550MHz low noise current feedback amplifier

Features

■ Bandwidth: 550 MHz in unity gain
■ Quiescent current: 4.1 mA

- Slew rate: $940 \mathrm{~V} / \mathrm{s}$
- Input noise: $1.5 \mathrm{nV} / \mathrm{NHz}$
- Distortion: $\mathrm{SFDR}=-66 \mathrm{dBc}\left(10 \mathrm{MHz}, 1 \mathrm{~V}_{\mathrm{pp}}\right)$
- $2.8 \mathrm{~V}_{\text {pp }}$ minimum output swing on 100Ω load for a 5 V supply
- Tested on 5 V power supply

Applications

- Communication \& video test equipment
- Medical instrumentation
- ADC drivers

Description

The TSH350 is a current feeniock operational amplifier using a very higr.-iterd complementary technology to provirie a bar.dwidth up to 410 MHz while drawing only \& 1 mA of quiescent current. With a slew ret ? $940 \mathrm{~V} / \mathrm{\mu s}$ and an output stage optimized for ciriving a standard 100Ω load, this circuit is ti'g'ily suitable for applications where $\operatorname{SDE} \in \mathrm{A}_{\text {aid }}$ power-saving are the main eouirements.
The TSH350 is a single operator available in the tiny SOT23-5 and SO-8 plastic packages, saving board space as well as providing excellent thermal and dynamic performance.

Absolute maximum ratings

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$	6	V
$V_{\text {id }}$	Differential input voltage ${ }^{(2)}$	+/-0.5	V
$V_{\text {in }}$	Input voltage range ${ }^{(3)}$	+/-2.5	V
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {thja }}$	Thermal resistance junction to ambient SOT23-5 SO-8	$\begin{array}{r} 250 \\ 15 ? \end{array}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thic }}$	Thermal resistance junction to case SOT23-5 SO-8	$\begin{aligned} & 80 \\ & 28 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{P}_{\text {max }}$	$\begin{aligned} & \text { Maximum power dissipation }{ }^{(4)}\left(@ T_{a m b}=25^{\circ} \mathrm{C}\right) \text { for } T_{1}-150^{\circ} \mathrm{C} \\ & \text { SOT23-5 } \\ & \text { SO-8 } \end{aligned}$	$\begin{aligned} & 500 \\ & 830 \end{aligned}$	mW
ESD	HBM: human body model ${ }^{(5)}$ pins 1, 4, 5, 6, 7 and 8 pins 2 and 3	$\begin{gathered} 2 \\ 0.5 \end{gathered}$	kV
	MM: machine model ${ }^{(6)}$ pins $1,4,5$ 6, ? and 8 pins 2 and 3	$\begin{gathered} 200 \\ 60 \end{gathered}$	V
	CDN: Clarged device model ${ }^{(7)}$ nir, $1,4,5,6,7$ and 8 pins 2 and 3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	kV
(Latch-up immunity	200	mA

. All voltage values are measured with respect to the ground pin.
2. Differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltage must never exceed $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from short-circuits on all amplifiers.
5. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$	4.5 to 5.5	V
$\mathrm{~V}_{\mathrm{icm}}$	Common mode input voltage	$-\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$	V
$\mathrm{~T}_{\text {oper }}$	Operating free air temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$

