




### HIgh precision high stability dual and quad operational amplifiers

Datasheet - production data



#### **Applications**

- Signal conditioning
- · Automotive applications
- · Headphone amplifiers
- · Sound cards, multimedia systems
- Line and actuator drivers
- Servo amplifiers

#### **Description**

The TS9222 and TS9224 are rail-to-rail dual and quad operational amplifiers optimized for precision, noise and stability, which make them suitable for a wide range of automotive and industrial applications.

These devices deliver a high output current that allows low-load impedances to be driven. They are stable for capacitive loads up to 500 pF.

#### **Features**

High precision: Vio = 500 μV max

Able to drive capacitive loads up to 500 pF

Rail-to-rail input and output

Low noise: 9 nV/√Hz

Low distortion

High output current: 80 mA
High speed: 4 MHz, 1.3 V/µs
Operates from 2.7 V to 12 V
ESD internal protection: 2 kV

Latch-up immunity

Automotive qualification

Contents TS9222, TS9224

## **Contents**

| 1 | Absolute maximum ratings and operating conditions |                             |      |  |  |  |
|---|---------------------------------------------------|-----------------------------|------|--|--|--|
| 2 | Elec                                              | trical characteristics      | 5    |  |  |  |
| 3 | Pack                                              | rage information            | 9    |  |  |  |
|   | 3.1                                               | SO8 package information     | . 10 |  |  |  |
|   | 3.2                                               | TSSOP8 package information  | 11   |  |  |  |
|   | 3.3                                               | SO14 package information    | . 12 |  |  |  |
|   | 3.4                                               | TSSOP14 package information | . 13 |  |  |  |
| 4 | Orde                                              | ering information           | . 14 |  |  |  |
| 5 | Revi                                              | sion history                | 15   |  |  |  |



#### 1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

| Symbol            | Parameter                                                                     | Value                                          | Unit |
|-------------------|-------------------------------------------------------------------------------|------------------------------------------------|------|
| V <sub>CC</sub>   | Supply voltage <sup>(1)</sup>                                                 | 14                                             |      |
| V <sub>id</sub>   | Differential input voltage <sup>(2)</sup>                                     | ±1                                             | V    |
| V <sub>in</sub>   | Input voltage <sup>(3)</sup>                                                  | V <sub>CC-</sub> -0.3 to V <sub>CC+</sub> +0.3 |      |
| T <sub>stg</sub>  | Storage temperature                                                           | -65 to +150                                    | °C   |
| R <sub>thja</sub> | Thermal resistance junction to ambient <sup>(4)</sup> SO8 TSSOP8 SO14 TSSOP14 | 125<br>120<br>66<br>100                        | °C/W |
| T <sub>j</sub>    | Maximum junction temperature                                                  | 150                                            | °C   |
|                   | HBM: human body model <sup>(5)</sup>                                          | 2000                                           |      |
| ESD<br>TS9222     | MM: machine model <sup>(6)</sup>                                              | 120                                            | V    |
|                   | CDM: charged device model <sup>(7)</sup>                                      | 1500                                           |      |
|                   | HBM: human body model <sup>(5)</sup>                                          | 3                                              | kV   |
| ESD               | MM: machine model <sup>(6)</sup>                                              | 100                                            | V    |
| TS9224            | CDM: charged device model <sup>(7)</sup> SO14 TSSOP14                         | 1.5<br>1                                       | kV   |
|                   | Output short circuit duration                                                 | see note <sup>(8)</sup>                        |      |
|                   | Latch-up immunity                                                             | 200                                            | mA   |
|                   | Soldering temperature (10 sec), unleaded version                              | 260                                            | °C   |

- 1. All voltage values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If  $V_{id} > \pm 1$  V, the maximum input current must not exceed  $\pm 1$  mA. In this case ( $V_{id} > \pm 1$  V), an input series resistor must be added to limit input current.
- 3. Do not exceed 14 V.
- Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. These values are typical.
- 5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5  $\Omega$ ). This is done for all couples of connected pin combinations while the other pins are floating.
- 7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.
- There is no short-circuit protection inside the device: short-circuits from the output to V<sub>CC</sub> can cause
  excessive heating. The maximum output current is approximately 80mA, independent of the magnitude of
  V<sub>CC</sub>. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.



