

Rail-to-rail 1.1 V dual nanopower comparator

Datasheet - production data

Features

- Ultra low current consumption: 220 nA typ./op.
- Propagation delay: 2 µs typ.
- Rail-to-rail inputs
- Push-pull outputs
- Supply operation from 1.1 V to 5.5 V
- Wide temperature range: -40 to +125 °C
- ESD tolerance: 6 kV HBM / 300 V MM
- Available in SO8, MiniSO8, and DFN8 2 x 2 mm package

Related product

See the TS881 datasheet for single operator with smaller package.

Applications

- Portable systems
- Signal conditioning
- Medical

Description

The TS882 device is a dual comparator featuring ultra low supply current (220 nA typical per operator with output high, $V_{CC} = 1.2$ V, no load) with rail-to-rail input and output capability. The performance of this comparator allows it to be used in a wide range of portable applications. The TS882 device minimizes battery supply leakage and therefore enhances battery lifetime.

Operating from 1.1 to 5.5 V supply voltage, this comparator can be used over a wide temperature range (-40 to +125 °C) keeping the current consumption at an ultra low level.

The TS882 device is available in the SO8, MiniSO8 and DFN8 2 x 2 mm packages, allowing great space saving on the PCB.

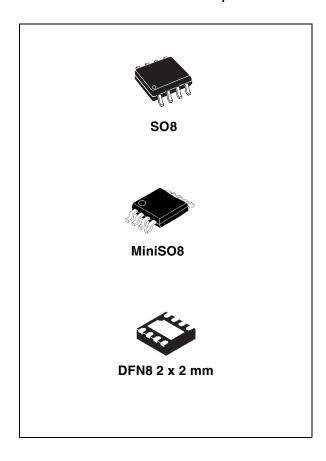
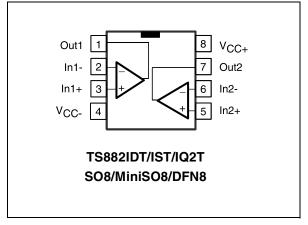



Figure 1. Pin connections (top view)

Contents TS882

Contents

1	Abs	Absolute maximum ratings and operating conditions							
2	Elec	trical characteristics 4							
3	Pack	rage information							
	3.1	SO8 package information							
	3.2	DFN8 2 x 2 mm package mechanical data							
	3.3	MiniSO8 package information							
4	Orde	ering information							
5	Revi	sion history							

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{ID}	Differential input voltage ⁽²⁾	±6	V
V _{IN}	Input voltage range	(V _{CC} -) - 0.3 to (V _{CC} +) + 0.3	V
R _{THJA}	Thermal resistance junction-to-ambient ⁽³⁾ SO8 MiniSO8 DFN8 2 x 2 mm	125 190 57	°C/W
T _{STG}	Storage temperature	-65 to +150	°C
T _J	Junction temperature	150	°C
T _{LEAD}	Lead temperature (soldering 10 seconds)	260	°C
	Human body model (HBM) ⁽⁴⁾	6	kV
ESD	Machine model (MM) ⁽⁵⁾	300	V
	Charged device model (CDM) ⁽⁶⁾	1300]
	Latch-up immunity	200	mA

^{1.} All voltage values, except differential voltages, are referenced to V_{CC} -. V_{CC} is defined as the difference between V_{CC} + and V_{CC} -.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
T _{oper}	Operating temperature range	-40 to +125	°C
V _{CC}	Supply voltage -40 °C < T _{amb} < +125 °C	1.1 to 5.5	V
V _{ICM}	Common mode input voltage range -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	(V_{CC-}) - 0.2 to (V_{CC+}) + 0.2 (V_{CC-}) to (V_{CC+}) + 0.2	V

^{2.} The magnitude of input and output voltages must never exceed the supply rail $\pm 0.3 \text{ V}$.

^{3.} Short-circuits can cause excessive heating. These values are typical.

^{4.} According to JEDEC standard JESD22-A114F.