1. Tested in full production at $5 \mathrm{~V}(\pm 2.5 \mathrm{~V})$ supply voltage.

2 Electrical characteristics

Table 3. Electrical characteristics for $\mathrm{V}_{\mathrm{CC}}= \pm 2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
DC performance						
$\mathrm{V}_{\text {io }}$	Input offset voltage Offset voltage between both inputs	Tamb		0.8	4	mV
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {max }}$		1		
$\Delta \mathrm{V}_{\text {io }}$	$\mathrm{V}_{\text {io }}$ drift vs. temperature	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {max }}$		0.9		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{l}_{\text {ib+ }}$	Non inverting input bias current DC current necessary to bias the input +	$\mathrm{T}_{\text {amb }}$		12	35	1 A
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {max }}$		13		
$\mathrm{l}_{\text {ib- }}$	Inverting input bias current DC current necessary to bias the input -	$\mathrm{T}_{\text {amb }}$		1	20	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {max }}$		2.5		
CMR	Common mode rejection ratio$20 \log \left(\Delta V_{\mathrm{ic}} / \Delta V_{\mathrm{io}}\right)$	$\Delta \mathrm{V}_{\text {ic }}= \pm 1 \mathrm{~V}$	56	60		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {ma }}$		58		
SVR	Supply voltage rejection ratio $20 \log \left(\Delta V_{\mathrm{CC}} / \Delta V_{\mathrm{io}}\right)$	$\Delta \mathrm{V}_{\mathrm{CC}}=+3.5 \mathrm{~V}$ © $0+\mathrm{E}^{-1}$	68	81		dB
		$\mathrm{T}_{\text {min }}<T_{\text {cmr }}<\mathrm{T}_{\text {max }}$		78		
PSR	Power supply rejection ratio $20 \log \left(\Delta V_{C C} / \Delta V_{\text {out }}\right)$	$\begin{aligned} & 4:=+i, \Delta V_{C C}= \pm 100 \mathrm{mV} \\ & \text { a: } \mathrm{kHz} \end{aligned}$		51		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {max }}$		48		
I_{CC}	Positive supply current DC consumption with no ir,pul sisnal	No load		4.1	4.9	mA

R_{OL}	Transimr=tanco Output vo' age/input current gain in open lonp or a CFA. - ㄱ a v FA, the analog of this feature is the Tren loop gain (A_{VD})	$\Delta \mathrm{V}_{\text {out }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	170	270	$\mathrm{k} \Omega$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {max }}$		250	k Ω
Bw	-3dB bandwidth Frequency where the gain is 3 dB below the DC gain A_{V} Note: Gain bandwidth product criterion is not applicable for current-feedback-amplifiers	Small signal $\mathrm{V}_{\text {out }}=20 \mathrm{mV}$ pp $A_{V}=+1, R_{L}=100 \Omega$ $A_{V}=+2, R_{L}=100 \Omega$ $A_{V}=+10, R_{L}=100 \Omega$ $A_{V}=-2, R_{L}=100 \Omega$	250	$\begin{aligned} & 550 \\ & 390 \\ & 125 \\ & 370 \end{aligned}$	MHz
	Gain flatness @ 0.1dB Band of frequency where the gain variation does not exceed 0.1 dB	Small signal $V_{\text {out }}=100 \mathrm{mV} V_{p}$ $A_{V}=+1, R_{L}=100 \Omega$		65	
SR	Slew rate Maximum output speed of sweep in large signal	$\begin{aligned} & V_{\text {out }}=2 V_{p p}, A_{V}=+2, \\ & R_{L}=100 \Omega \end{aligned}$		940	$\mathrm{V} / \mathrm{\mu s}$
V_{OH}	High level output voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	1.44	1.56	V
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {max }}$		1.49	

Table 3. Electrical characteristics for $\mathrm{V}_{\mathrm{CC}}= \pm 2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{OL}	Low level output voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		-1.53	-1.44	V
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {max }}$		-1.49		
$\mathrm{I}_{\text {out }}$	$I_{\text {sink }}$ Short-circuit output current coming in the opamp (see Figure 9)	Output to GND	135	205		mA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {max }}$		195		
	$I_{\text {source }}$ Output current coming out from the op-amp (see Figure 10)	Output to GND	-140	-210		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {amb }}<\mathrm{T}_{\text {max }}$		-185		

Noise and distortion

eN	Equivalent input noise voltage See Section 5: Noise measurements	$\mathrm{F}=100 \mathrm{kHz}$	1.5	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
iN	Equivalent input noise current (+) See Section 5: Noise measurements	$\mathrm{F}=100 \mathrm{kHz}$	20	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
	Equivalent input noise current (-) See Section 5: Noise measurements	$F=100 \mathrm{kHz}$	13	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
SFDR	Spurious free dynamic range The highest harmonic of the output spectrum. when injecting a filtered sine wave		$\begin{aligned} & -66 \\ & -57 \\ & -46 \\ & -42 \end{aligned}$	dBc

Table 4. Closed-loop gain and fe?aitocil components

$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Gain	$\mathrm{R}_{\mathrm{fb}}(\Omega)$	-3dB Bw (MHz)	0.1dB Bw (MHz)
± 2.5	$+0$	300	125	22
	-10	300	120	20
	+2	300	390	110
	-2	300	370	70
	+1	820	550	65
	-1	300	350	120

