

BYT 12PI-1000

FAST RECOVERY RECTIFIER DIODE

- VERY HIGH REVERSE VOLTAGE CAPABILITY
- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING
- INSULATED: Capacitance 7pF

SUITABLE APPLICATIONS

- FREE WHEELING DIODE IN CONVERTERS AND MOTOR CONTROL CIRCUITS
- RECTIFIER IN S.M.P.S.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V_{RRM}	Repetitive Peak Reverse Voltage	1000	V	
V_{RSM}	Non Repetitive Peak Reverse Voltage	1000	V	
I _{FRM}	Repetive Peak Forward Current	150	Α	
I _{F (RMS)}	RMS Forward Current	25	Α	
I _{F (AV)}	Average Forward Current	$T_c = 50^{\circ}C$ $\delta = 0.5$	12	А
I _{FSM}	Surge For Repetitive Forward Current $t_p = 10 \text{ms}$ Sinusoidal P Fower Dissipation $T_c = 50^{\circ}\text{C}$		75	А
Р			25	W
T _i g	Storage and Junction Temperature Range	- 40 to + 150 - 40 to + 150	°C	

THERMAL RESISTANCE

Symbol	Test Conditions	Value	Unit
R _{th (j - c)}	Junction-case	4	°C/W

October 1999 Ed: 1A 1/5

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Synbol	Tes	Min.	Тур.	Max.	Unit	
I _R	T _j = 25°C	$V_R = V_{RRM}$			50	μΑ
	T _j = 100°C				2.5	mA
V _F	T _j = 25°C	I _F = 12A			1.9	V
	T _j = 100°C				1.8	

RECOVERY CHARACTERISTICS

Symbol	Test Conditions					Тур.	Max.	Unit
t _{rr}	T _j = 25°C	I _F = 1A	$di_F/dt = -15A/\mu s$	$V_R = 30V$			155	ns
		I _F = 0.5A	I _R = 1A	$I_{rr} = 0.25A$			65	

TURN-OFF SWITCHING CHARACTERISTICS (Without Series Inductance)

Symbol	Test Conditions			Тур.	Max.	Unit
t _{IRM}	$di_F/dt = -50A/\mu s$	V _{CC} = 200 V I _F = 12A			200	ns
	$di_F/dt = -100A/\mu s$	$L_p \le 0.05 \mu H$ $T_j = 100^{\circ}C$ See figure 11		120		
I _{RM}	$di_F/dt = -50A/\mu s$				7.8	Α
	di _F /dt = - 100A/μs			9		

TURN-OFF OVERVOLTAGE COEFFICIENT (With Series Inductance)

Symbol		Min.	Тур.	Max.	Unit		
$C = \frac{V_{RP}}{V_{CC}}$	$T_j = 100^{\circ}C$ $di_F/dt = -12A/\mu s$	$V_{CC} = 200V$ $L_p = 12\mu H$	I _F = I _{F (AV)} See figure 12			4.5	

To evaluate the conduction losses use the following equations:

 $V_F = 1.47 + 0.026 I_F$ $P = 1.47 \times IF_{(AV)} + 0.026 I_F^2_{(RMS)}$

Figure 1. Low frequency power losses versus average current

Figure 2. Peak current versus form factor

2/5

Downloaded from Arrow.com.

Figure 3. Non repetitive peak surge current versus overload duration

Figure 5. Voltage drop versus forward current

Figure 7. Recovery time versus di_F/d_t-

Figure 4. Thermal impedance versus pulse width

Figure 6. Recovery charge versus di_F/d_t-

Figure 8. Peak reverse current versus dif/dt-

3/5

Figure 9. Peak forward voltage versus di_F/d_{t-}

Figure 11. Turn-off switching characteristics (without series inductance).

Figure 12. Turn-off switching characteristics (with series inductance)

4/5

PACKAGE MECHANICAL DATA:

Isolated TO220AC Plastic

REF.	DIMENSIONS						
	Millimeters				Inches	1	
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	15.20		15.90	0.598		0.625	
a1		3.75			0.147		
a2	13.00		14.00	0.511		0.551	
В	10.00		10.40	0.393		0.409	
b1	0.61		0.88	0.024		0.034	
b2	1.23		1.32	0.048		0.051	
С	4.40		4.60	0.173		0.181	
c1	0.49		0.70	0.019		0.027	
c2	2.40		2.72	0.094		0.107	
е	4.80		5.40	0.189		0.212	
F	6.20		6.60	0.244		0.259	
I	3.75		3.85	0.147		0.151	
14	15.80	16.40	16.80	0.622	0.646	0.661	
L	2.65		2.95	0.104		0.116	
12	1.14		1.70	0.044		0.066	
М		2.60			0.102		

■ Marking: type number

■ Cooling method: by conduction (method C)

■ Weight: 1.86g

Recommended torque value : 80cm. NMaximum torque value : 100cm. N

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics © 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