^{5.} According to JEDEC standard JESD22-A115A.

^{6.} According to ANSI/ESD STM5.3.1.

2 Electrical characteristics

Table 3. V_{CC} = +1.2 V, T_{amb} = +25 °C, V_{ICM} = V_{CC} /2 (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage ⁽²⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	-6	1	6	mV
ΔV_{IO}	Input offset voltage drift	-40 °C < T _{amb} < +125 °C		3		μV/°C
V _{HYST}	Input hysteresis voltage ⁽³⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	1.5	2.4	4.2	mV
I _{IO}	Input offset current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C			10 100	pA
I _{IB}	Input bias current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C		1	10 100	pA
Icc	Supply current per operator	No load, output low, V_{ID} = -0.1 V -40 °C < T_{amb} < +125 °C		300	450	nA
.00	Cappi, cament per operation	No load, output high, $V_{ID} = +0.1 \text{ V}$ -40 °C < T_{amb} < +125 °C		220	350	
I _{SC}	Short-circuit current	Source Sink		1.0 1.7		mA
V _{OH}	Output voltage high	I _{source} = 0.2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	1.13 1.10 1.00	1.15		V
V _{OL}	Output voltage low	I _{sink} = 0.2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		35	50 60 70	mV
CMRR	Common mode rejection ratio	0 < V _{ICM} < V _{CC} -40 °C < T _{amb} < +125 °C	50	68		dB
T _{PLH}	Propagation delay (low to high)	f = 1 kHz, C_L = 30 pF, R_L = 1 MΩ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C		5.5	11 13	μs
	(tow to mgm)	Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		2.1	3.1 3.4	
T _{PHL}	Propagation delay (high to low)	f = 1 kHz, C_L = 30 pF, R_L = 1 MΩ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C		5.1	8 10	μs
	(g., 15 .5)	Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		1.9	2.6 3.1	
T _R	Rise time (10% to 90%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		100		ns

Table 3. $V_{CC} = +1.2 \text{ V}, T_{amb} = +25 ^{\circ}\text{C}, V_{ICM} = V_{CC}/2 \text{ (unless otherwise specified)}^{(1)} \text{ (continued)}$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _F	Fall time (90% to 10%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		110		ns
T _{ON}	Power-up time			1.1	1.7	ms

- All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.
- 2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction).
- 3. The hysteresis is a built-in feature of the TS882 device. It is defined as the voltage difference between the trip points.
- 4. Maximum values include unavoidable inaccuracies of the industrial tests.

Table 4. V_{CC} = +2.7 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage ⁽²⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	-6	1	6	mV
ΔV _{IO}	Input offset voltage drift	-40 °C < T _{amb} < +125 °C		3		μV/°C
V _{HYST}	Input hysteresis voltage ⁽³⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	1.6	2.7	4.2	mV
I _{IO}	Input offset current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C			10 100	pА
I _{IB}	Input bias current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C		1	10 100	pA
Icc	Supply current per operator	No load, output low, $V_{ID} = -0.1 \text{ V}$ -40 °C < T_{amb} < +125 °C		310	450	nA
		No load, output high, V_{ID} = +0.1 V -40 °C < T_{amb} < +125 °C		220	350	
I _{SC}	Short-circuit current	Source Sink		10 13		mA
V _{OH}	Output voltage high	I _{source} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	2.48 2.40 2.10	2.51		V
V _{OL}	Output voltage low	I _{sink} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		130	210 230 310	mV
CMRR	Common mode rejection ratio	0 < V _{ICM} < V _{CC} -40 °C < T _{amb} < +125 °C	55	74		dB
T _{PLH}	Propagation delay (low to high)	f = 1 kHz, C_L = 30 pF, R_L = 1 MΩ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C		6.4	12 14	μs
	(low to riigh)	Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		2.3	3.0 3.7	
T _{PHL}	Propagation delay (high to low)	f = 1 kHz, C_L = 30 pF, R_L = 1 MΩ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C		6.4	12 14	μs
	(···g·· to io···)	Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		2.2	3.0 3.7	
T _R	Rise time (10% to 90%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		120		ns
T _F	Fall time (90% to 10%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		130		ns
T _{ON}	Power-up time			1.1	1.7	ms

All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

^{2.} The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction).