Table 2. Operating conditions

| Symbol            | Parameter                            | Value                            | Unit |
|-------------------|--------------------------------------|----------------------------------|------|
| V <sub>CC</sub>   | Supply voltage                       | 2.7 to 12                        | V    |
| V <sub>icm</sub>  | Common mode input voltage range      | $V_{CC-}$ -0.2 to $V_{CC+}$ +0.2 | V    |
| T <sub>oper</sub> | Operating free air temperature range | -40 to +125                      | °C   |

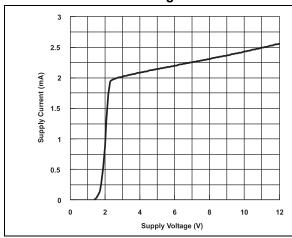


### 2 Electrical characteristics

Table 3. Electrical characteristics measured at  $V_{CC+}$  = +3 V,  $V_{CC-}$  = 0 V,  $V_{icm}$  =  $V_{CC}/2$ ,  $T_{amb}$  = 25° C, and  $R_L$  connected to  $V_{CC}/2$  (unless otherwise specified)

| Symbol                   | Parameter                                 | Test conditions                                                             | Min.                                                   | Тур.  | Max.       | Unit             |
|--------------------------|-------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|-------|------------|------------------|
| V <sub>io</sub>          | Input offset voltage                      |                                                                             |                                                        |       | 500        | μV               |
| v <sub>io</sub>          | input onset voltage                       | $T_{min} \le T_{amb} \le T_{max}$                                           |                                                        |       | 900        | μν               |
| $\Delta V_{io}/\Delta T$ | Input offset voltage drift                |                                                                             |                                                        | 2     |            | μV/°C            |
| I <sub>io</sub>          | Input offset current                      | $V_{out} = V_{CC}/2, T_{min} \le T_{amb} \le T_{max}$                       |                                                        | 1     | 30         |                  |
| I <sub>ib</sub>          | Input bias current                        | $V_{out} = V_{CC}/2$ $T_{min} \le T_{amb} \le T_{max}$                      |                                                        | 15    | 55<br>90   | nA               |
| CMR                      | Common mode rejection ratio               | $V_{icm}$ from 0 to 3 V<br>$T_{min} \le T_{amb} \le T_{max}$                | 65<br>60                                               | 85    |            | dB               |
| SVR                      | Supply voltage rejection ratio            | $V_{CC}$ = 2.7 to 3.3 V<br>$T_{min} \le T_{amb} \le T_{max}$                | 75<br>70                                               | 90    |            | uБ               |
|                          |                                           | $R_L$ = 10 k $\Omega$ , $V_{out}$ = 2 $V_{p-p}$                             | 70                                                     | 200   |            |                  |
| A <sub>vd</sub>          | Large signal voltage gain                 | $R_{L} = 600 \Omega, V_{out} = 2 V_{p-p}$ $T_{min} \le T_{amb} \le T_{max}$ | 15<br>1.8                                              | 35    |            | V/mV             |
| V                        | V <sub>OH</sub> High level output voltage | $R_L = 10 \text{ k}\Omega,  T_{min} \le T_{amb} \le T_{max}$                | 2.90                                                   |       |            | V                |
| VOH                      |                                           | R <sub>L</sub> = 60                                                         | $R_L = 600 \Omega$ , $T_{min} \le T_{amb} \le T_{max}$ | 2.87  |            |                  |
| V <sub>OL</sub>          | Low level output voltage                  | $R_L = 10 \text{ k}\Omega$ $T_{min} \le T_{amb} \le T_{max}$                |                                                        |       | 50         | mV               |
| VOL                      | Low level output voltage                  | $R_L = 600 \Omega$ , $T_{min} \le T_{amb} \le T_{max}$                      |                                                        |       | 100        | 1110             |
| Io                       | Output short circuit current              |                                                                             | 50                                                     | 80    |            |                  |
| I <sub>CC</sub>          | Supply current (per channel)              | No load, Vout = $V_{CC}/2$<br>$T_{min} \le T_{amb} \le T_{max}$             |                                                        | 0.9   | 1.2<br>1.3 | mA               |
| GBP                      | Gain bandwidth product                    |                                                                             |                                                        | 4     |            | MHz              |
| SR                       | Slew rate                                 | $R_L = 10 \text{ k}\Omega$ , $C_L = 100 \text{ pF}$                         | 0.7                                                    | 1.3   |            | V/μs             |
| φm                       | Phase margin at unit gain                 |                                                                             |                                                        | 60    |            | Degrees          |
| G <sub>m</sub>           | Gain margin                               |                                                                             |                                                        | 8.5   |            | dB               |
| e <sub>n</sub>           | Equivalent input noise voltage            | f = 1 kHz                                                                   |                                                        | 9     |            | <u>nV</u><br>√Hz |
| THD                      | Total harmonic distortion                 | $V_{out} = 2 V_{p-p}$ , f = 1 kHz, $A_v = 1$ , $R_L = 600 \Omega$           |                                                        | 0.005 |            | %                |
| Cs                       | Channel separation                        |                                                                             |                                                        | 120   |            | dB               |

