
TSV6290, TSV6290A, TSV6291, TSV6291A

Micropower with high merit factor CMOS operational amplifiers

Datasheet - production data

Features

- Low supply voltage: 1.5 V 5.5 V
- Rail-to-rail input and output
- Low input offset voltage: 800 µV max (A version)
- Low power consumption: 29 µA typical
- Gain bandwidth product: 1.3 MHz typical
- Stable when used in gain configuration
- Micropackages: SOT23-5/6, SC70-5/6
- Low input bias current: 1 pA typical
- Extended temperature range: -40 to 125 °C
- 4 kV human body model

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The TSV6290 and the TSV6291 are single operational amplifiers with a high bandwidth which consume only 29 μ A. They must be used in a gain configuration (G < -3, G > 4).

With a very low input bias current and low offset voltage ($800 \ \mu V$ maximum for the A version), the TSV629x family of devices is ideal for applications requiring precision. The devices can operate at a power supply ranging from 1.5 to 5.5 V, and therefore suit battery-powered devices, extending battery life.

The TSV6290 comes with a shutdown function.

The TSV6290 and TSV6291 present a high tolerance to ESD, sustaining 4 kV for the human body model.

The TSV6290 and TSV6291 are offered in SOT23-5/6 and SC70-5/6 micropackages, with extended temperature ranges from -40 $^{\circ}$ C to 125 $^{\circ}$ C.

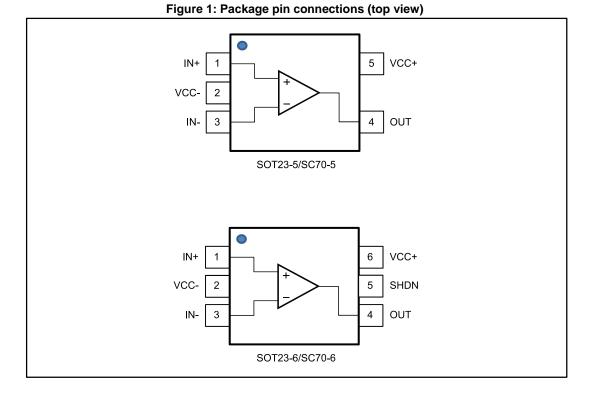
All these features make the TSV629x ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

August 2016

DocID17117 Rev 2

1/24

This is information on a product in full production.


Downloaded from Arrow.com.

Contents

1	Package	e pin connections	3
2	Absolut	e maximum ratings and operating conditions	4
3	Electric	al characteristics	5
4	Electric	al characteristic curves	
5	Applica	tion information	13
	5.1	Operating voltages	
	5.2	Rail-to-rail input	
	5.3	Rail-to-rail output	
	5.4	Shutdown function (TSV6290)	14
	5.5	Optimization of DC and AC parameters	14
	5.6	Driving resistive and capacitive loads	15
	5.7	PCB layouts	15
	5.8	Macromodel	15
6	Package	e information	16
	6.1	SOT23-5 package information	17
	6.2	SOT23-6 package information	
	6.3	SC70-5 (or SOT323-5) package information	19
	6.4	SC70-6 (or SOT323-6) package information	20
7	Orderin	g information	
8	Revisio	n history	

1 Package pin connections

57

2 Absolute maximum ratings and operating conditions

Symbol	Parameter		Value	Unit
Vcc	Supply voltage ⁽¹⁾	6		
Vid	Differential input voltage ⁽²⁾	±Vcc	V	
Vin	Input voltage ⁽³⁾	(V _{CC-}) - 0.2 to (V _{CC+}) + 0.2		
l _{in}	Input current ⁽⁴⁾		10	mA
SHDN	Shutdown voltage ⁽³⁾		(Vcc-) - 0.2 to (Vcc+) + 0.2	V
T _{stg}	Storage temperature	-65 to 150	~	
Tj	Maximum junction temperature		150	°C
		SOT23-5	250	
	Thermal resistance junction-to- ambient ⁽⁵⁾⁽⁶⁾	SOT23-6	240	
R _{thja}		SC70-5	205	°C/W
	SC		232	
	HBM: human body model (7)		4	kV
ESD	MM: machine model ⁽⁸⁾		300	V
	CDM: charged device model ⁽⁹⁾		1.5	kV
	Latch-up immunity		200	mA

Table 1: Absolute maximum ratings (AMR)

Notes:

⁽¹⁾All voltage values, except differential voltage, are with respect to network ground terminal.

