

TSV622, TSV622A, TSV623, TSV623A, TSV624, TSV624A, TSV625, TSV625A

Rail-to-rail input/output, 29 μA, 420 kHz CMOS operational amplifiers

Datasheet - production data

Features

■ Rail-to-rail input and output

 Low power consumption: 29 μA typ, 36 μA max

■ Low supply voltage: 1.5 – 5.5 V

■ Gain bandwidth product: 420 kHz typ

■ Unity gain stable on 100 pF capacitor

■ Low power shutdown mode: 5 nA typ

■ Good accuracy: 800 µV max (A version)

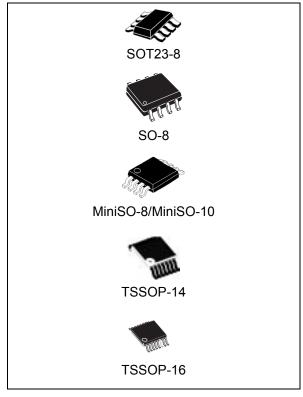
Low input bias current: 1 pA typ

EMI hardened operational amplifiers

Related products

 See the TSV61x series for more power savings (120 kHz for 9 μA)

 See the TSV63x series for higher gain bandwidth (880 kHz for 60 μA)


Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The TSV622, TSV622A, TSV623, TSV623A, TSV624, TSV624A, TSV625, and TSV625A dual and quad operational amplifiers offer low voltage, low power operation, and rail-to-rail input and output.

The TSV62x/TSV62xA series feature an excellent speed/power consumption ratio, offering a 420 kHz gain bandwidth product while consuming only 29 μ A at 5 V supply voltage.

These op-amps are unity gain stable for capacitive loads up to 100 pF. They also feature an ultra-low input bias current and low input offset voltage. TSV623 (dual) and TSV625 (quad) have two shutdown pins to reduce power consumption.

These features make the TSV62x/TSV62xA family ideal for sensor interfaces, battery-supplied and portable applications, and active filtering.

Table 1. Device summary

	Dual v	ersion	Quad version		
Reference	Without Standby		Without standby	With standby	
TSV62x	TSV622	TSV623	TSV624	TSV625	
TSV62xA	TSV622A	TSV623A	TSV624A	TSV625A	

January 2013 Doc ID 15689 Rev 5 1/25

Contents TSV62x, TSV62xA

Contents

1	Pack	kage pin connections	3
2	Abso	olute maximum ratings and operating conditions4	1
3	Elec	trical characteristics5	5
4	Арр	lication information	3
	4.1	Operating voltages	3
	4.2	Rail-to-rail input	3
	4.3	Rail-to-rail output	3
	4.4	Optimization of DC and AC parameters	1
	4.5	Shutdown function (TSV623, TSV625)	1
	4.6	Driving resistive and capacitive loads	5
	4.7	PCB layouts	5
	4.8	Macromodel	5
5	Pack	kage information	3
	5.1	SOT23-8 package information	7
	5.2	SO-8 package information	3
	5.3	MiniSO-8 package information	9
	5.4	MiniSO-10 package information)
	5.5	TSSOP14 package information 21	1
	5.6	TSSOP16 package information	2
6	Orde	ering information	3
7	Revi	sion history	1

Package pin connections 1

10 V_{CC+} Out1 1 In1- 2 9 Out2 Out1 1 V_{CC+} In1-Out2 In1+ 3 In2-8 In1+ ln2- $V_{CC_{-}}$ 4 In2+ In2+ V_{CC}_ 4 SHDN1 5 6 SHDN2 **TSV622 TSV623** MiniSO-10 SOT23-8/SO-8/MiniSO-8 16 Out4 Out1 1 14 Out4 Out1 In1- 2 15 ln4-In1-In4-In1+ 3 In4+ In1+ In4+ V_{CC+} 4 13 V_{CC-} V_{CC+} V_{CC-} 12 In3+ In2+ 5 In2+ 10 ln3+ In3-In2-In3-In2- 6 Out2 7 10 Out3 Out2 7 8 Out3 SHDN1/2 8 SHDN3/4 **TSV625 TSV624** TSSOP-16 TSSOP-14