Figure 1. Frequency response, positive gain Figure 2. Frequency response, negative gain

Figure 3. Compensation, gain $=+4$

Figure 4. Compensatior, vala=+2

Figure 5. Freque ncy response vs. capacitor Figure 6. Step response vs. capacitor load O. O

Figure 7. Slew rate

Figure 8. Output amplitude vs. load

Figure 9. $I_{\text {sink }}$

Figure 10. $I_{\text {source }}$

Figure 11. Innut c irrent noise vs. frequency

Figure 12. Input voltage noise vs. frequency

Figure 13. Quiescent current vs. V_{CC}

Figure 14. Distortion vs. output amplitude

Figure 15. Distortion vs. output amplitude

Figure 17. Distorion vs. output amplitude

Figure 19. Reverse isolation vs. frequency

Figure 21. Bandwidth vs. temperature

Figure 23. CMR v.s. temperature

Figure 20. SVR vs. temperature

Figure 22. R_{OL} vs. temperatul

Figure 24. $I_{b i a s}$ vs. temperature

Figure 25. $\quad \mathrm{V}_{\mathrm{io}}$ vs. temperature

Figure 27. V_{OH} and V_{OL} vs. temperature

Figure 26. $I_{C C}$ vs. temperature

Figure 28. $I_{\text {out }}$ vs. tempersiur.

3 Evaluation boards

An evaluation board kit optimized for high-speed operational amplifiers is available (order code: KITHSEVAL/STDL). As well as a CD-ROM containing datasheets, articles, application notes and a user manual, the kit includes the following evaluation boards:

- SOT23_SINGLE_HF BOARD

Board for the evaluation of a single high-speed op-amp in SOT23-5 package.

- SO8_SINGLE_HF

Board for the evaluation of a single high-speed op-amp in SO-8 package.

- SO8_DUAL_HF

Board for the evaluation of a dual high-speed op-amp in SO-8 package.

- SO8_S_MULTI

Board for the evaluation of a single high-speed op-amp in SO-8 packant in inverting and non-inverting configuration, dual and single supply.

- SO14_TRIPLE

Board for the evaluation of a triple high-speed op-amp in 5O-i4 package with video application considerations.

Board material:

- 2 layers
- \quad FR4 $(\varepsilon r=4.6)$
- epoxy 1.6 mm
- copper thickness: 35'ur.

Figure 29. Evaluati on hit ior high-speed op-amps

4 Power supply considerations

Correct power supply bypassing is very important for optimizing performance in highfrequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than $1 \mu \mathrm{~F}$ is necessary to minimize the distortion. For better quality bypassing, a capacitor of 10 nF can be added which should also be placed as close as possible to the IC pins.

Bypass capacitors must be incorporated for both the negative and the positive supply.
Note: \quad On the SO8_SINGLE_HF board, these capacitors are C6, C7, C8, C9.
Figure 30. Circuit for power supply bypassing

Single power supply

Ir the event that a single supply system is used, biasing is necessary to obtain a positive sutput dynamic range between OV and $+\mathrm{V}_{\mathrm{CC}}$ supply rails. Considering the values of V_{OH} and V_{OL}, the amplifier will provide an output swing from +0.9 V to +4.1 V on a 100Ω load.
The amplifier must be biased with a mid-supply (nominally $+\mathrm{V}_{\mathrm{CC}} / 2$), in order to maintain the DC component of the signal at this value. Several options are possible to provide this bias supply, such as a virtual ground using an operational amplifier or a two-resistance divider (which is the cheapest solution). A high resistance value is required to limit the current consumption. On the other hand, the current must be high enough to bias the non-inverting input of the amplifier. If we consider this bias current ($35 \mu \mathrm{~A}$ maximum) as 1% of the current through the resistance divider, to keep a stable mid-supply, two resistances of 750Ω can be used.

The input provides a high-pass filter with a break frequency below 10 Hz which is necessary to remove the original 0 volt DC component of the input signal, and to fix it at $+\mathrm{V}_{\mathrm{CC}} / 2$.
Figure 31 illustrates a 5V single power supply configuration for the SO8_S_MULTI evaluation board (see Evaluation boards on page 11).