⁽²⁾Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

 $^{(3)}V_{cc}$ - V_{in} must not exceed 6 V, V_{in} must not exceed 6 V.

⁽⁴⁾Input current must be limited by a resistor in series with the inputs.

⁽⁵⁾R_{th} are typical values.

⁽⁶⁾Short-circuits can cause excessive heating and destructive dissipation.

 $^{(7)}$ Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

⁽⁸⁾Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

⁽⁹⁾Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Symbo	I Parameter	Value	Unit
Vcc	Supply voltage	1.5 to 5.5	V
Vicm	Common mode input voltage range	(Vcc-) - 0.1 to (Vcc+) + 0.1	v
Toper	Operating free air temperature range	-40 to 125	°C

4/24

3 Electrical characteristics

Table 3: Electrical characteristics at (VCC+) = 1.8 V with (VCC-) = 0 V, Vicm = VCC/2,
Tamb = 25 °C, and RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC perfo	rmance						
		TSV6290, TSV6291			4		
Vio	0 ″	TSV6290A, TSV6291A			0.8		
Vio	Offset voltage	T _{min} < T _{op} < T _{max} , TSV6290, TSV6291			6	mV	
		$T_{min} < T_{op} < T_{max}$, TSV6290A, TSV6291A			2		
DVio	Input offset voltage drift			2		µV/°C	
Ŀ	Input offset current,			1	10		
110	$T_{io} = V_{CC}/2 (1) \qquad T_{min} < T_{op} < T_{max}$			1	100	рА	
L.	Input bias current,			1	10	рА	
l _{ib}	$V_{out} = V_{CC}/2 $ ⁽¹⁾	T _{min} < T _{op} < T _{max}		1	100		
CMR	Common mode rejection	0 V to 1.8 V, $V_{out} = 0.9 V$	53	74			
CIVIR	ratio, 20 log ($\Delta V_{ic}/\Delta V_{io}$)	T _{min} < T _{op} < T _{max}	51			dB	
A _{vd}	Large signal voltage gain	R_L = 10 kΩ, V_{out} = 0.5 V to 1.3 V	78	95		aв	
		T _{min} < T _{op} < T _{max}	73				
V _{он}	High-level output voltage, $V_{OH} = V_{CC} - V_{out}$	$R_{L} = 10 \ k\Omega$		5	35		
VOH		T _{min} < T _{op} < T _{max}			50	mV	
V _{OL}	Low lovel output veltage	$R_{L} = 10 \ k\Omega$		4	35	mv	
VOL	Low-level output voltage	T _{min} < T _{op} < T _{max}			50		
	loink	V _{out} = 1.8 V	6	12			
1	Isink	T _{min} < T _{op} < T _{max}	4			m ^	
lout		V _{out} = 0 V	6	10		mA	
	Isource	T _{min} < T _{op} < T _{max}	4				
laa	Supply current (per operator)	No load, $V_{out} = V_{CC}/2$		25	31		
Icc	Supply current (per operator)	T _{min} < T _{op} < T _{max}			33	μA	
AC perfo	rmance						
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		1.1		MHz	
Coin	Minimum goin for stability	Phase margin = 60 °, R_f = 10 k Ω ,		4			
Gain	Minimum gain for stability	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF}$		-3		- V/V	
SR	Slew rate			0.33		V/µs	

Notes:

⁽¹⁾Guaranteed by design.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
DC perfo	DC performance								
		$\overline{\text{SHDN}} = (V_{\text{CC}})$		2.5	50	nA			
Icc	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85 °C			200	IIA			
		T _{min} < T _{op} < 125 °C			1.5	μA			
t _{on}	Amplifier turn-on time	$R_L = 5 \ k\Omega, \ V_{out} = (V_{CC}\text{-}) \ to \ (V_{CC}\text{-}) + 0.2 \ V$		300					
t _{off}	Amplifier turn-off time	$\label{eq:RL} \begin{array}{l} R_{L} = 5 \; k\Omega, V_{out} = (V_{CC+}) \text{ - } 0.5 \; to \\ (V_{CC+}) \text{ - } 0.7 \; V \end{array}$		30		ns			
VIH	SHDN logic high		1.3			V			
VIL	SHDN logic low				0.5	v			
Ін	SHDN current high	$\overline{\text{SHDN}} = (V_{CC+})$		10					
lı∟	SHDN current low	$\overline{\text{SHDN}} = (V_{\text{CC}})$		10		pА			
	Output leakage in shutdown	$\overline{\text{SHDN}} = (V_{\text{CC}})$		50					
IOLeak	mode	T _{min} < T _{op} < T _{max}		1		nA			

Table 4: Shutdown	characteristics	VCC = 1.8 V	(TSV6290)
	011a1 a0101 101100	100 - 110 1	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC perfo	rmance						
		TSV6290, TSV6291			4		
Vio		TSV6290A, TSV6291A			0.8		
	Offset voltage	T _{min} < T _{op} < T _{max} , TSV6290, TSV6291			6	mV	
		T _{min} < T _{op} < T _{max} , TSV6290A, TSV6291A			2		
DVio	Input offset voltage drift			2		µV/°C	
L	Input offset current ⁽¹⁾			1	10		
lio	input onset current (*	T _{min} < T _{op} < T _{max}		1	100	n۸	
I.,	Input bias current ⁽¹⁾			1	10	рА	
lib		$T_{min} < T_{op} < T_{max}$		1	100		
CMR	Common mode rejection	$0 V to 3.3 V, V_{out} = 1.65 V$	57	79			
CIVIR	ratio, 20 log ($\Delta V_{ic}/\Delta V_{io}$)	T _{min} < T _{op} < T _{max}	53			dB	
Δ.	Largo signal voltago gain	$R_{L}\text{=}$ 10 kΩ, $V_{out}\text{=}~0.5$ V to 2.8 V	81	98		uD	
A _{vd}	Large signal voltage gain	T _{min} < T _{op} < T _{max}	76				
Vон	High-level output voltage,	$R_L = 10 \ k\Omega$		5	35	mV	
VOH	$V_{OH} = V_{CC} - V_{out}$	T _{min} < T _{op} < T _{max}			50		
Mai		$R_L = 10 \ k\Omega$		4	35	mv	
Vol	Low-level output voltage	T _{min} < T _{op} < T _{max}			50		
	laink	V _{out} = 5 V	23	45		- mA	
н.	Isink	T _{min} < T _{op} < T _{max}	20				
out	loguroo	V _{out} = 0 V	23	38			
	lsource	T _{min} < T _{op} < T _{max}	20				
laa	Supply aurrent (par aparatar)	No load, V _{out} = 2.5 V		26	33		
lcc	Supply current (per operator)	T _{min} < T _{op} < T _{max}			35	μA	
AC perfo	rmance						
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		1.2		MHz	
Cain	Minimum goin for stability	Phase margin = 60 °, $R_f = 10 k\Omega$,		4		1///	
Gain	Minimum gain for stability	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF}$		-3		V/V	
SR	Slew rate			0.4		V/µs	

Table 5: (VCC+) = 3.3 V, (VCC-) = 0 V, Vicm = VCC/2, Tamb = 25 °C, RL connected to VCC/2 (unless otherwise specified)

Notes:

⁽¹⁾Guaranteed by design.