^{3.} The hysteresis is a built-in feature of the TS882. It is defined as the voltage difference between the trip points.

^{4.} Maximum values include unavoidable inaccuracies of the industrial tests.

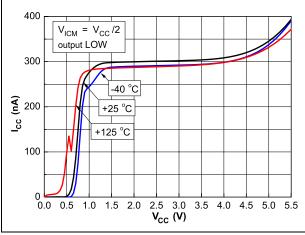
Table 5. V_{CC} = +5 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage ⁽²⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	-6	1	6	mV
ΔV_{IO}	Input offset voltage drift	-40 °C < T _{amb} < +125 °C		3		μV/°C
V _{HYST}	Input hysteresis voltage ⁽³⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	1.6	3.1	4.2	mV
I _{IO}	Input offset current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C			10 100	рA
I _{IB}	Input bias current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C		1	10 100	pA
I _{CC}	Supply current per operator	No load, output low, V_{ID} = -0.1 V -40 °C < T_{amb} < +125 °C		350	500	nA
100	Supply surrent per operator	No load, output high, $V_{ID} = +0.1 \text{ V}$ -40 °C < T_{amb} < +125 °C		250	400	11/1
I _{SC}	Short-circuit current	Source Sink		32 32		mA
V _{OH}	Output voltage high	I _{source} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	4.86 4.75 4.60	4.88		V
V _{OL}	Output voltage low	I _{sink} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		90	130 170 280	mV
CMRR	Common mode rejection ratio	0 < V _{ICM} < V _{CC} -40 °C < T _{amb} < +125 °C	55	78		dB
SVR	Supply voltage rejection	ΔV _{CC} = 1.2 V to 5 V -40 °C < T _{amb} < +125 °C	65	80		dB
T _{PLH}	Propagation delay (low to high)	f = 1 kHz, C_L = 30 pF, R_L = 1 MΩ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C		8.3	13 22	μs
	(low to riigii)	Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		2.5	3.4 4.1	
T _{PHL}	Propagation delay (high to low)	f = 1 kHz, C_L = 30 pF, R_L = 1 MΩ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C		9.0	16 19	μs
		Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		2.6	3.5 4.2	
T _R	Rise time (10% to 90%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		160		ns

Table 5. V_{CC} = +5 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _F	Fall time (90% to 10%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		150		ns
T _{ON}	Power-up time			1.1	1.7	ms

All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.


- 3. The hysteresis is a built-in feature of the TS882 device. It is defined as the voltage difference between the trip points.
- 4. Maximum values include unavoidable inaccuracies of the industrial tests.

The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction).

TS882 Electrical characteristics

Figure 2. Current consumption per operator Figure 3. vs. supply voltage - output low

Figure 3. Current consumption per operator vs. supply voltage - output high

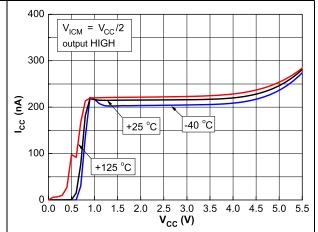
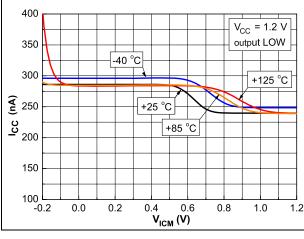



Figure 4. Current consumption per operator vs. input common mode voltage at V_{CC} = 1.2 V

Figure 5. Current consumption per operator vs. input common mode voltage at $V_{CC} = 5 \text{ V}$

