> . Expanded <i>Table 7: Order codes</i> . Updated document format.
02-Mar-2009	3	Removed TS27L4*M* from <i>Table 7: Order codes</i> . Updated package mechanical drawings and data in <i>Chapter 5: Package information</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

