# **MOSFET** – N-Channel, POWERTRENCH<sup>®</sup>

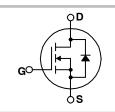
# 75 V, 80 A, 4.7 m $\Omega$

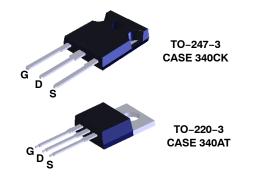
# FDH047AN08A0, FDP047AN08A0

#### Features

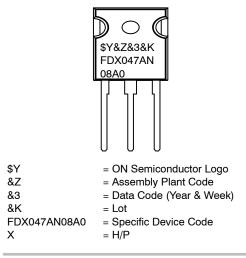
- $R_{DS(ON)} = 4.0 \text{ m}\Omega$  (Typ.),  $V_{GS} = 10 \text{ V}$ ,  $I_D = 80 \text{ A}$
- $Q_g$  (tot) = 92 nC (Typ.),  $V_{GS}$  = 10 V
- Low Miller Charge
- Low Q<sub>rr</sub> Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- This Device is Pb-Free and is RoHS Compliant

### Applications


- Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies




## **ON Semiconductor®**


#### www.onsemi.com

| V <sub>DSS</sub> | R <sub>DS(ON)</sub> MAX | I <sub>D</sub> MAX |
|------------------|-------------------------|--------------------|
| 75 V             | $4.7 \text{ m}\Omega$   | 80 A               |





### MARKING DIAGRAM



### ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

#### MOSFET MAXIMUM RATINGS (T<sub>C</sub> = 25°C, Unless otherwise noted)

| Symbol                            |                           | Value                                                                                                        | Unit        |      |  |
|-----------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------|-------------|------|--|
| V <sub>DSS</sub>                  | Drain to Source Voltage   |                                                                                                              | 75          | V    |  |
| V <sub>GS</sub>                   | Gate to Source Voltage    |                                                                                                              | ±20         | V    |  |
| Ι <sub>D</sub>                    | Drain Current             | – Continuous (T <sub>C</sub> < 144°C, V <sub>GS</sub> = 10 V)                                                | 80          | А    |  |
|                                   |                           | – Continuous (T <sub>C</sub> = 25°C, V <sub>GS</sub> = 10 V,<br>R <sub><math>\theta</math>JA</sub> = 62°C/W) | 15          |      |  |
| I <sub>D</sub>                    | Drain Current             | - Pulsed                                                                                                     | Figure 4    | А    |  |
| E <sub>AS</sub>                   | Single Pulse Avalanche Er | nergy (Note 1)                                                                                               | 475         | mJ   |  |
| PD                                | Power Dissipation         |                                                                                                              | 310         | W    |  |
|                                   | Derate Above 25°C         |                                                                                                              | 2.0         | W/°C |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Ter | nperature Range                                                                                              | –55 to +175 | °C   |  |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Starting  $T_J = 25^{\circ}C$ , L = 0.232 mH,  $I_{AS} = 64$  A.

#### **THERMAL CHARACTERISTICS**

| Symbol         | Parameter                                                     | Value | Unit |
|----------------|---------------------------------------------------------------|-------|------|
| $R_{\thetaJC}$ | Thermal Resistance, Junction to Case, Max. TO-220, TO-247     | 0.48  | °C/W |
| $R_{\thetaJA}$ | Thermal Resistance, Junction to Ambient, Max. TO-220 (Note 2) | 62    | °C/W |
| $R_{\thetaJA}$ | Thermal Resistance, Junction to Ambient, Max. TO-247 (Note 2) | 30    | °C/W |

2. Pulse Width = 100 s.

#### PACKAGE MARKING AND ORDERING INFORMATION

| Device Marking | Device       | Package | Reel Size | Tape Width | Quantity |
|----------------|--------------|---------|-----------|------------|----------|
| FDH047AN08A0   | FDH047AN08A0 | TO-247  | Tube      | N/A        | 30 Units |
| FDP047AN08A0   | FDP047AN08A0 | TO-220  | Tube      | N/A        | 50 Units |