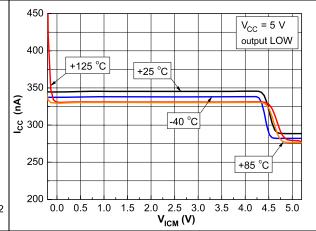
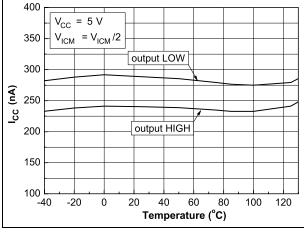
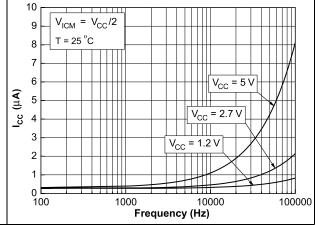




Figure 6. Current consumption per operator vs. temperature

Figure 7. Current consumption per operator vs. toggle frequency

577

Doc ID 024119 Rev 1

Figure 8. Input offset voltage vs. input common mode voltage at $V_{CC} = 1.2 \text{ V}$

Figure 9. Input hysteresis voltage vs. input common mode voltage at $V_{CC} = 1.2 \text{ V}$

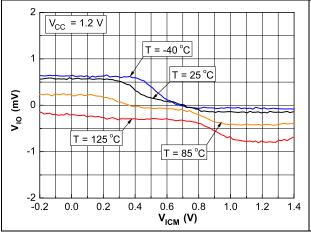
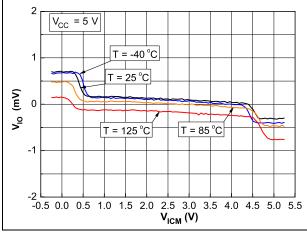



Figure 10. Input offset voltage vs. input common mode voltage at V_{CC} = 5 V

Figure 11. Input hysteresis voltage vs. input common mode voltage at $V_{CC} = 5 \text{ V}$

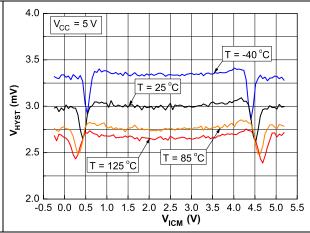
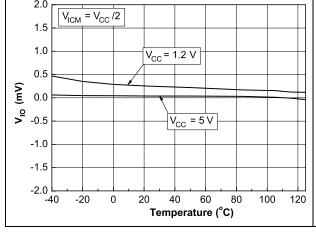
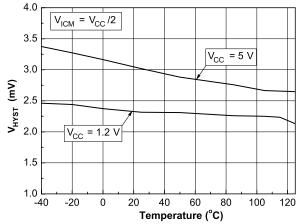