Figure 1. Pin connections for each package (top view)

2 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	
V _{id}	Differential input voltage ⁽²⁾	±V _{CC}	V
V _{in}	Input voltage ⁽³⁾	V _{CC-} - 0.2 to V _{CC+} + 0.2	
I _{in}	Input current ⁽⁴⁾	10	mA
SHDN	Shutdown voltage ⁽³⁾	V _{CC-} - 0.2 to V _{CC+} + 0.2	V
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾⁽⁶⁾ SOT23-8 MiniSO-8 SO-8 Mini-SO10 TSSOP14 TSSOP16	105 190 125 113 100 95	°C/W
T _j	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁷⁾	4	kV
ESD	MM: machine model ⁽⁸⁾	200	V
	CDM: charged device model ⁽⁹⁾	1.5	kV
	Latch-up immunity	200	mA

- 1. All voltage values, except differential voltages are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC} - V_{in} must not exceed 6 V, V_{in} must not exceed 6V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. R_{th} are typical values.
- 7. Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	1.5 to 5.5	V
V _{icm}	Common mode input voltage range	V_{CC-} - 0.1 to V_{CC+} + 0.1	V
T _{oper}	Operating free air temperature range	-40 to +125	°C

4/25 Doc ID 15689 Rev 5

Downloaded from **Arrow.com**.

3 Electrical characteristics

Table 4. Electrical characteristics at V_{CC+} = +1.8 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, V_{amb} = 25° C, and $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC performance										
V _{io}	Offset voltage	TSV62x TSV62xA TSV623AIST - MiniSO10			4 0.8 1	mV				
v io	Onset voltage	$\begin{split} & TSV62x \cdot T_{min} < T_{op} < T_{max} \\ & TSV62xA \cdot T_{min} < T_{op} < T_{max} \\ & TSV623AIST \cdot T_{min} < T_{op} < T_{max} \end{split}$			6 2 2.2	IIIV				
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C				
1.	Input offset current			1	10 ⁽¹⁾					
I _{io}	$(V_{out} = V_{CC}/2)$	$T_{min} < T_{op} < T_{max}$		1	100	pА				
1	Input bias current			1	10 ⁽¹⁾	pΑ				
l _{ib}	$(V_{out} = V_{CC}/2)$	$T_{min} < T_{op} < T_{max}$		1	100					
CMR	CMP Common mode rejection	0 V to 1.8 V, V _{out} = 0.9 V	53	74						
CIVIE	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	51			dB				
۸	Large signal voltage gain	R _L = 10 kΩ, V _{out} = 0.5 V to 1.3 V	78	95		uБ				
A_{vd}	Large Signal Voltage gain	$T_{min} < T_{op} < T_{max}$	73							
V_{OH}	High level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$	35 50	5		mV				
V_{OL}	Low level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$		4	35 50	IIIV				
	loink	V _{out} = 1.8 V	6	12						
	Isink	$T_{min} < T_{op} < T_{max}$	4			mA				
l _{out}	Isource	V _{out} = 0 V	6	10		IIIA				
	Isource	$T_{min} < T_{op} < T_{max}$	4							
1	Supply current (per operator)	No load, V _{out} =V _{CC} /2		25	31	^				
I _{CC}	Supply current (per operator)	$T_{min} < T_{op} < T_{max}$			33	μΑ				
AC perfo	rmance									
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$	275	340		kHz				
F _u	Unity gain frequency			280		NITZ				
φm	Phase margin	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$,		41		Degrees				
G _m	Gain margin			8		dB				
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $Av=1$	0.1	0.155		V/μs				

^{1.} Guaranteed by design.