### **ELECTRICAL CHARACTERISTICS** ( $T_C = 25^{\circ}C$ unless otherwise noted)

| Symbol            | Parameter                         | Test Conditions                                  | Min. | Тур. | Max. | Unit |  |  |
|-------------------|-----------------------------------|--------------------------------------------------|------|------|------|------|--|--|
| OFF CHARACT       | DFF CHARACTERISTICS               |                                                  |      |      |      |      |  |  |
| B <sub>VDSS</sub> | Drain to Source Breakdown Voltage | $I_D = 250 \ \mu\text{A}, \ V_{GS} = 0 \ V$      | 75   |      |      | V    |  |  |
| I <sub>DSS</sub>  | Zero Gate Voltage Drain Current   | $V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$    |      |      | 1    | μA   |  |  |
|                   |                                   | $V_{DS}$ = 60 V, $V_{GS}$ = 0 V, $T_{C}$ = 150°C |      |      | 250  |      |  |  |
| I <sub>GSS</sub>  | Gate to Source Leakage Current    | $V_{GS} = \pm 20 \text{ V}$                      |      |      | ±100 | nA   |  |  |

#### **ON CHARACTERISTICS**

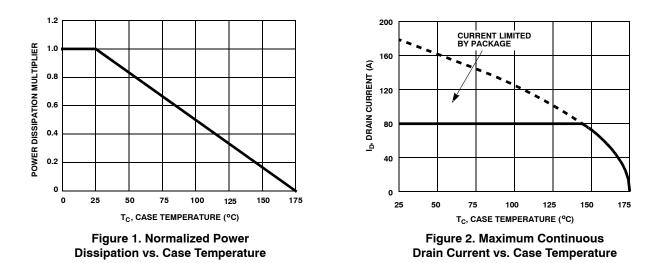
| V <sub>GS(TH)</sub> | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}$ , $I_D = 250 \ \mu A$               | 2.0 |        | 4.0    | V |
|---------------------|----------------------------------|-------------------------------------------------------|-----|--------|--------|---|
| R <sub>DS(ON)</sub> | Drain to Source On Resistance    | $I_D = 80 \text{ A}, V_{GS} = 10 \text{ V}$           |     | 0.0040 | 0.0047 | Ω |
|                     |                                  | $I_D = 37 \text{ V}, \text{ V}_{GS} = 6 \text{ V}$    |     | 0.0058 | 0.0087 |   |
|                     |                                  | $I_D$ = 80 A, $V_{GS}$ = 10 V, $T_j$ = 175 $^\circ C$ |     | 0.0082 | 0.011  |   |

#### DYNAMIC CHARACTERISTICS

| C <sub>ISS</sub>    | Input Capacitance                | $V_{DS}$ = 25 V, $V_{GS}$ = 0 V, f = 1 MHz                                            | 6600 |     | pF |
|---------------------|----------------------------------|---------------------------------------------------------------------------------------|------|-----|----|
| C <sub>OSS</sub>    | Output Capacitance               |                                                                                       | 1000 |     | pF |
| C <sub>RSS</sub>    | Reverse Transfer Capacitance     |                                                                                       | 240  |     | pF |
| Q <sub>g(TOT)</sub> | Total Gate Charge at 10 V        | $V_{GS} = 0 V \text{ to } 10 V,$<br>$V_{DD} = 40 V, I_D = 80 A, I_g = 1.0 \text{ mA}$ | 92   | 138 | nC |
| Q <sub>g(TH)</sub>  | Threshold Gate Charge            | $V_{GS} = 0 V \text{ to } 2 V,$<br>$V_{DD} = 40 V, I_D = 80 A, I_g = 1.0 \text{ mA}$  | 11   | 17  | nC |
| Q <sub>gs</sub>     | Gate to Source Gate Charge       | $V_{DD} = 40 \text{ V}, \text{ I}_{D} = 80 \text{ A}, \text{ I}_{g} = 1.0 \text{ mA}$ | 27   |     | nC |
| Q <sub>gs2</sub>    | Gate Charge Threshold to Plateau | ]                                                                                     | 16   |     | nC |
| Q <sub>gd</sub>     | Gate to Drain "Miller" Charge    |                                                                                       | 21   |     | nC |