A capacitor C_{G} is added in the gain network to ensure a unity gain in low frequency to keep the right DC component at the output. C_{G} contributes to a high-pass filter with $\mathrm{R}_{\mathrm{fb}} / / \mathrm{R}_{\mathrm{G}}$ and its value is calculated with a consideration of the cut off frequency of this low-pass filter.

Figure 31. Circuit for +5 V single supply (using evaluation board SO8_S_MULTI)

5 Noise measurements

The noise model is shown in Figure 32:

- $\quad \mathrm{eN}$ is the input voltage noise of the amplifier
- iNn is the negative input current noise of the amplifier
- $\quad \mathrm{iNp}$ is the positive input current noise of the amplifier

Figure 32. Noise model

The thermal noise oi a risistance R is

$$
\sqrt{4 \mathrm{kTR} \mathrm{\Delta F}}
$$

vitare ΔF is the specified bandwidth.
On a 1 Hz bandwidth the thermal noise is reduced to:

$$
\sqrt{4 \mathrm{kTR}}
$$

where k is the Boltzmann's constant, equal to $1,374.10-23 \mathrm{~J} /{ }^{\circ} \mathrm{K}$. T is the temperature (${ }^{\circ} \mathrm{K}$). The output noise eNo is calculated using the Superposition Theorem. However, eNo is not the simple sum of all noise sources, but rather the square root of the sum of the square of each noise source, as shown in Equation 1:

Equation 1

$$
e N o=\sqrt{V 1^{2}+V 2^{2}+V 3^{2}+V 4^{2}+V 5^{2}+V 6^{2}}
$$

Equation 2

$$
e N^{2}=e N^{2} \times g^{2}+i N n^{2} \times R 2^{2}+i N p^{2} \times R 3^{2} \times g^{2}+\frac{R^{2}}{R 1} \times 4 k T R 1+4 k T R 2+1+\frac{R 2^{2}}{R 1} \times 4 k T R 3
$$

The input noise of the instrumentation must be extracted from the measured noise value. The real output noise value of the driver is:

Equation 3

$$
\mathrm{eNo}=\sqrt{(\text { Measured })^{2}-(\text { instrumentation })^{2}}
$$

The input noise is called equivalent input noise because it is not directly measurf, c' but is evaluated from the measurement of the output divided by the closed loop gain (e.Vc, ${ }^{\prime} y$).

After simplification of the fourth and the fifth term of Equation 2 we obte ir:

Equation 4

$$
e N o^{2}=e N^{2} \times g^{2}+i N n^{2} \times R 2^{2}+i N p^{2} \times R 3^{2} \times g^{2}+c 4 k i R 2+1+\frac{R 2^{2}}{R 1} \times 4 k T R 3
$$

Measurement of the input voltage noise eN

If we assume a short-circuit on the non-ir viriting input (R3=0), from Equation 4 we can derive:

Equation 5

$$
\mathrm{eNo}-v P \mathrm{~m}^{2}+\mathrm{iNn}^{2} \times \mathrm{R}^{2}+\mathrm{g} \times 4 \mathrm{kTR} 2
$$

In order $: 0$ tasily extract the value of eN, the resistance R2 will be chosen to be as low as possible. In the other hand, the gain must be large enough:

$$
\text { R3=0, gain: } g=100
$$

Me?suirement of the negative input current noise iNn

To measure the negative input current noise iNn, we set R3=0 and use Equation 5. This time, the gain must be lower in order to decrease the thermal noise contribution:

$$
R 3=0 \text {, gain: } g=10
$$

Measurement of the positive input current noise iNp

To extract iNp from Equation 3, a resistance R3 is connected to the non-inverting input. The value of R3 must be chosen in order to keep its thermal noise contribution as low as possible against the iNp contribution:

$$
\text { R3=100W, gain: } g=10
$$

6 Intermodulation distortion product

The non-ideal output of the amplifier can be described by the following series:

$$
V_{\text {out }}=C_{0}+C_{1} V_{\text {in }}+C_{2} V_{i n}^{2}+\ldots+C_{n} V_{\text {in }}
$$

where the input is $V_{\text {in }}=A \sin \alpha, C_{0}$ is the $D C$ component, $C_{1}\left(V_{i n}\right)$ is the fundamental and C_{n} is the amplitude of the harmonics of the output signal $\mathrm{V}_{\text {out }}$.