Table 5. Shutdown characteristics $V_{CC} = 1.8 \text{ V (TSV623, TSV625)}$

Symbol	Parameter	Conditions		Тур.	Max.	Unit					
DC perfor	DC performance										
		SHDN = V _{CC} -		2.5	50	nA					
I _{CC}	Supply current in shutdown mode (all operators)	$T_{min} < T_{op} < 85^{\circ} C$			200	IIA					
	, ,	T _{min} < T _{op} < 125° C			1.5	μΑ					
t _{on}	Amplifier turn-on time	$R_L = 5 \text{ k}$, Vout = V_{CC-} to $V_{CC-} + 0.2 \text{ V}$		200							
t _{off}	Amplifier turn-off time	$R_L = 2 \text{ k, Vout} = V_{CC+} - 0.5 \text{ V to}$ $V_{CC+} - 0.7 \text{ V}$		20		ns					
V _{IH}	SHDN logic high		1.35			V					
V _{IL}	SHDN logic low				0.6	V					
I _{IH}	SHDN current high	SHDN = V _{CC+}		10							
I _{IL}	SHDN current low	SHDN = V _{CC} -		10		pA					
1	Output leakage in shutdown	SHDN = V _{CC} -		50							
l _{OLeak}	mode	$T_{min} < T_{op} < 125^{\circ} C$		1		nA					

Table 6. Electrical characteristics at V_{CC+} = +3.3 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, V_{amb} = 25° C, and $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance		•	•		•
.,	Offeet valtage	TSV62x TSV62xA TSV623AIST - MiniSO10			4 0.8 1	m\/
V _{io}	Offset voltage	$ \begin{array}{l} TSV62x \cdot T_{\min} < T_{op} < T_{\max} \\ TSV62xA \cdot T_{\min} < T_{op} < T_{\max} \\ TSV623AIST \cdot T_{\min} < T_{op} < T_{\max} \end{array} $			6 2 2.2	- mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
	Input offset current			1	10 ⁽¹⁾	
l _{io}		$T_{min} < T_{op} < T_{max}$		1	100	
	Innut bigg gurrant			1	10 ⁽¹⁾	рA
I _{ib}	Input bias current	$T_{min} < T_{op} < T_{max}$		1	100	
CMR	Common mode rejection	0 V to 3.3 V, V _{out} = 1.65 V	57	79		
CIVIR	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	53			dB
^	A _{vd} Large signal voltage gain	R_L =10 k Ω , V_{out} = 0.5 V to 2.8 V	81	98		ив
∕¬vd		$T_{min} < T_{op} < T_{max}$	76			
V_{OH}	High level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{min} < T_{op} < T_{max}$	35 50	5		mV
V _{OL}	Low level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{min} < T_{op} < T_{max}$		4	35 50	IIIV
	loink	V _o = 5 V	23	45		
	Isink	$T_{min} < T_{op} < T_{max}$	20			mA
I _{out}	lacurac	V _o = 0 V	23	38		IIIA
	Isource	$T_{min} < T_{op} < T_{max}$	20			
	Supply current (per	No load, V _{out} = 2.5 V		26	33	
I _{CC}	operator)	$T_{min} < T_{op} < T_{max}$			35	μA
AC perfo	rmance					
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$	310	380		Id !-
F _u	Unity gain frequency			310		kHz
φm	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		41		Degrees
G _m	Gain margin			8		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $A_V = 1$	0.11	0.175		V/μs

^{1.} Guaranteed by design.