#### SWITCHING CHARACTERISTICS (V<sub>GS</sub> = 10 V)

| t <sub>ON</sub>     | Turn-On Time        | $V_{DD}$ = 40 V, I <sub>D</sub> = 80 A,<br>V <sub>GS</sub> = 10 V, R <sub>GS</sub> = 3.3 Ω |    | 160 | ns |
|---------------------|---------------------|--------------------------------------------------------------------------------------------|----|-----|----|
| t <sub>d(ON)</sub>  | Turn-On Delay Time  | $V_{GS} = 10$ V, $H_{GS} = 3.3$ S2                                                         | 18 |     | ns |
| t <sub>r</sub>      | Rise Time           |                                                                                            | 88 |     | ns |
| t <sub>d(OFF)</sub> | Turn-Off Delay Time |                                                                                            | 40 |     | ns |
| t <sub>f</sub>      | Fall Time           |                                                                                            | 45 |     | ns |
| t <sub>OFF</sub>    | Turn-Off Time       |                                                                                            |    | 128 | ns |


#### DRAIN-SOURCE DIODE CHARACTERISTICS

| V <sub>SD</sub> | Source to Drain Diode Voltage | I <sub>SD</sub> = 80 A                                 |  | 1.25 | V  |
|-----------------|-------------------------------|--------------------------------------------------------|--|------|----|
|                 |                               | I <sub>SD</sub> = 40 A                                 |  | 1    | V  |
| t <sub>rr</sub> | Reverse Recovery Time         | $I_{SD}$ = 75 A, dI <sub>SD</sub> /dt = 100 A/µs       |  | 53   | ns |
| Q <sub>RR</sub> | Reverse Recovered Charge      | $I_{SD}$ = 75 A, dI <sub>SD</sub> /dt = 100 A/ $\mu$ s |  | 54   | nC |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### **TYPICAL CHARACTERISTICS**

(T<sub>C</sub> =  $25^{\circ}$ C unless otherwise noted)



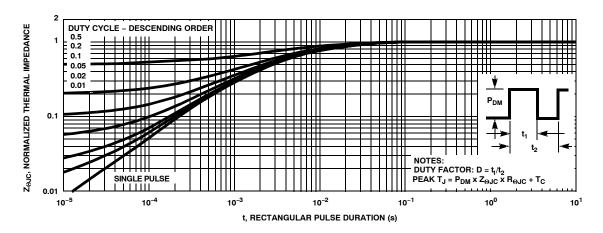



Figure 3. Normalized Maximum Transient Thermal Impedance



Figure 4. Peak Current Capability

#### TYPICAL CHARACTERISTICS (Continued)

 $(T_C = 25^{\circ}C \text{ unless otherwise noted})$ 

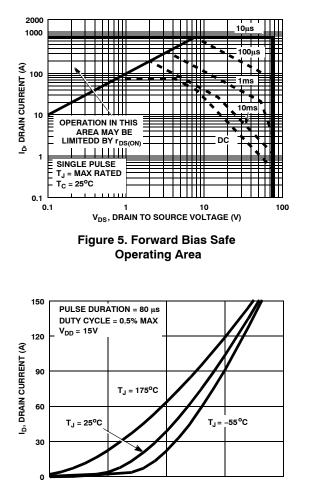



Figure 7. Transfer Characteristics

4.5 5.0 5.5 V<sub>GS</sub>, GATE TO SOURCE VOLTAGE (V)