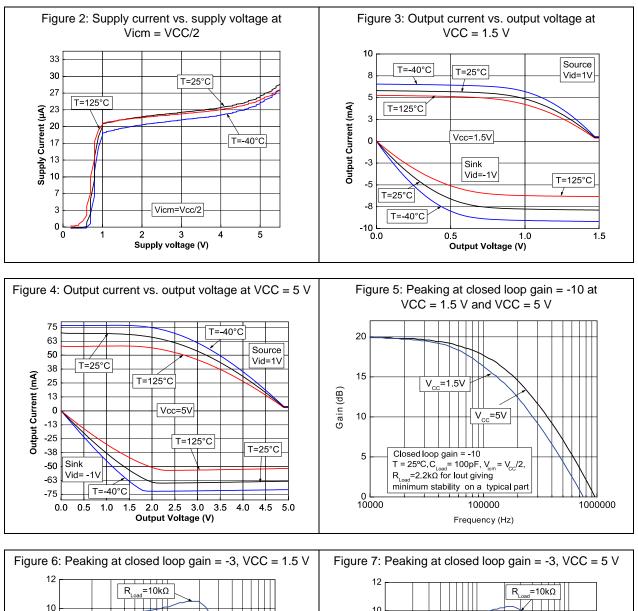
Table 6: (VCC+) = 5 V, (VCC-) = 0 V, Vicm = VCC/2, Tamb = 25 °C, RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter		Min.	Тур.	Max.	Unit	
DC perfo	rmance						
		TSV6290, TSV6291			4		
Vio	Offset voltage	TSV6290A, TSV6291A			0.8	mV	
		T _{min} < T _{op} < T _{max} , TSV6290, TSV6291			6		
		T _{min} < T _{op} < T _{max} , TSV6290A, TSV6291A			2		
DVio	Input offset voltage drift			2		µV/°C	
	lange to the standard (1)			1	10		
lio	Input offset current ⁽¹⁾	T _{min} < T _{op} < T _{max}		1	100	- 0	
	least hiss surrent (1)			1	10	рА	
lib	Input bias current ⁽¹⁾	T _{min} < T _{op} < T _{max}		1	100		
0145	Common mode rejection	0 V to 5 V, V _{out} = 2.5 V	60	80			
CMR	ratio, 20 log (ΔV _{ic} /ΔV _{io})	T _{min} < T _{op} < T _{max}	55				
0.45	Supply voltage rejection	V _{CC} = 1.8 to 5 V	75	102			
SVR	ratio, 20 log (ΔV _{CC} /ΔV _{io})	T _{min} < T _{op} < T _{max}	73			dB	
		$R_L = 10 \text{ k}\Omega$, $V_{out} = 0.5 \text{ V}$ to 4.5 V	85	98			
A _{vd}	Large signal voltage gain	T _{min} < T _{op} < T _{max}	80				
.,	High-level output voltage, V _{OH} = V _{CC} - V _{out}	R _L = 10 kΩ		7	35		
Vон		T _{min} < T _{op} < T _{max}			50		
.,		R _L = 10 kΩ		6	35	mV	
Vol	Low-level output voltage	T _{min} < T _{op} < T _{max}			50		
		V _{out} = 5 V	40	69			
	Isink	T _{min} < T _{op} < T _{max}	35			mA	
lout		V _{out} = 0 V	40	74			
	Isource	T _{min} < T _{op} < T _{max}	35				
	Supply current	No load, V _{out} = 2.5 V		30	36		
Icc	(per operator)	T _{min} < T _{op} < T _{max}			38	μΑ	
AC perfo	rmance	-					
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		1.3		MHz	
		Phase margin = 60 °, $R_f = 10 k\Omega$,		4			
Gain	Minimum gain for stability	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF}$		-3		V/V	
SR	Slew rate			0.5		V/µs	
en	Equivalent input noise voltage	f = 1 kHz		70		nV/√Hz	
THD	Total harmonic distortion	$ \begin{array}{l} Av = -10, \ f_{in} = 1 \ kHz, \ R_L = 100 \ k\Omega, \\ V_{icm} = Vcc/2, \ V_{in} = 40 \ mVpp \end{array} $		0.15		%	

Notes:

⁽¹⁾Guaranteed by design.