Electrical characteristics TS9222, TS9224


Table 4. Electrical characteristics measured at  $V_{CC+}$  = 5 V,  $V_{CC-}$  = 0 V,  $V_{icm}$  =  $V_{CC}/2$ ,  $T_{amb}$  = 25° C, and  $R_L$  connected to  $V_{CC}/2$  (unless otherwise specified)

| Symbol                   | Parameter                         | Test conditions                                                                                                        | Min.     | Тур.  | Max.       | Unit             |  |
|--------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------|----------|-------|------------|------------------|--|
| V                        | Input offset voltage              |                                                                                                                        |          |       | 500        | μV               |  |
| $V_{io}$                 | input onset voltage               | $T_{min} \le T_{amb} \le T_{max}$                                                                                      |          |       | 900        | μν               |  |
| $\Delta V_{io}/\Delta T$ | Input offset voltage drift        |                                                                                                                        |          | 2     |            | μV/°C            |  |
| l <sub>io</sub>          | Input offset current              | $V_{out} = V_{CC}/2, T_{min} \le T_{amb} \le T_{max}$                                                                  |          | 1     | 30         |                  |  |
| I <sub>ib</sub>          | Input bias current                | $V_{out} = V_{CC}/2$ $T_{min} \le T_{amb} \le T_{max}$                                                                 |          | 15    | 55<br>90   | nA               |  |
| CMR                      | Common mode rejection ratio       | $V_{icm}$ from 0 to 5 V<br>$T_{min} \le T_{amb} \le T_{max}$                                                           | 65<br>60 | 85    |            | dВ               |  |
| SVR                      | Supply voltage rejection ratio    | $V_{CC}$ = 4.5 to 5.5 V<br>$T_{min} \le T_{amb} \le T_{max}$                                                           | 75<br>70 | 90    |            | dB               |  |
|                          |                                   | $R_L = 10 \text{ k}\Omega$ , $V_{out} = 2 V_{p-p}$                                                                     | 70       | 200   |            |                  |  |
| $A_{vd}$                 | Large signal voltage gain         | $\begin{aligned} R_{L} &= 600 \ \Omega, \ \ V_{out} = 2 \ V_{p-p} \\ T_{min} &\leq T_{amb} \leq T_{max} \end{aligned}$ | 24<br>3  | 35    |            | V/mV             |  |
| V                        | Vou I High level output voltage H | $R_L = 10 \text{ k}\Omega,  T_{min} \le T_{amb} \le T_{max}$                                                           | 4.9      |       |            | V                |  |
| VOH                      |                                   | $R_L = 600 \Omega$ , $T_{min} \le T_{amb} \le T_{max}$                                                                 | 4.85     |       |            |                  |  |