4.0

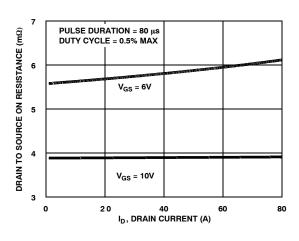



Figure 9. Drain to Source On Resistance vs. Drain Current

NOTE: Refer to ON Semiconductor Application Notes AN-7514 and AN-7515

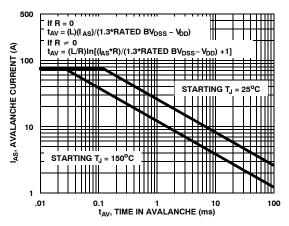
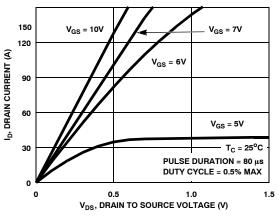
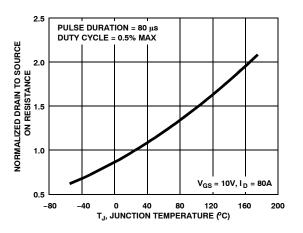
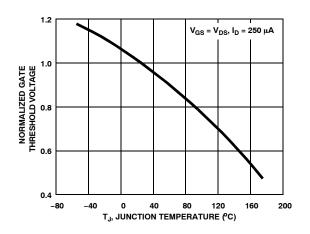




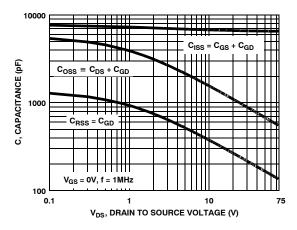

Figure 6. Unclamped Inductive Switching Capability

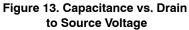


**Figure 8. Saturation Characteristics** 







6.0


#### TYPICAL CHARACTERISTICS (Continued)

(T<sub>C</sub> = 25°C unless otherwise noted)









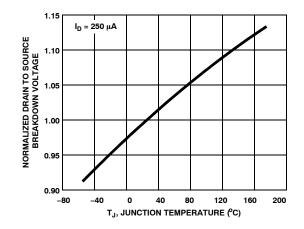
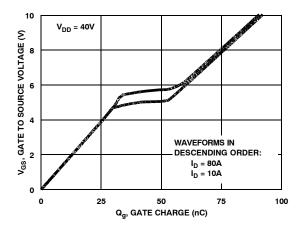




Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature





### **TEST CIRCUITS AND WAVEFORMS**

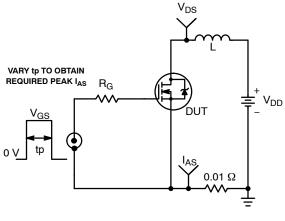



Figure 15. Unclamped Energy Test Circuit

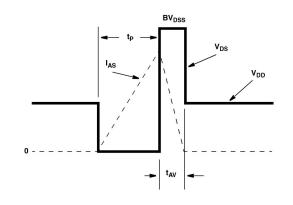



Figure 16. Unclamped Energy Waveforms

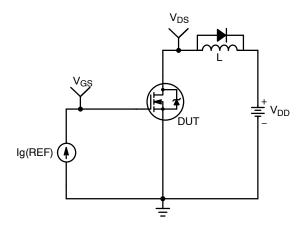



Figure 17. Gate Charge Test Circuit

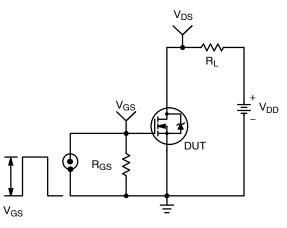



Figure 19. Switching Time Test Circuit

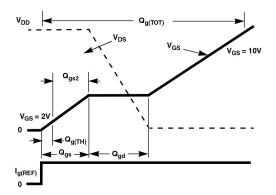
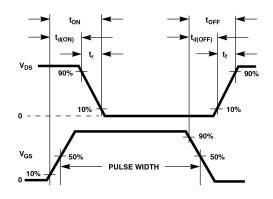




Figure 18. Gate Charge Waveforms





#### **PSPICE Electrical Model**

.SUBCKT FDP047AN08A0 2 1 3 ; rev March 2002 CA 12 8 1.5e–9 CB 15 14 1.5e–9 CIN 6 8 6.4e–9

DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD

EBREAK 11 7 17 18 82.3 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1

IT 8 17 1

LDRAIN 2 5 1e-9 LGATE 1 9 4.81e-9 LSOURCE 3 7 4.63e-9

MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD

RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9e-4 RGATE 9 20 1.36 RLDRAIN 2 5 10 RLGATE 1 9 48.1 RLSOURCE 3 7 46.3 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 2.3e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1

S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD

VBAT 22 19 DC 1

ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))\*(PWR(V(5,51)/(1e-6\*250),10))}

.MODEL DBODYMOD D (IS = 2.4e-11 N = 1.04 RS = 1.76e-3 TRS1 = 2.7e-3 TRS2 = 2e-7 XTI=3.9 CJO = 4.35e-9 TT = 1e-8 M = 5.4e-1) .MODEL DBREAKMOD D (RS = 1.5e-1 TRS1 = 1e-3 TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 1.35e-9 IS = 1e-30 N = 10 M = 0.53) .MODEL MMEDMOD NMOS (VTO = 3.7 KP = 9 IS =1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.36) .MODEL MSTROMOD NMOS (VTO = 4.4 KP = 250 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 3.05 KP = 0.03 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.36e1 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = -9e-7) .MODEL RDRAINMOD RES (TC1 = 1.9e-2 TC2 = 4e-5) .MODEL RSLCMOD RES (TC1 = 1.3e-3 TC2 = 1e-5) .MODEL RSUCCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)

.MODEL RVTHRESMOD RES (TC1 = -6e-3 TC2 = -1.9e-5) .MODEL RVTEMPMOD RES (TC1 = -2.4e-3 TC2 = 1e-6)

.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.0 VOFF = -1.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF = -4.0) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.0 VOFF = 0.5) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF = -1.0)

.ENDS

NOTE: For further discussion of the PSPICE model, consult <u>A New PSPICE Sub-Circuit for the Power MOSFET</u> <u>Featuring Global Temperature Options</u>; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

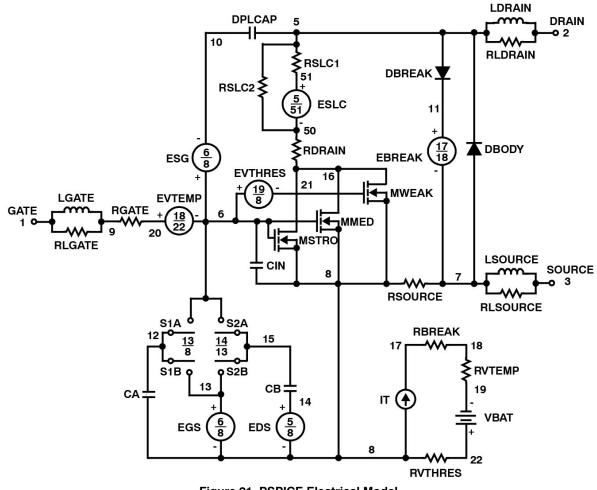
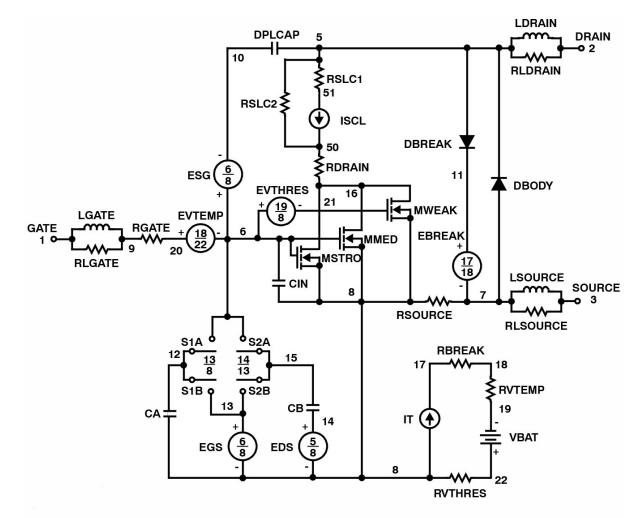