Electrical characteristics TSV62x, TSV62xA

Table 7. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25° C, and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance				•	
V_{io}	Offset voltage	TSV62x TSV62xA TSV623AIST - MiniSO10			4 0.8 1	mV
v io	Onset voltage	$ \begin{array}{l} TSV62x - T_{min} < T_{op} < T_{max} \\ TSV62xA - T_{min} < T_{op} < T_{max} \\ TSV62xA - T_{min} < T_{op} < T_{max} \end{array} $			6 2 2.2	IIIV
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
1	Input offset current			1	10 ⁽¹⁾	
l _{io}	input onset current	$T_{min} < T_{op} < T_{max}$		1	100	nΛ
- 1	Input bias current			1	10 ⁽¹⁾	рA
l _{ib}	input bias current	$T_{min} < T_{op} < T_{max}$		1	100	
CMR	Common mode rejection	0 V to 5 V, V _{out} = 2.5 V	60	80		
CIVIR	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	55			
۸	Large signal voltage gain	R _L =10 kΩ, V _{out} = 0.5 V to 4.5 V	85	98		
A _{vd}	Large signal voltage gain	$T_{min} < T_{op} < T_{max}$	80			
CV/D	Supply voltage rejection ratio	V _{CC} = 1.8 to 5 V	75	102		40
SVR	20 log ($\Delta V_{CC}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	73			dB
		V _{RF} = 100 mV _{rms} , f = 400 MHz		61		
EMIDD	EMI rejection ratio	V _{RF} = 100 mV _{rms} , f = 900 MHz		85		
EMIRR	EMIRR = -20 log $(V_{RFpeak}/\Delta V_{io})$	V _{RF} = 100 mV _{rms} , f = 1800 MHz		92		
		V _{RF} = 100 mV _{rms} , f = 2400 MHz		83		
	High lavel autout valle as	R_L = 10 k Ω	35	7		
V _{OH}	High level output voltage	$T_{min} < T_{op} < T_{max}$	50			\
	Lavidavalavatustisaitasa	R_L = 10 k Ω		6	35	mV
V_{OL}	Low level output voltage	$T_{min} < T_{op} < T_{max}$			50	
	1	V _o = 5 V	40	69		
	Isink	$T_{min} < T_{op} < T_{max}$	35			1
l _{out}		V _o = 0 V	40	74		mA
	Isource	$T_{min} < T_{op} < T_{max}$	35			
	0	No load, V _{out} = 2.5 V		29	36	
I _{CC}	Supply current (per operator)	$T_{min} < T_{op} < T_{max}$			38	μΑ
AC perfo	rmance		•		•	
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$	350	420		Izl.I=
Fu	Unity gain frequency	$R_L = 10 \text{ k}\Omega, \ C_L = 100 \text{ pF}$		360		kHz

8/25 Doc ID 15689 Rev 5

TSV62x, TSV62xA Electrical characteristics

Table 7. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = V_{CC} /2, T_{amb} = 25° C, and R_L connected to V_{CC} /2 (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
φm	Phase margin	$R_1 = 10 \text{ k}Ω$, $C_1 = 100 \text{ pF}$		40		Degrees
G _m	Gain margin			8		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}, A_V = 1$	0.12	0.19		V/μs
e _n	Equivalent input noise voltage	f = 1 kHz		77		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+e _n	Total harmonic distortion + noise	Av = 1, f = 1 kHz, R_L = 100 k Ω , Vicm = Vcc/2, Vout = 2 Vpp		0.002		%

^{1.} Guaranteed by design.

Table 8. Shutdown characteristics at $V_{CC} = 5 \text{ V (TSV623, TSV625)}$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit						
DC perfor	DC performance											
		SHDN = V _{IL}		5	50	nA						
I _{CC}	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85° C			200	IIA						
		T _{min} < T _{op} < 125° C			1.5	μΑ						
t _{on}	Amplifier turn-on time	$R_L = 5 k\Omega V_{out} = V_{CC-} to V_{CC-} + 0.2 V$		200								
t _{off}	Amplifier turn-off time	$R_L = 5 k\Omega$ $V_{out} = V_{CC+} - 0.5 V$ to $V_{CC+} - 0.7 V$		20		ns						
V _{IH}	SHDN logic high		2			V						
V _{IL}	SHDN logic low				0.8	v						
I _{IH}	SHDN current high	SHDN = V _{CC+}		10								
I _{IL}	SHDN current low	SHDN = V _{CC} -		10		pА						
1.	Output leakage in shutdown	SHDN = V _{CC} -		50								
^I OLeak	mode	T _{min} < T _{op} < 125° C		1		nA						

Figure 2. Supply current vs. supply voltage Figure 3. Output current vs. output voltage at $V_{CC} = 1.5 V$ at $V_{icm} = V_{CC}/2$

Figure 4. Output current vs. output voltage at Figure 5. Voltage gain and phase vs. frequency at Vcc = 1.5 V