Figure 12. Input offset voltage vs. temperature

Figure 13. Input hysteresis voltage vs. temperature

TS882 Electrical characteristics

Figure 14. Output voltage drop vs. sink current at $V_{CC} = 1.2 \text{ V}$

Figure 15. Output voltage drop vs. source current at V_{CC} = 1.2 V

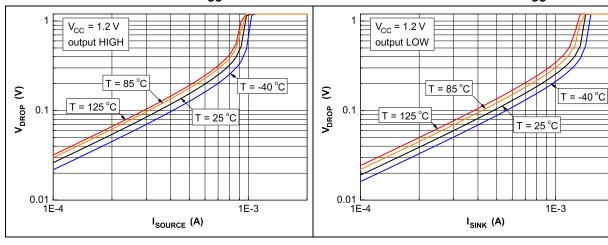


Figure 16. Output voltage drop vs. sink current at V_{CC} = 2.7 V

Figure 17. Output voltage drop vs. source current at $V_{CC} = 2.7 \text{ V}$

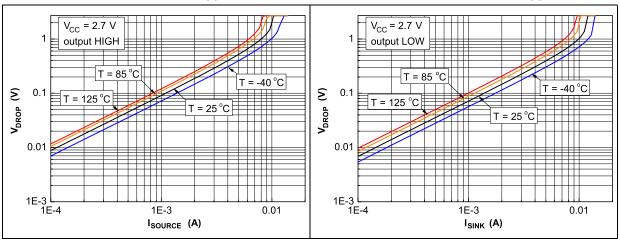
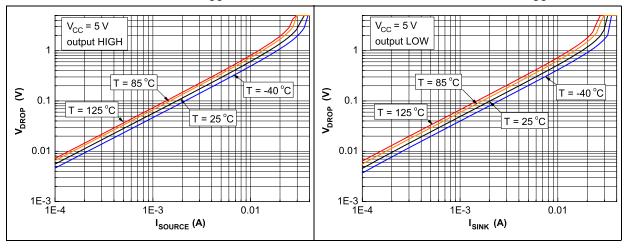



Figure 18. Output voltage drop vs. sink current at V_{CC} = 5 V

Figure 19. Output voltage drop vs. source current at V_{CC} = 5 V

47/

Doc ID 024119 Rev 1

Figure 20. Propagation delay T_{PLH} vs. input common mode voltage at $V_{CC} = 1.2 \text{ V}$

Figure 21. Propagation delay T_{PHL} vs. input common mode voltage at $V_{CC} = 1.2 \text{ V}$

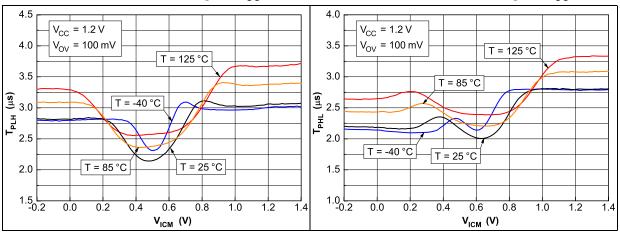


Figure 22. Propagation delay T_{PLH} vs. input common mode voltage at $V_{CC} = 5 \text{ V}$

Figure 23. Propagation delay T_{PHL} vs. input common mode voltage at $V_{CC} = 5 \text{ V}$

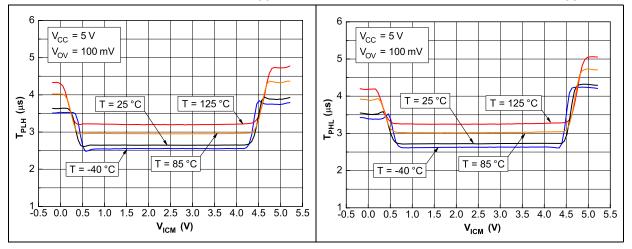
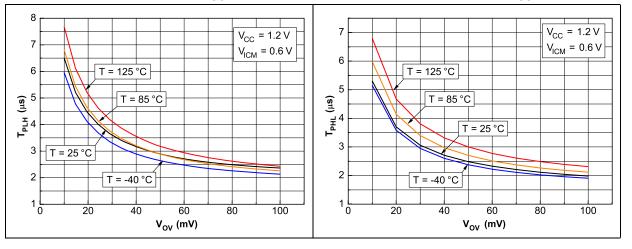



Figure 24. Propagation delay T_{PLH} vs. input signal overdrive at $V_{CC} = 1.2 \text{ V}$

Figure 25. Propagation delay T_{PHL} vs. input signal overdrive at V_{CC} = 1.2 V

TS882 Electrical characteristics

Figure 26. Propagation delay T_{PLH} vs. input signal overdrive at $V_{CC} = 5 \text{ V}$

Figure 27. Propagation delay T_{PHL} vs. input signal overdrive at $V_{CC} = 5 \text{ V}$

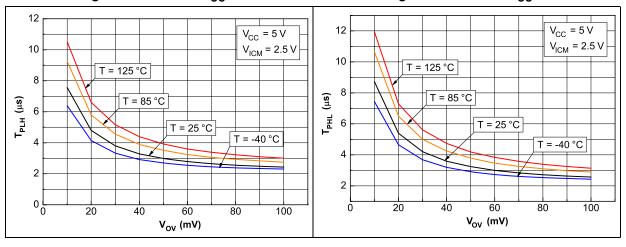


Figure 28. Propagation delay T_{PLH} vs. supply voltage for signal overdrive 10 mV