8/24



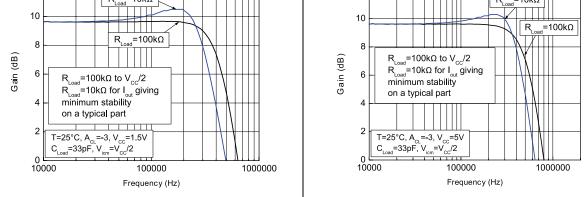
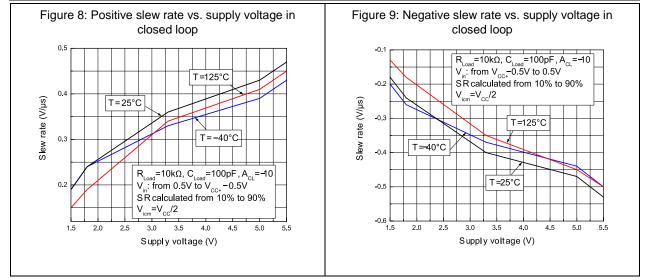
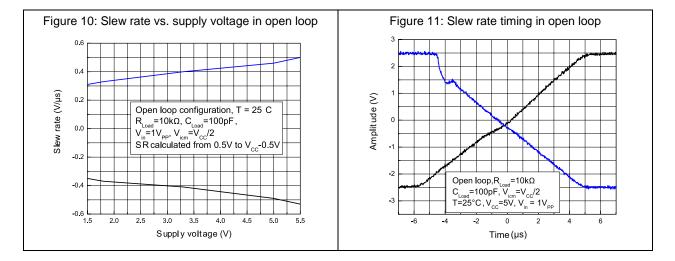

Symbol	Parameter	Conditions		Тур.	Max.	Unit			
DC perfo	DC performance								
		$\overline{\text{SHDN}} = V_{IL}$		5	50	nA			
lcc	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85 °C			200	ПА			
		T _{min} < T _{op} < 125 °C			1.5	μA			
ton	Amplifier turn-on time	$R_{L}=5~k\Omega$, $V_{out}=$ (Vcc-) to (Vcc-) + 0.2 V		300					
t _{off}	Amplifier turn-off time	R_L = 5 kΩ, V_{out} = (V_CC+) - 0.5 V to (V_CC+) - 0.7 V		30		ns			
VIH	SHDN logic high		4.5			v			
VIL	SHDN logic low				0.5	V			
Іін	SHDN current high	$\overline{\text{SHDN}} = (V_{CC+})$		10					
lı∟	SHDN current low	$\overline{\text{SHDN}} = (V_{\text{CC}})$		10		pА			
	Output leakage in shutdown	$\overline{\text{SHDN}} = (V_{\text{CC}})$		50					
I _{OLeak}	mode	$T_{min} < T_{op} < T_{max}$		1		nA			

Table 7: Shutdown characteristics VCC = 5 V (TSV6290)