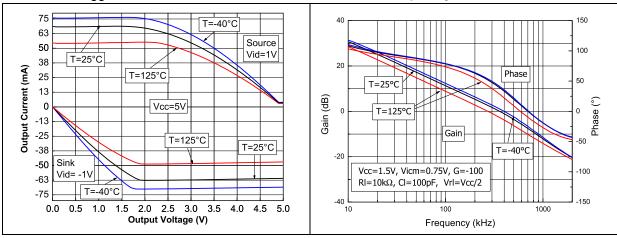
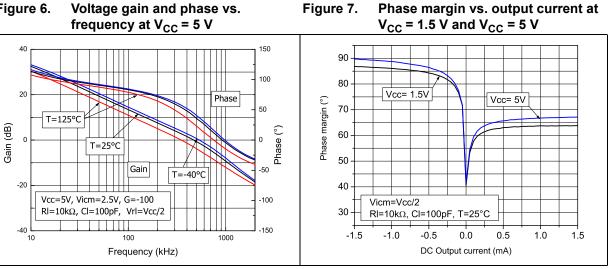



Figure 6. Voltage gain and phase vs.

Doc ID 15689 Rev 5

10/25

Figure 8. Positive slew rate vs. time

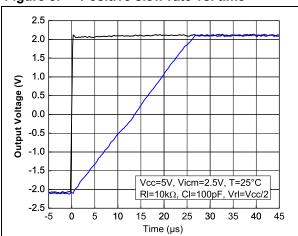


Figure 9. Negative slew rate vs. time

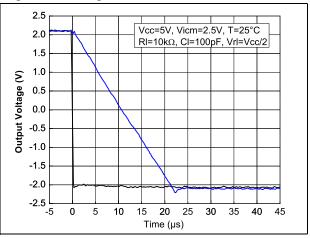


Figure 10. Positive slew rate vs. supply voltage

Voltage

0.30

0.25

Vcc=5V, Ri=10kΩ, Ci=100pF
Vin: from 0.4V to Vcc-0.4V
SR calculated from 10% to 90%

0.15

0.10

T=-40°C

0.05

Vcc=5V, Ri=10kΩ, Ci=100pF
Vin: from 0.4V to Vcc-0.4V
SR calculated from 10% to 90%

T=-25°C

T=125°C

0.05

4.0

Supply Voltage (V)

Figure 11. Negative slew rate vs. supply voltage

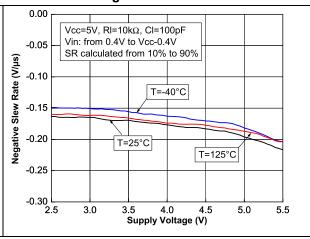


Figure 12. Noise vs. frequency

3.0

0.00 L 2.5

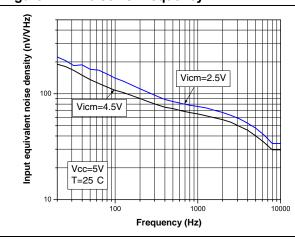
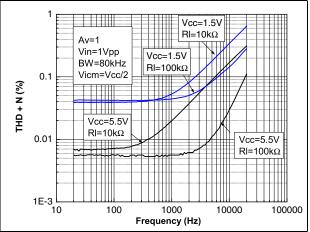
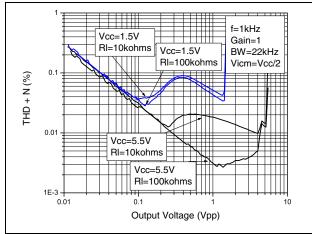
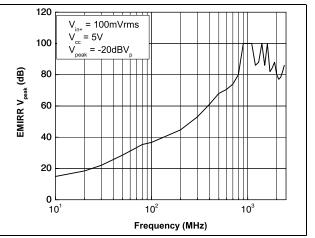



Figure 13. Distortion + noise vs. frequency




5.5

Electrical characteristics TSV62x, TSV62xA

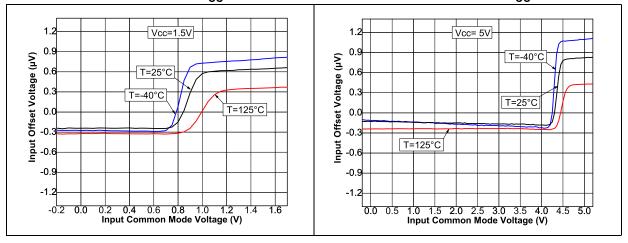
Figure 14. Distortion + noise vs. output voltage

Figure 15. EMIRR vs. frequency at $V_{CC} = 5 \text{ V}$, $T = 25^{\circ} \text{ C}$

12/25 Doc ID 15689 Rev 5

4 Application information

4.1 Operating voltages


TSV62x/TSV62xA devices can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8-, 3.3- and 5-V power supplies. However, the parameters are very stable in the full V_{CC} range and several characterization curves show the TSV62x/TSV62xA characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40° C to +125° C.