Figure 29. Propagation delay T_{PHL} vs. supply voltage for signal overdrive 10 mV

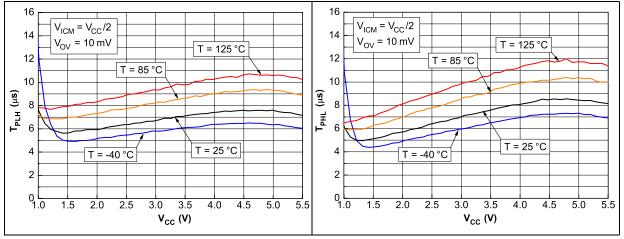
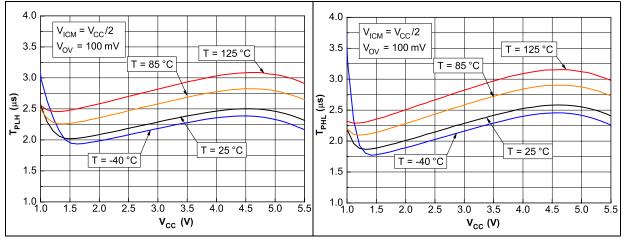
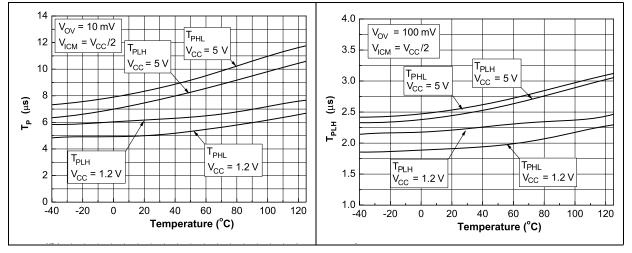



Figure 30. Propagation delay T_{PLH} vs. supply voltage for signal overdrive 100 mV

Figure 31. Propagation delay T_{PHL} vs. supply voltage for signal overdrive 100 mV



577

Doc ID 024119 Rev 1

Figure 32. Propagation delay vs. temperature for signal overdrive 10 mV

Figure 33. Propagation delay vs. temperature for signal overdrive 100 mV

TS882 Package information

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Package information TS882

3.1 SO8 package information

Figure 34. SO8 package outline

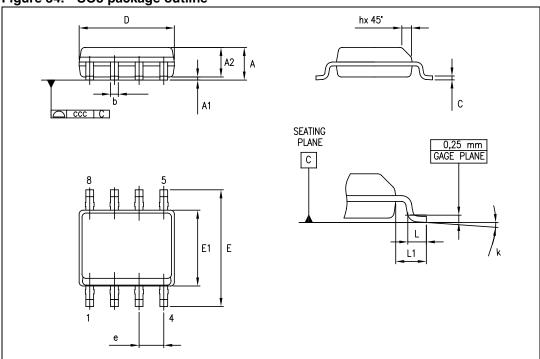


Table 6. SO8 package mechanical data

	Dimensions							
Symbol		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.75			0.069		
A1	0.10		0.25	0.004		0.010		
A2	1.25			0.049				
b	0.28		0.48	0.011		0.019		
С	0.17		0.23	0.007		0.010		
D	4.80	4.90	5.00	0.189	0.193	0.197		
Е	5.80	6.00	6.20	0.228	0.236	0.244		
E1	3.80	3.90	4.00	0.150	0.154	0.157		
е		1.27			0.050			
h	0.25		0.50	0.010		0.020		
L	0.40		1.27	0.016		0.050		
L1		1.04			0.040			
k	0°		8°	1°		8°		
CCC			0.10			0.004		