| W                        | Low level output voltage          | $R_L = 10 \text{ k}\Omega,  T_{min} \le T_{amb} \le T_{max}$                                                           |          |       | 50         | mV               |  |
| $V_{OL}$                 | Low level output voltage          | $R_L = 600 \Omega$ , $T_{min} \le T_{amb} \le T_{max}$                                                                 |          |       | 120        | IIIV             |  |
| Io                       | Output short circuit current      |                                                                                                                        | 50       | 80    |            |                  |  |
| I <sub>cc</sub>          | Supply current (per channel)      | No load, Vout = VCC/2<br>$T_{min} \le T_{amb} \le T_{max}$                                                             |          | 0.9   | 1.2<br>1.3 | mA               |  |
| GBP                      | Gain bandwidth product            |                                                                                                                        |          | 4     |            | MHz              |  |
| SR                       | Slew rate                         | RL = 10 kΩ, CL = 100 pF                                                                                                | 0.7      | 1.3   |            | V/µs             |  |
| φm                       | Phase margin at unit gain         | TE = 10 KS2, CE = 100 pr                                                                                               |          | 63    |            | Degrees          |  |
| G <sub>m</sub>           | Gain margin                       |                                                                                                                        |          | 9.5   |            | dB               |  |
| e <sub>n</sub>           | Equivalent input noise voltage    | f = 1 kHz                                                                                                              |          | 9     |            | <u>nV</u><br>√Hz |  |
| THD                      | Total harmonic distortion         | $V_{\text{out}}$ = 2 $V_{\text{p-p}}$ , f = 1 kHz, $A_{\text{v}}$ = 1,<br>$R_{\text{L}}$ = 600 $\Omega$                |          | 0.005 |            | %                |  |
| Cs                       | Channel separation                |                                                                                                                        |          | 120   |            | dB               |  |

4

Figure 1. Total supply current vs. supply voltage

Figure 2. Output short circuit current vs. output voltage



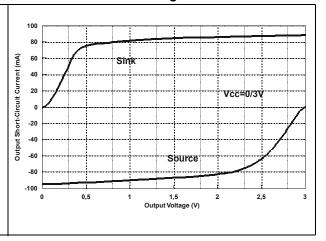
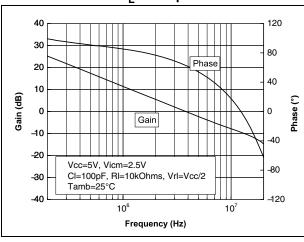




Figure 3. Voltage gain and phase vs. frequency, Figure 4. Voltage gain and phase vs. frequency,  $C_L = 100 \text{ pF}$   $C_L = 500 \text{ pF}$ 



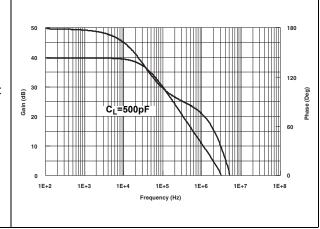
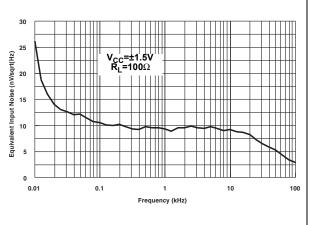
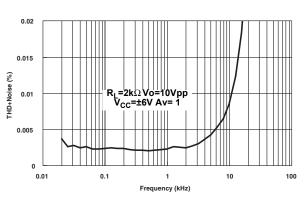