4.2 Rail-to-rail input

The TSV62x/TSV62xA are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from V_{CC_-} - 0.1 V to V_{CC_+} + 0.1 V. The transition between the two pairs appears at V_{CC_+} - 0.7 V. In the transition region, the performance of CMRR, PSRR, V_{io} (*Figure 16* and *Figure 17*) and THD is slightly degraded.

Figure 16. Input offset voltage vs input common mode at $V_{CC} = 1.5 \text{ V}$

Figure 17. Input offset voltage vs input common mode at $V_{CC} = 5 \text{ V}$

The devices are guaranteed without phase reversal.

4.3 Rail-to-rail output

The operational amplifier's output level can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 k Ω resistive load to $V_{CC}/2$.

4.4 Optimization of DC and AC parameters

These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of current consumption (29 μ A typical, min/max at ±17%). Parameters linked to the current consumption value, such as GBP, SR and AVd benefit from this narrow dispersion. All parts present a similar speed and the same behavior in terms of stability. In addition, the minimum values of GBP and SR are guaranteed (GBP = 350 kHz min, SR = 0.12 V/ μ s min).

4.5 Shutdown function (TSV623, TSV625)

The operational amplifier is enabled when the \overline{SHDN} pin is pulled high. To disable the amplifier, the \overline{SHDN} must be pulled down to V_{CC-} . When in shutdown mode, the amplifier output is in a high impedance state. The \overline{SHDN} pin must never be left floating but tied to V_{CC+} or V_{CC-} . The turn-on and turn-off times are calculated for an output variation of ± 200 mV (*Figure 18* and *Figure 19* show the test configurations). *Figure 20* and *Figure 21* show output voltage behavior when the \overline{SHDN} pin is toggled.

Figure 18. Test configuration for turn-on time Figure 19. Test configuration for turn-off time (Vout pulled down) (Vout pulled down)

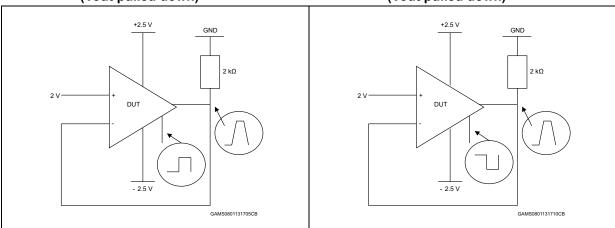


Figure 20. Turn-on time, V_{CC} = ±2.5 V, Vout pulled down, T = 25° C

Vout pulled down, T = 25° C

3

Vcc = ±2.5 V

T = 25 °C

Vout

Vout

Vout

Vout

S hutdown pulse

-0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Time(μs)

Figure 21. Turn-off time, $V_{CC} = \pm 2.5 \text{ V}$, Vout pulled down, $T = 25^{\circ} \text{ C}$

14/25 Doc ID 15689 Rev 5

0.4

0.5

S hutdown pulse

Vcc = ± 2.5 V T = 25 °C R_L connected to GND

Time(µs)

Vout

/oltage (V)

4.6 Driving resistive and capacitive loads

These products are micro-power, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 k Ω For lower resistive loads, the THD level may significantly increase.

In a *follower* configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding a small resistor in series at the output can improve the stability of the device (see *Figure 22* for recommended in-series resistor values). Once the value of the in-series resistor has been selected, the stability of the circuit should be tested on bench and simulated with the simulation model.