4 Electrical characteristic curves

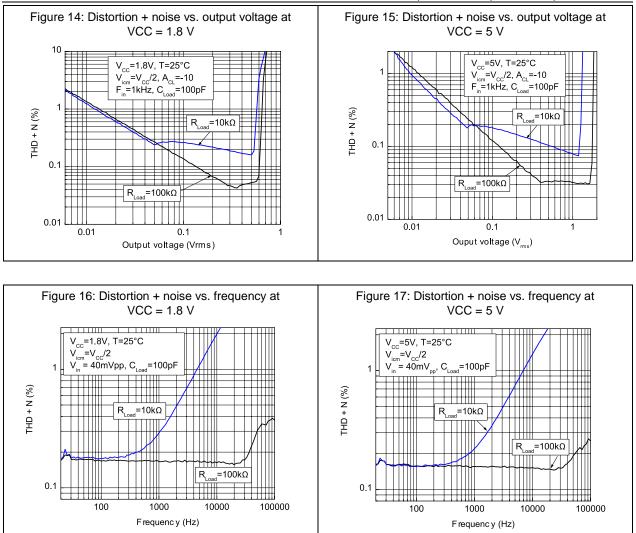



10/24



TSV6290, TSV6290A, TSV6291, TSV6291A

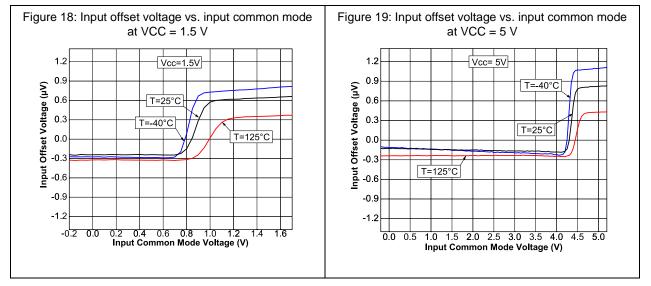
Electrical characteristic curves



57

Electrical characteristic curves

TSV6290, TSV6290A, TSV6291, TSV6291A


5 Application information

5.1 Operating voltages

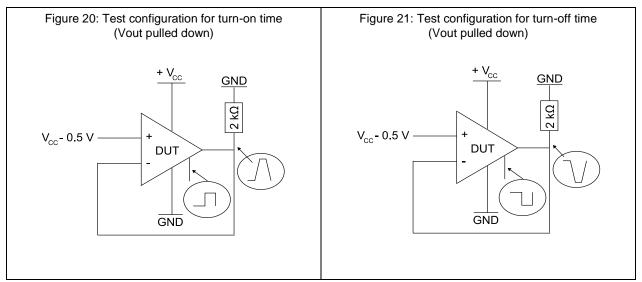
The TSV6290 and TSV6291 can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the full V_{CC} range and several characterization curves show the TSV629x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C.

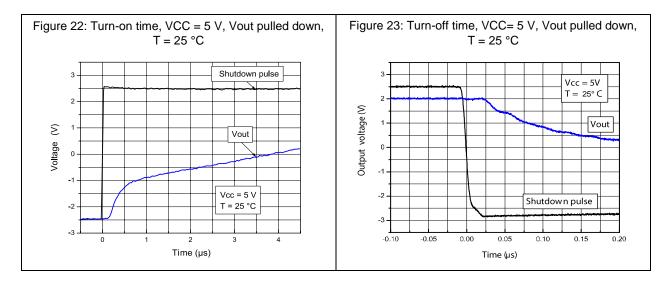
5.2 Rail-to-rail input

The TSV6290 and TSV6291 are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common-mode range is extended from (V_{CC}.) - 0.1 V to (V_{CC+}) + 0.1 V. The transition between the two pairs appears at (V_{CC+}) - 0.7 V. In the transition region, the performance of CMR, SVR, V_{io} and THD is slightly degraded (as shown in *Figure 18* and *Figure 19* for V_{io} vs. V_{icm}).

The devices are guaranteed without phase reversal.

5.3 Rail-to-rail output


The operational amplifiers' output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 k Ω resistive load to V_{CC}/2.



5.4 Shutdown function (TSV6290)

The operational amplifier is enabled when the \overline{SHDN} pin is pulled high. To disable the amplifier, the \overline{SHDN} must be pulled down to V_{CC-}. When in shutdown mode, the amplifier's output is in a high impedance state. The \overline{SHDN} pin must never be left floating, but tied to (V_{CC+}) or (V_{CC}-).

The turn-on and turn-off times are calculated for an output variation of $\pm 200 \text{ mV}$ (*Figure 20* and *Figure 21* show the test configurations).

5.5 Optimization of DC and AC parameters

These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption (29 μ A typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and A_{vd}, benefit from this narrow dispersion.

5.6 Driving resistive and capacitive loads

These products are micropower, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 k Ω . For lower resistive loads, the THD level may significantly increase.

The amplifiers have a relatively low internal compensation capacitor, making them very fast while consuming very little. They are ideal when used in a non-inverting configuration or in an inverting configuration in the following conditions.

