BYT 12PI-1000

FAST RECOVERY RECTIFIER DIODE

- VERY HIGH REVERSE VOLTAGE CAPABILITY
- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING
- INSULATED: Capacitance 7pF

SUITABLE APPLICATIONS

- FREE WHEELING DIODE IN CONVERTERS AND MOTOR CONTROL CIRCUITS
- RECTIFIER IN S.M.P.S.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
$V_{\text {RRM }}$	Repetitive Peak Reverse Voltage		1000	V
$\mathrm{V}_{\text {RSM }}$	Non Repetitive Peak Reverse Voltage		1000	V
$\mathrm{I}_{\text {FRM }}$	Repetive Peak Forward Current	$\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$	150	A
$\mathrm{IF}_{\mathrm{F} \text { (RMS) }}$	RMS Forward Current		25	A
$\mathrm{IF}_{\mathrm{F}}(\mathrm{AV})$	Average Forward Uurivit	$\begin{aligned} & \mathrm{T}_{\mathrm{c}}=50^{\circ} \mathrm{C} \\ & \delta=0.5 \end{aligned}$	12	A
$\mathrm{I}_{\text {FSM }}$	Surge, Repetitive Forward Current	$\begin{aligned} & t_{p}=10 \mathrm{~ms} \\ & \text { Sinusoidal } \end{aligned}$	75	A
P	- ower Dissipation	$\mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	25	W
Tig	Storage and Junction Temperature Range		$\begin{aligned} & -40 \text { to }+150 \\ & -40 \text { to }+150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Symbol	Test Conditions	Value	Unit
$\mathrm{R}_{\text {th }(\mathrm{j}-\mathrm{c})}$	Junction-case	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Synbol	Test Conditions		Min.	Typ.	Max.	Unit
I_{R}	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}$			50	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$				2.5	mA
V_{F}	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$I_{F}=12 A$			1.9	V
	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$				1.8	

RECOVERY CHARACTERISTICS

Symbol	Test Conditions				Min.	Typ.	Max.	Unit
$\mathrm{trrr}^{\text {r }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$	$\mathrm{di}_{\mathrm{F}} / \mathrm{dt}=-15 \mathrm{~A} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$			155	ns
		$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}$	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~A}$	$\mathrm{I}_{\mathrm{rr}}=0.25 \mathrm{~A}$			65	

TURN-OFF SWITCHING CHARACTERISTICS (Without Series Inductance)

Symbol	Test Conditions		Min.	Typ.	Max.	Unit
tiRM	$\mathrm{di}_{\mathrm{F}} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=200 \mathrm{~V} & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~A} \\ \mathrm{~L}_{\mathrm{p}} \leq 0.05 \mu \mathrm{H} & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{array}$ See figure 11			200	ns
	$\mathrm{diF}_{\mathrm{F}} / \mathrm{dt}=-100 \mathrm{~A} / \mu \mathrm{s}$			120		
I_{RM}	$\mathrm{diF} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s}$				7.8	A
	$\mathrm{diF}_{\mathrm{F}} / \mathrm{dt}=-100 \mathrm{~A} / \mu \mathrm{s}$			9		

TURN-OFF OVERVOLTAGE COEFFICIENT (With Series Inductance)

Symbol	Test Conditions	Min.	Typ.	Max.	Unit	
$C=\frac{V_{R P}}{V_{C C}}$	$T_{j}=100^{\circ} \mathrm{C}$ dif $_{F} / \mathrm{dt}=-12 \mathrm{~A} / \mu \mathrm{s}$	$\mathrm{V}_{C C}=200 \mathrm{~V}$ $\mathrm{~L}_{p}=12 \mu \mathrm{H}$$\quad$$\mathrm{I}_{F}=\mathrm{I}_{\mathrm{F}}(\mathrm{AV})$ See figure 12			4.5	

To evaluate the conduction losses use the following equations:

$$
\mathrm{V}_{\mathrm{F}}=1.47+0.026 \mathrm{I}_{\mathrm{F}} \quad \mathrm{P}=1.47 \times \mathrm{IF}_{(\mathrm{AV})}+0.026 \mathrm{IF}^{2}(\mathrm{RMS})
$$

Figure 1. Low frequency power losses versus average current

Figure 2. Peak current versus form factor

Figure 3. Non repetitive peak surge current versus overload duration

Figure 5. Voltage drop versus forward current

Figure 7. Recovery time versus $\mathrm{di}_{\mathrm{F}} / \mathbf{d}_{\mathrm{t}}-$

Figure 4. Thermal impedance versus pulse width

Figure 6. Recovery charge versus $\mathbf{d i F} / \mathbf{d t}-$

Figure 8. Peak reverse current versus $\mathrm{di}_{\mathrm{F}} / \mathbf{d}_{\mathrm{t}}$

Figure 9. Peak forward voltage versus diF/dt-

Figure 11. Turn-off switching characteristics (without series inductance).

Figure 12. Turn-off switching characteristics (with series inductance)

PACKAGE MECHANICAL DATA :
Isolated TO220AC Plastic

REF.	DIMENSIONS					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	15.20		15.90	0.598		0.625
a1		3.75			0.147	
a2	13.00		14.00	0.511		0.551
B	10.00		10.40	0.393		0.409
b1	0.61		0.88	0.024		0.034
b2	1.23		1.32	0.048		0.051
C	4.40		4.60	0.173		0.181
c1	0.49		0.70	0.019		0.027
c2	2.40		2.72	0.094		0.107
e	4.80		5.40	0.189		0.212
F	6.20		6.60	0.244		0.259
I	3.75		3.85	0.147		0.151
I4	15.80	16.40	16.80	0.622	0.646	0.661
L	2.65		2.95	0.104		0.116
I2	1.14		1.70	0.044		0.066
M		2.60			0.102	

Marking: type number

- Cooling method: by conduction (method C)
- Weight: 1.86g
- Recommended torque value : 80 cm . N
- Maximum torque value : 100 cm . N

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics © 1999 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