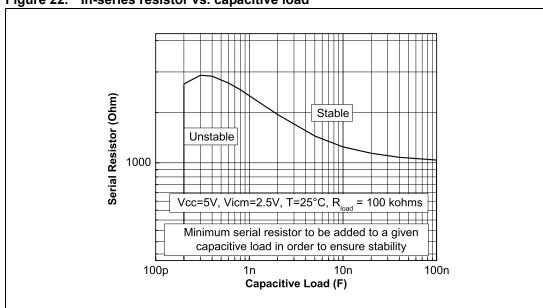


Figure 22. In-series resistor vs. capacitive load

4.7 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.8 Macromodel

Two accurate macromodels (with or without shutdown feature) of TSV62x/TSV62xA are available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV62x/TSV62xA operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.

Package information TSV62x, TSV62xA

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Doc ID 15689 Rev 5

16/25

TSV62x, TSV62xA Package information

5.1 SOT23-8 package information

Figure 23. SOT23-8 package mechanical drawing

Table 9. SOT23-8 package mechanical data

	Dimensions							
Ref.	Millimeters				Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.45			0.057		
A1			0.15			0.006		
A2	0.90		1.30	0.035		0.051		
b	0.22		0.38	0.009		0.015		
С	0.08		0.22	0.003		0.009		
D	2.80		3	0.110		0.118		
E	2.60		3	0.102		0.118		
E1	1.50		1.75	0.059		0.069		
е		0.65			0.026			
e1		1.95			0.077			
L	0.30		0.60	0.012		0.024		
<	0°		8°	0°		8°		

TOP VIEW

PROJECTION

577

Doc ID 15689 Rev 5

17/25

Package information TSV62x, TSV62xA

5.2 SO-8 package information

Figure 24. SO-8 package mechanical drawing

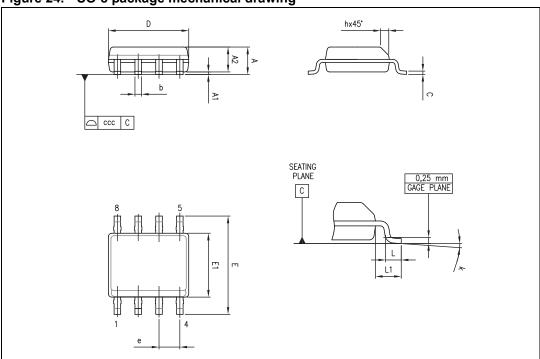


Table 10. SO-8 package mechanical data

		<u> </u>	Dime	nsions			
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25			0.049			
b	0.28		0.48	0.011		0.019	
С	0.17		0.23	0.007		0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
E	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
е		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
L1		1.04			0.040		
k	0		8°	1°		8°	
ccc			0.10			0.004	

18/25 Doc ID 15689 Rev 5

TSV62x, TSV62xA Package information

5.3 MiniSO-8 package information

Figure 25. MiniSO-8 package mechanical drawing

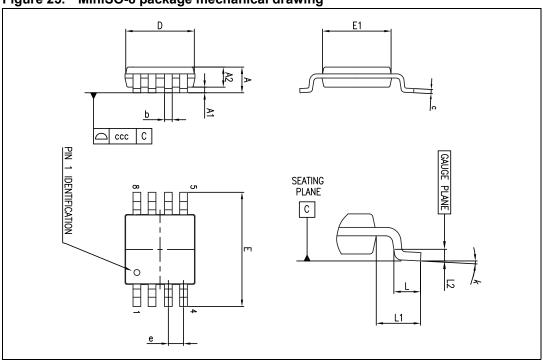


Table 11. MiniSO-8 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.1			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.030	0.033	0.037
b	0.22		0.40	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.80	3.00	3.20	0.11	0.118	0.126
E	4.65	4.90	5.15	0.183	0.193	0.203
E1	2.80	3.00	3.10	0.11	0.118	0.122
е		0.65			0.026	
L	0.40	0.60	0.80	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.010	
k	0°		8°	0°		8°
ccc			0.10			0.004

577

Doc ID 15689 Rev 5

19/25

Package information TSV62x, TSV62xA

5.4 MiniSO-10 package information

Figure 26. MiniSO-10 package mechanical drawing E1 aaa PIN 1 IDENTIFICATION SEATING PLANE C