Figure 5. Equivalent input noise voltage vs. frequency

Figure 6. THD + noise vs. frequency,  $R_L = 2 k\Omega$ , Vo = 10 Vpp







DocID15718 Rev 5

7/16

Electrical characteristics TS9222, TS9224

Figure 7. THD + noise vs. frequency,  $R_L$  = 32  $\Omega$ , Vo = 4 Vpp

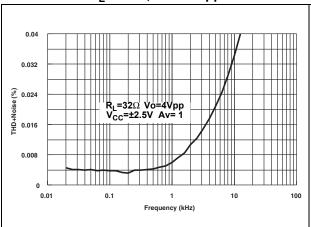



Figure 8. THD + noise vs. frequency,  $R_L = 32 \Omega$ , Vo = 2 Vpp

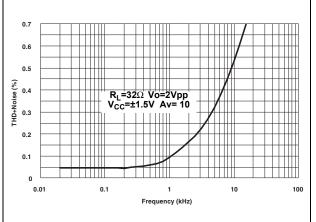



Figure 9. THD + noise vs. output voltage,  $R_L$  = 600  $\Omega$ , f = 1 kHz

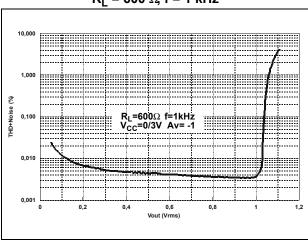



Figure 10. THD + noise vs. output voltage,  $R_L$  = 32  $\Omega$ , f = 1 kHz

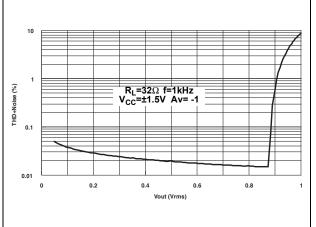
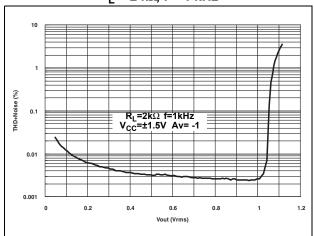




Figure 11. THD + noise vs. output voltage,  $R_L = 2 \text{ k}\Omega$ , f = 1 kHz



TS9222, TS9224 Package information

## 3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: <a href="https://www.st.com">www.st.com</a>. ECOPACK<sup>®</sup> is an ST trademark.



DocID15718 Rev 5 9/16

Package information TS9222, TS9224

### 3.1 SO8 package information

D hx45'

SEATING PLANE

C CCC C

SEATING GAGE PLANE

1 e 4

Figure 12. SO8 package mechanical drawing

Table 5. SO8 package mechanical data

|      | Dimensions  |      |      |        |       |       |  |  |
|------|-------------|------|------|--------|-------|-------|--|--|
| Ref. | Millimeters |      |      | Inches |       |       |  |  |
|      | Min.        | Тур. | Max. | Min.   | Тур.  | Max.  |  |  |
| Α    |             |      | 1.75 |        |       | 0.069 |  |  |
| A1   | 0.10        |      | 0.25 | 0.004  |       | 0.010 |  |  |
| A2   | 1.25        |      |      | 0.049  |       |       |  |  |
| b    | 0.28        |      | 0.48 | 0.011  |       | 0.019 |  |  |
| С    | 0.17        |      | 0.23 | 0.007  |       | 0.010 |  |  |
| D    | 4.80        | 4.90 | 5.00 | 0.189  | 0.193 | 0.197 |  |  |
| Е    | 5.80        | 6.00 | 6.20 | 0.228  | 0.236 | 0.244 |  |  |
| E1   | 3.80        | 3.90 | 4.00 | 0.150  | 0.154 | 0.157 |  |  |
| е    |             | 1.27 |      |        | 0.050 |       |  |  |
| h    | 0.25        |      | 0.50 | 0.010  |       | 0.020 |  |  |
| L    | 0.40        |      | 1.27 | 0.016  |       | 0.050 |  |  |
| L1   |             | 1.04 |      |        | 0.040 |       |  |  |
| k    | 0           |      | 8°   | 1°     |       | 8°    |  |  |
| ccc  |             |      | 0.10 |        |       | 0.004 |  |  |