Figure 21. PSPICE Electrical Model


#### **SABER Electrical Model**

```
REV March 2002
template FDP047AN08A0 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl = 2.4e-11, n1 = 1.04, rs = 1.76e-3, trs1 = 2.7e-3, trs2 = 2e-7, xti = 3.9, cjo = 4.35e-9, tt = 1e-8,
m = 5.4e - 1)
dp..model dbreakmod = (rs = 1.5e-1, trs1 = 1e-3, trs2 = -8.9e-6)
dp..model dplcapmod = (c_{i0} = 1.35e-9, isl = 10e-30, nl = 10, m = 0.53)
m..model mmedmod = (type=_n, vto = 3.7, kp = 9, is =1e-30, tox=1)
m..model mstrongmod = (type= n, vto = 4.4, kp = 250, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 3.05, kp = 0.03, is = 1e-30, tox = 1, rs=0.1)
sw vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.0, voff = -1.5)
sw vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.5, voff = -4.0)
sw vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5)
sw vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0)
c.ca n12 n8 = 1.5e-9
c.cb n15 n14 = 1.5e-9
c.cin n6 n8 = 6.4e-9
dp.dbody n7 n5 = model = dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
1.1 drain n2 n5 = 1e-9
1.1gate n1 n9 = 4.81e-9
1.1source n3 n7 = 4.63e-9
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -9e-7
res.rdrain n50 n16 = 9e-4, tc1 = 1.9e-2, tc2 = 4e-5
res.rgate n9 n20 = 1.36
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 48.1
res.rlsource n3 n7 = 46.3
res.rslc1 n5 n51= 1e-6, tc1 = 1e-3, tc2 =1e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 2.3e-3, tc1 = 1e-3, tc2 = 1e-6
res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 1e-6
res.rvthres n22 n8 = 1, tc1 = -6e-3, tc2 = -1.9e-5
spe.ebreak n11 n7 n17 n18 = 82.3
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
```

```
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
```

```
v.vbat n22 n19 = dc=1
```

```
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51)))))*((abs(v(n5,n51)*1e6/250))** 10))
}
}
```





#### SPICE Thermal Model

REV 23 March 2002

#### FDP047AN08A0T

CTHERM1 th 6 6.45e-3 CTHERM2 6 5 3e-2 CTHERM3 5 4 1.4e-2 CTHERM4 4 3 1.65e-2 CTHERM5 3 2 4.85e-2 CTHERM6 2 tl 1e-1

RTHERM1 th 6 3.24e-3 RTHERM2 6 5 8.08e-3 RTHERM3 5 4 2.28e-2 RTHERM4 4 3 1e-1 RTHERM5 3 2 1.1e-1 RTHERM6 2 tl 1.4e-1

#### **SABER Thermal Model**

SABER thermal model FDP047AN08A0T template thermal model th tl thermal\_c th, tl { ctherm.ctherm1 th 6 = 6.45e-3ctherm.ctherm2 65 = 3e-2ctherm.ctherm354 = 1.4e-2ctherm.ctherm4 4 3 = 1.65e-2ctherm.ctherm5 32 = 4.85e-2ctherm.ctherm6 2 tl = 1e-1rtherm.rtherm1 th 6 = 3.24e - 3rtherm.rtherm2 6 5 = 8.08e-3rtherm.rtherm3 5 4 = 2.28e-2rtherm.rtherm4 4 3 = 1e-1rtherm.rtherm5 3 2 = 1.1e - 1rtherm.rtherm62tl = 1.4e-1}