A one-frequency (one-tone) input signal contributes to harmonic distortion. A two-tone input signal contributes to harmonic distortion and to the intermodulation product.

The study of the intermodulation and distortion for a two-tone input signal is the ir $s t \in \mathrm{t}$ in characterizing the driving capability of multi-tone input signals.

In this case:

$$
V_{i n}=A \sin \omega_{1} t+A \sin \omega_{2} t
$$

then:

$$
V_{\text {out }}=C_{0}+C_{1}\left(A \sin \omega_{1} t+A \sin \omega_{2} t\right)+C_{2}\left(\wedge \sin \mu_{1} t+A \sin \omega_{2} t\right)^{2} \ldots+C_{n}\left(A \sin \omega_{1} t+A \sin \omega_{2} t\right)^{n}
$$

From this expression, we can extrast the distortion terms, and the intermodulation terms from a single sine wave:

- second order interr. odu'ation terms IM2 by the frequencies $\left(\omega_{1}-\omega_{2}\right)$ and $\left(\omega_{1}+\omega_{2}\right)$ with an amplitude of $\mathrm{C} 2 \digamma^{2}$
- third order inie:riodulation terms IM3 by the frequencies $\left(2 \omega_{1}-\omega_{2}\right),\left(2 \omega_{1}+\omega_{2}\right),\left(-\omega_{1}+2 \omega_{2}\right)$ and ($9,2 a$) with an amplitude of (3/4) C3A ${ }^{3}$

The int rmodulation product of the driver is measured by using the driver as a mixer in a sum.ning amplifier configuration (see Figure 33). In this way, the non-linearity problem of an a, ternal mixing device is avoided.

Figure 33. Inverting summing amplifier (using evaluation board SO8_S_MULTI)

$7 \quad$ Inverting amplifier biasing

A resistance is necessary to achieve good input biasing, such as resistance R shown in Figure 34.

The magnitude of this resistance is calculated by assuming the negative and positive input bias current. The aim is to compensate for the offset bias current, which could affect the input offset voltage and the output DC component. Assuming $\mathrm{l}_{\mathrm{ib}}, \mathrm{l}_{\mathrm{ib}+}, \mathrm{R}_{\mathrm{in}}, \mathrm{R}_{\mathrm{fb}}$ and a zero volt output, the resistance R is:

$$
\mathrm{R}=\frac{\mathrm{R}_{\mathrm{in}} \times \mathrm{R}_{\mathrm{fb}}}{\mathrm{R}_{\mathrm{in}}+\mathrm{R}_{\mathrm{fb}}}
$$

Figure 34. Compensation of the input bias current

$8 \quad$ Active filtering

Figure 35. Low-pass active filtering, Sallen-Key

From the resistors R_{fb} and R_{G} we can directly calculate the $\mathrm{g}_{\mathrm{c}}{ }^{i}$, ot the filter in a classic noninverting amplification configuration:

$$
A_{V}=g=1+\frac{\Gamma_{f \mathrm{~b}}}{\Gamma_{g}^{r}}
$$

We assume the following expression as ih response of the system:

$$
T_{j \omega}=\frac{\text { Vout }_{j \omega}}{\operatorname{Vin}_{j \omega}}=\frac{g}{1+2 \zeta \frac{j \omega}{\omega_{c}}+\frac{(j \omega)^{2}}{\omega_{c}^{2}}}
$$

The cut-off frequir $\because: v$ is not gain-dependent and so becomes:

$$
\omega_{c}=\frac{1}{\sqrt{\text { R1R2C1C2 }}}
$$

The damping factor is calculated by the following expression:

$$
\zeta=\frac{1}{2} \omega_{c}\left(C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{1}-C_{1} R_{1} g\right)
$$

The higher the gain, the more sensitive the damping factor is. When the gain is higher than 1 , it is preferable to use some very stable resistor and capacitor values. In the case of $R 1=R 2=R$:

$$
\zeta=\frac{2 C_{2}-C_{1} \frac{R_{\mathrm{fb}}}{R_{g}}}{2 \sqrt{C_{1} C_{2}}}
$$

Due to a limited selection of values of capacitors in comparison with resistors, we can set $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C}$, so that:

$$
\zeta=\frac{2 R_{2}-R_{1} \frac{R_{\mathrm{fb}}}{R_{g}}}{2 \sqrt{R_{1} R_{2}}}
$$