TS882 Package information

3.2 DFN8 2 x 2 mm package mechanical data

Figure 35. DFN8 2 x 2 mm package outline

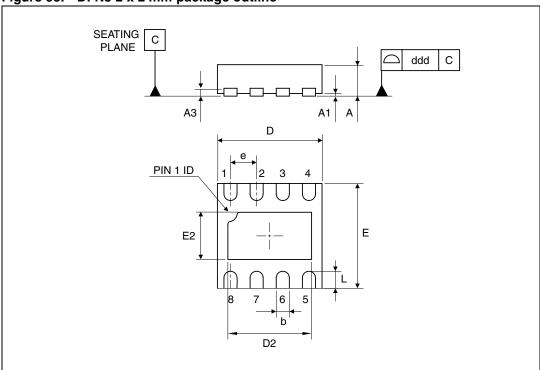


Table 7. DFN8 2 x 2 mm package mechanical data (pitch 0.5 mm)

	Dimensions							
Symbol		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	0.51	0.55	0.60	0.020	0.022	0.024		
A1			0.05			0.002		
A3		0.15			0.006			
b	0.18	0.25	0.30	0.007	0.010	0.012		
D	1.85	2.00	2.15	0.073	0.079	0.085		
D2	1.45	1.60	1.70	0.057	0.063	0.067		
Е	1.85	2.00	2.15	0.073	0.079	0.085		
E2	0.75	0.90	1.00	0.030	0.035	0.039		
е		0.50			0.020			
L			0.50			0.020		
ddd			0.08			0.003		

Package information TS882

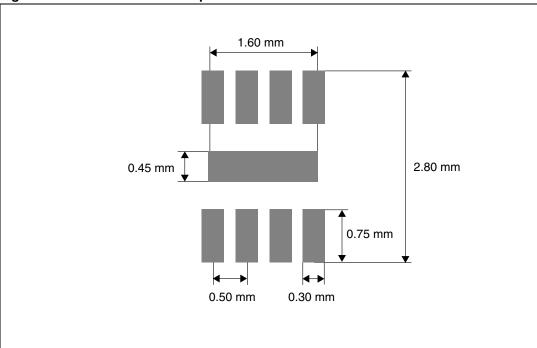


Figure 36. DFN8 2 x 2 mm footprint recommendation

TS882 Package information

3.3 MiniSO8 package information

Figure 37. MiniSO8 package outline

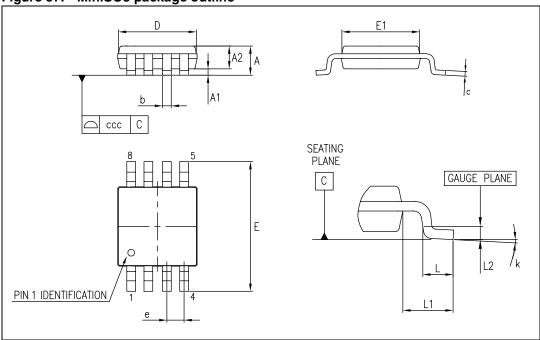


Table 8. MiniSO8 package mechanical data

	Dimensions							
Symbol		Millimeters		Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.10			0.043		
A1	0		0.15	0		0.006		
A2	0.75	0.85	0.95	0.030	0.033	0.037		
b	0.22		0.40	0.009		0.016		
С	0.08		0.23	0.003		0.009		
D	2.80	3.00	3.20	0.11	0.118	0.126		
Е	4.65	4.90	5.15	0.183	0.193	0.203		
E1	2.80	3.00	3.10	0.11	0.118	0.122		
е		0.65			0.026			
L	0.40	0.60	0.80	0.016	0.024	0.031		
L1		0.95			0.037			
L2		0.25			0.010			
k	0°		8°	0°		8°		
ccc			0.10			0.004		

577

Ordering information TS882

4 Ordering information

Table 9. Order codes

Order code	Temperature range	Package	Packaging	Marking
TS882IDT		SO8		S882I
TS882IST	-40 to +125 °C	MiniSO8	Tape and reel	K514
TS882IQ2T		DFN8 2 x 2 mm		K56

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
18-Jan-2013	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 024119 Rev 1