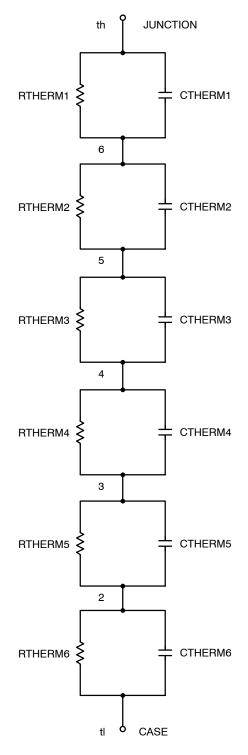
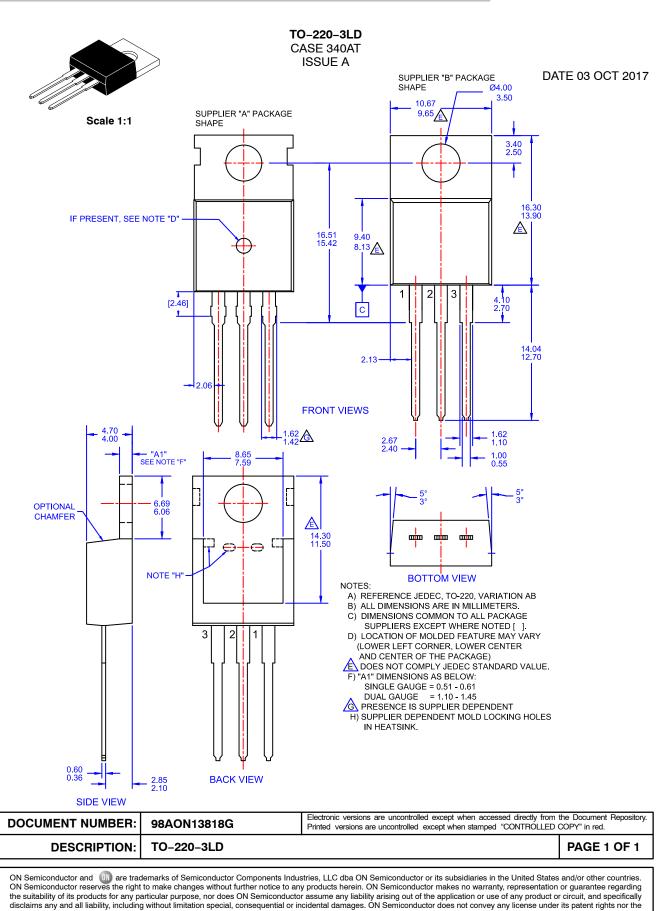
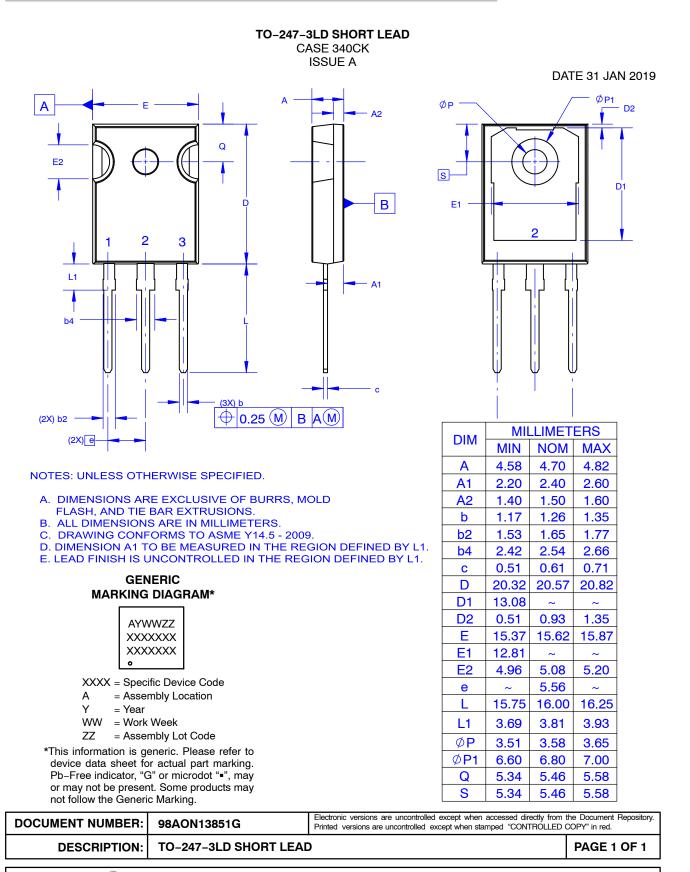




Figure 23. Thermal Model


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.





rights of others.





ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Downloaded from Arrow.com.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

 $\Diamond$