$9 \quad$ Package information

Figure 36. SOT23-5 package mechanical data

Ref.	Dimensions					
	Millimeters			Mils		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.90		1.45	35.4		57.1
A1	0.00		0.15	0.00		5.9
A2	0.90		1.30	35.4		51.?
b	0.35		0.50	13.7		15.7
C	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
E	2.60		3.00	102.5		118.1
E1	1.50		1.75	55.0		68.8
e		0.95			37.4	
e1		1.9			74.8	
L	0.35		0.50	13.7		21.6
		1		e1 $+4$, D	-	E

Figure 37. SO-8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
c	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.19%
H	5.80	6.00	6.20	0.228	0.236	¢. 244
E1	3.80	3.90	4.00	0.150	C. 15%	0.157
e		1.27			1 1. 050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	1°			1°		8°
ccc			?.10			0.004

(

10 Ordering information

Table 5. Order codes

Part number	Temperature range	Package	Packing	Marking
TSH350ILT			SOT23-5	Tape \& reel
TSH350ID		SO-8	Tube	TSH3505
		SO-8	Tape \& reel	TSH350I

11 Revision history

Date	Revision	Char. Te ';
1-Oct-2004	1	First release corresponding n Oreliminary Data version of datasheet.
10-Dec-2004	2	Release of mature proci $k \pm$ d atasheet.
21-Jun-2005	3	In Table 1 on pag= 2, $\mathrm{B}_{\text {njic }}$ thermal resistance junction to ambient replaced hy tis arıne! resistance junction to case.
8-Jun-2007	4	Format $u_{1} \mathrm{Nda}^{+} \mathrm{e}$.

Please Read Carefully：

 right to make changes，corrections，modifications or improvements，to this document，and the products and ser icts drscribed herein at any time，without notice．
All ST products are sold pursuant to ST＇s terms and conditions of sale．
Purchasers are solely responsible for the choice，selection and use of the ST products and sices described herein，and ST assumes no liability whatsoever relating to the choice，selection or use of the ST products and services τ_{ϵ} ：cr sed herein．
No license，express or implied，by estoppel or otherwise，to any intellectual propertv in is s granted under this document．If any part of this document refers to any third party products or services it shall not be deemed a cel se grant by ST for the use of such third party products or services，or any intellectual property contained therein or considered as a \because a ranty covering the use in any manner whatsoever of such third party products or services or any intellectual property containe i i．．．？in．

UNLESS OTHERWISE SET FORTH IN ST＇S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE ANL，UR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY，FITNESS FCP A PARTICULAR PURPOSE（AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION），OR INFRINGEMEriI O：A．VY PATENT，COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT．
UNLESS EXPRESSLY APPROVED IN＇V＇RITING BY AN AUTHORIZED ST REPRESENTATIVE，ST PRODUCTS ARE NOT RECOMMENDED，AUTHORIZED OF W，RHANTED FOR USE IN MILITARY，AIR CRAFT，SPACE，LIFE SAVING，OR LIFE SUSTAINING APPLICATIONS，NOR IN PRCD JC ${ }^{S}$ S OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY， DEATH，OR SEVERE PF OP $\mathrm{Eh}^{T} Y$ UR ENVIRONMENTAL DAMAGE．ST PRODUCTS WHICH ARE NOT SPECIFIED AS＂AUTOMOTIVE GRADE＂MAY ONLY BE L＇SED IN AUTOMOTIVE APPLICATIONS AT USER＇S OWN RISK．

Resale of $S^{-} \kappa$ oc ucts with provisions different from the statements and／or technical features set forth in this document shall immediately void any war an，／yranted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever，any liahi．ヶッったぢった。

ST and the ST logo are trademarks or registered trademarks of ST in various countries． Information in this document supersedes and replaces all information previously supplied．

The ST logo is a registered trademark of STMicroelectronics．All other names are the property of their respective owners．
© 2007 STMicroelectronics－All rights reserved

STMicroelectronics group of companies
Australia－Belgium－Brazil－Canada－China－Czech Republic－Finland－France－Germany－Hong Kong－India－Israel－Italy－Japan－ Malaysia－Malta－Morocco－Singapore－Spain－Sweden－Switzerland－United Kingdom－United States of America

www．st．com