- IGainl \geq 3 in an inverting configuration (C_L = 20 pF, R_L = 100 k Ω) or Igainl \geq 10 (C_L = 100 pF, R_L = 100 k Ω)
- Gain \geq 4 in a non-inverting configuration (C_L = 20 pF, R_L = 100 k Ω) or gain \geq 11 (C_L = 100 pF, R_L= 100 k Ω)

As these operational amplifiers are not unity gain stable, for a low closed-loop gain it is recommended to use the TSV62x (29 μ A, 420 kHz) or TSV63x (60 μ A, 880 kHz) which are unity gain stable.

Part #	Icc (μΑ) at 5 V	GBP (MHz)	SR (V/µs)	Minimum gain for stability (C _{Load} = 100 pF)
TSV620-1	29	0.42	0.14	1
TSV6290-1	29	1.3	0.5	11
TSV630-1	60	0.88	0.34	1
TSV6390-1	60	2.4	1.1	11

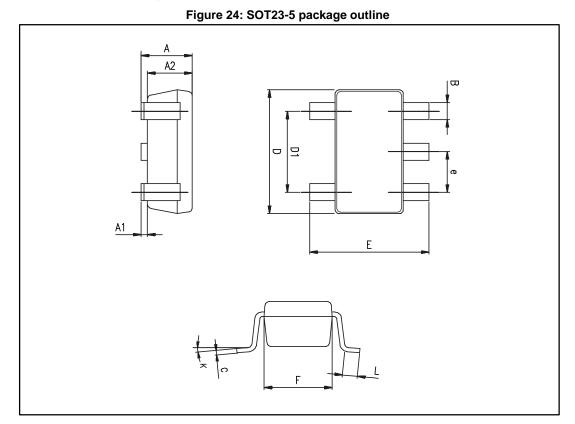
Table 8: Related products

5.7 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

5.8 Macromodel

An accurate macromodel of the TSV6290 and TSV6291 is available on STMicroelectronics' web site at **www.st.com**. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV629x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, *but it does not replace on-board measurements*.



6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 SOT23-5 package information

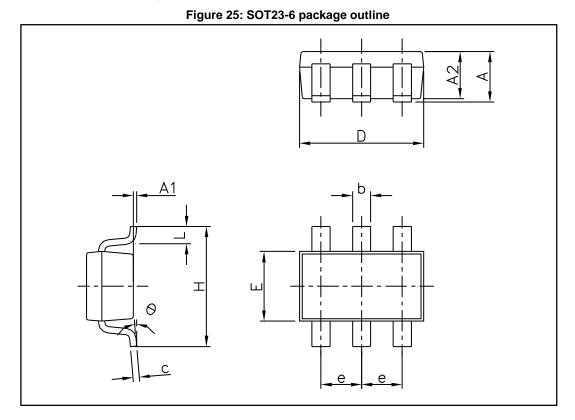


Table 9: SOT23-5 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.014	0.016	0.020	
С	0.09	0.15	0.20	0.004	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
E	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.014	0.024	
К	0 degrees		10 degrees	0 degrees		10 degrees	

6.2 SOT23-6 package information

Table 10: SOT23-6 mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.90		1.45	0.035		0.057
A1			0.10			0.004
A2	0.90		1.30	0.035		0.051
b	0.35		0.50	0.013		0.019
С	0.09		0.20	0.003		0.008
D	2.80		3.05	0.110		0.120
E	1.50		1.75	0.060		0.069
е		0.95			0.037	
Н	2.60		3.00	0.102		0.118
L	0.10		0.60	0.004		0.024
θ	0 °		10 °	0 °		10 °