TS9222, TS9224 Package information

## 3.2 TSSOP8 package information

O.25 mm
GAGE PLANE

A1

PIN 1 IDENTIFICATION

Figure 13. TSSOP8 package mechanical drawing

Table 6. TSSOP8 package mechanical data

|      | Dimensions  |      |      |        |        |       |  |  |
|------|-------------|------|------|--------|--------|-------|--|--|
| Ref. | Millimeters |      |      | Inches |        |       |  |  |
|      | Min.        | Тур. | Max. | Min.   | Тур.   | Max.  |  |  |
| А    |             |      | 1.20 |        |        | 0.047 |  |  |
| A1   | 0.05        |      | 0.15 | 0.002  |        | 0.006 |  |  |
| A2   | 0.80        | 1.00 | 1.05 | 0.031  | 0.039  | 0.041 |  |  |
| b    | 0.19        |      | 0.30 | 0.007  |        | 0.012 |  |  |
| С    | 0.09        |      | 0.20 | 0.004  |        | 0.008 |  |  |
| D    | 2.90        | 3.00 | 3.10 | 0.114  | 0.118  | 0.122 |  |  |
| E    | 6.20        | 6.40 | 6.60 | 0.244  | 0.252  | 0.260 |  |  |
| E1   | 4.30        | 4.40 | 4.50 | 0.169  | 0.173  | 0.177 |  |  |
| е    |             | 0.65 |      |        | 0.0256 |       |  |  |
| k    | 0°          |      | 8°   | 0°     |        | 8°    |  |  |
| L    | 0.45        | 0.60 | 0.75 | 0.018  | 0.024  | 0.030 |  |  |
| L1   |             | 1    |      |        | 0.039  |       |  |  |
| aaa  |             |      | 0.10 |        |        | 0.004 |  |  |



Package information TS9222, TS9224

## 3.3 SO14 package information

Figure 14. SO14 package mechanical drawing

Table 7. SO14 package mechanical data

| Dimensions |             |      |      |        |      |       |
|------------|-------------|------|------|--------|------|-------|
| Def        | Millimeters |      |      | Inches |      |       |
| Ref.       | Min.        | Тур. | Max. | Min.   | Тур. | Max.  |
| Α          | 1.35        |      | 1.75 | 0.05   |      | 0.068 |
| A1         | 0.10        |      | 0.25 | 0.004  |      | 0.009 |
| A2         | 1.10        |      | 1.65 | 0.04   |      | 0.06  |
| В          | 0.33        |      | 0.51 | 0.01   |      | 0.02  |
| С          | 0.19        |      | 0.25 | 0.007  |      | 0.009 |
| D          | 8.55        |      | 8.75 | 0.33   |      | 0.34  |
| E          | 3.80        |      | 4.0  | 0.15   |      | 0.15  |
| е          |             | 1.27 |      |        | 0.05 |       |
| Н          | 5.80        |      | 6.20 | 0.22   |      | 0.24  |
| h          | 0.25        |      | 0.50 | 0.009  |      | 0.02  |
| L          | 0.40        |      | 1.27 | 0.015  |      | 0.05  |
| k          | 8° (max.)   |      |      |        |      |       |
| ddd        |             |      | 0.10 |        |      | 0.004 |