Table 12. MiniSO-10 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.10			0.043
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.78	0.86	0.94	0.031	0.034	0.037
b	0.25	0.33	0.40	0.010	0.013	0.016
С	0.15	0.23	0.30	0.006	0.009	0.012
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	4.75	4.90	5.05	0.187	0.193	0.199
E1	2.90	3.00	3.10	0.114	0.118	0.122
е		0.50			0.020	
L	0.40	0.55	0.70	0.016	0.022	0.028
L1		0.95			0.037	
k	0°	3°	6°	0°	3°	6°
aaa			0.10			0.004

TSV62x, TSV62xA Package information

5.5 TSSOP14 package information

Figure 27. TSSOP14 package mechanical drawing

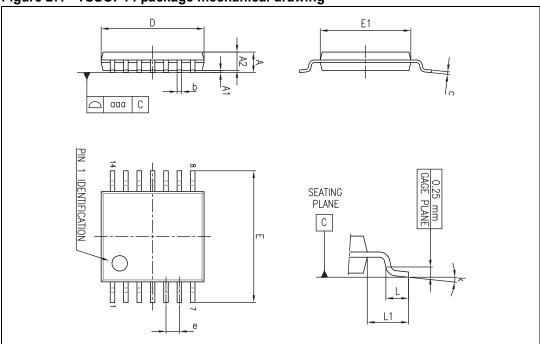


Table 13. TSSOP14 package mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.047
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.90	5.00	5.10	0.193	0.197	0.201
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.176
е		0.65			0.0256	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
k	0°		8°	0°		8°
aaa			0.10			0.004

Package information TSV62x, TSV62xA

5.6 TSSOP16 package information

Figure 28. TSSOP16 package mechanical drawing

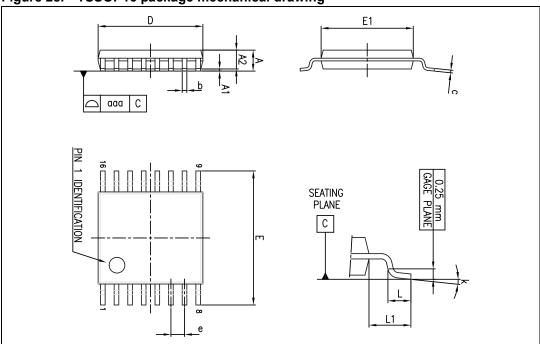


Table 14. TSSOP16 package mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.20			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	4.90	5.00	5.10	0.193	0.197	0.201
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.0256	
k	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
aaa			0.10			0.004

6 Ordering information

Table 15. Order codes

Order codes	Temperature range	Package	Packing	Marking
TSV622ILT		SOT23-8	Tape & reel	K107
TSV622AILT		30123-0	Tape & Teel	K143
TSV622ID/DT		SO-8	Tube and tape & reel	TSV622
TSV622AID/DT	40° C to +125° C	30-6		TSV622A
TSV622IST		MiniSO-8	· Tape & reel	K107
TSV622AIST				K143
TSV623IST		MiniSO-10		K114
TSV623AIST		WIIIIISO-10		K144
TSV624IPT		TSSOP-14		TSV624
TSV624AIPT				TSV624A
TSV625IPT		TSSOP-16		TSV625
TSV625AIPT		1330F-10		TSV625A

Revision history TSV62x, TSV62xA

7 Revision history

Table 16. Document revision history

Date	Revision	Changes
25-May-2009	1	Initial release.
15-Jun-2009	2	Corrected pin connection diagram in Figure 1.
24-Aug-2009	3	Added root part numbers (TSv62xA) and <i>Table 1: Device</i> summary on cover page. Added order code TSV622AILT in <i>Table 15: Order codes</i> .
22-Oct-2009	4	Corrected error in <i>Table 15: Order codes</i> : TSV625 offered in TSSOP16.
09-Jan-2013	5	Updated Features. Updated Figure 1. Table 4, Table 6, and Table 7: replaced DV _{io} with Δ V _{io} / Δ T. Section 4.5: Shutdown function (TSV623, TSV625): added explanation of Figure 20 and Figure 21; replaced Figure 18 and Figure 19; updated Figure 20 and Figure 21. Corrected error in Table 15: Order codes: the marking for the order code TSV622AILT is K143.

24/25 Doc ID 15689 Rev 5

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577

Doc ID 15689 Rev 5 25/25