6.3 SC70-5 (or SOT323-5) package information

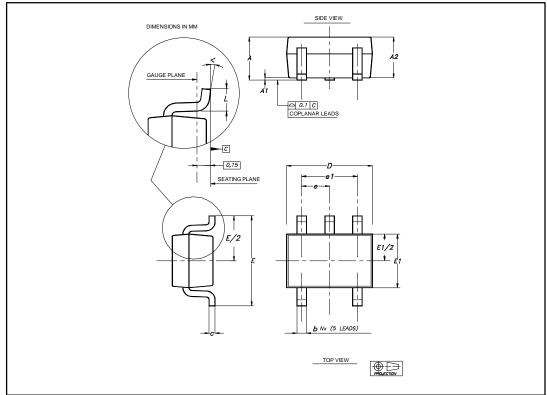


Figure 26: SC70-5 (or SOT323-5) package outline

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.80		1.10	0.032		0.043	
A1			0.10			0.004	
A2	0.80	0.90	1.00	0.032	0.035	0.039	
b	0.15		0.30	0.006		0.012	
С	0.10		0.22	0.004		0.009	
D	1.80	2.00	2.20	0.071	0.079	0.087	
E	1.80	2.10	2.40	0.071	0.083	0.094	
E1	1.15	1.25	1.35	0.045	0.049	0.053	
е		0.65			0.025		
e1		1.30			0.051		
L	0.26	0.36	0.46	0.010	0.014	0.018	
<	0°		8°	0°		8°	

6.4 SC70-6 (or SOT323-6) package information

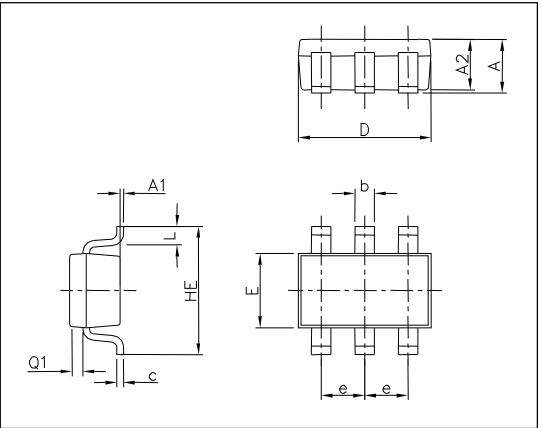


Figure 27: SC70-6 (or SOT323-6) package outline

Table 12: SC70-6 (or SOT323-6) mechanical data

	Dimensions					
Ref	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80		1.10	0.031		0.043
A1			0.10			0.004
A2	0.80		1.00	0.031		0.039
b	0.15		0.30	0.006		0.012
С	0.10		0.18	0.004		0.007
D	1.80		2.20	0.071		0.086
E	1.15		1.35	0.045		0.053
е		0.65			0.026	
HE	1.80		2.40	0.071		0.094
L	0.10		0.40	0.004		0.016
Q1	0.10		0.40	0.004		0.016

20/24

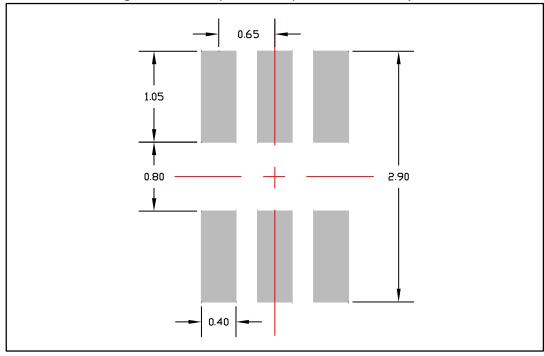


Figure 28: SC70-6 (or SOT323-6) recommended footprint

7 Ordering information

Part number	Temperature range	Package	Packing	Marking
TSV6290ILT		SOT23-6		K106
TSV6290ICT		SC70-6	Tape and reel	K16
TSV6290AILT	-40 °C to 125 °C	SOT23-6		K139
TSV6290AICT		SC70-6		K39
TSV6291ILT		SOT23-5		K107
TSV6291ICT		SC70-5		K14
TSV6291AILT		SOT23-5		K113
TSV6291AICT		SC70-5		K15

22/24

8 Revision history

,						
Date	Revision	Changes				
04-Mar-2010	1	Initial release.				
10-Aug-2016	2	Updated datasheet layout <i>Table 3, Table 5,</i> and <i>Table 6</i> : V _{OH} "min." values changed to "max." values. <i>Figure 8, Figure 9, Figure 10</i> : updated Y-axes <i>Table 11</i> : updated A and A2 min. values in inches				

Table 14: Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