TS9222, TS9224 Package information

### 3.4 TSSOP14 package information

E1

O.25 mm

GAGE PLANE

PIN 1 IDENTIFICATION

PIN 1 IDENTIFICATIO

Figure 15. TSSOP14 package mechanical drawing

Table 8. TSSOP14 package mechanical data

|      | Dimensions  |      |      |        |        |        |  |  |
|------|-------------|------|------|--------|--------|--------|--|--|
| Ref. | Millimeters |      |      | Inches |        |        |  |  |
|      | Min.        | Тур. | Max. | Min.   | Тур.   | Max.   |  |  |
| Α    |             |      | 1.20 |        |        | 0.047  |  |  |
| A1   | 0.05        |      | 0.15 | 0.002  | 0.004  | 0.006  |  |  |
| A2   | 0.80        | 1.00 | 1.05 | 0.031  | 0.039  | 0.041  |  |  |
| b    | 0.19        |      | 0.30 | 0.007  |        | 0.012  |  |  |
| С    | 0.09        |      | 0.20 | 0.004  |        | 0.0089 |  |  |
| D    | 4.90        | 5.00 | 5.10 | 0.193  | 0.197  | 0.201  |  |  |
| Е    | 6.20        | 6.40 | 6.60 | 0.244  | 0.252  | 0.260  |  |  |
| E1   | 4.30        | 4.40 | 4.50 | 0.169  | 0.173  | 0.176  |  |  |
| е    |             | 0.65 |      |        | 0.0256 |        |  |  |
| L    | 0.45        | 0.60 | 0.75 | 0.018  | 0.024  | 0.030  |  |  |
| L1   |             | 1.00 |      |        | 0.039  |        |  |  |
| k    | 0°          |      | 8°   | 0°     |        | 8°     |  |  |
| aaa  |             |      | 0.10 |        |        | 0.004  |  |  |

Ordering information TS9222, TS9224

# 4 Ordering information

Table 9. Order codes

| Order code                | Temperature range | Package                       | Packaging                | Marking |
|---------------------------|-------------------|-------------------------------|--------------------------|---------|
| TS9222ID<br>TS9222IDT     |                   | SO8                           | Tube or<br>Tape and reel | 9222    |
| TS9222IPT                 |                   | TSSOP8                        | Tape and reel            |         |
| TS9224ID<br>TS9224IDT     |                   | SO14                          | Tube or<br>Tape and reel | 9224    |
| TS9224IPT                 |                   | TSSOP14                       |                          |         |
| TS9222IYDT <sup>(1)</sup> | -40° C, +125° C   | SO8<br>(automotive grade)     |                          | 9222Y   |
| TS9222IYPT <sup>(1)</sup> |                   | TSSOP8<br>(automotive grade)  | Tape and reel            | 92221   |
| TS9224IYDT <sup>(1)</sup> |                   | SO14<br>(automotive grade)    |                          | 0004)/  |
| TS9224IYPT <sup>(1)</sup> |                   | TSSOP14<br>(automotive grade) |                          | 9224Y   |

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.



TS9222, TS9224 Revision history

# 5 Revision history

**Table 10. Document revision history** 

| Date        | Revision | Changes                                                                                                                                                                                                                                 |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25-Sep-2009 | 1        | Initial release.                                                                                                                                                                                                                        |
| 18-Mar-2010 | 2        | Added pinout of dual and quad versions on cover page.  Corrected AVd parameter values in <i>Table 3</i> . and <i>Table 4</i> .                                                                                                          |
| 13-Apr-2011 | 3        | Updated test conditions for CMR in Table 3. and Table 4.                                                                                                                                                                                |
| 31-May-2013 | 4        | Added "automotive qualification" to <i>Features</i> Table 1: updated ESD values Table 3 and Table 4: updated DV <sub>io</sub> with $\Delta$ V <sub>io</sub> / $\Delta$ T, updated I <sub>CC</sub> parameter. Table 9: updated footnotes |
| 23-May-2014 | 5        | Table 3 and Table 4: added minimum slew rate (SR) values Updated disclaimer                                                                                                                                                             |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

