

FERD30S50

Field effect rectifier

Datasheet – production data

Features

- CMOS proprietary process
- Stable leakage current over reverse voltage
- Low forward voltage drop
- High frequency operation

Description

This single rectifier is based on a proprietary technology, enabling to achieve the best in class V_F/I_R trade-off for a given silicon surface.

Packaged in PowerFLAT[™] 5x6, this device is intended to be used in rectification and freewheeling operations in switch-mode power supplies.

PowerFLAT 5x6 FERD30S50DJF	

Table 1. Device summary

Symbol	Value
I _{F(AV)}	30 A
V _{RRM}	50 V
T _{j (max)}	+150 °C
V _F (typ)	0.33 V

TM: PowerFLAT is a trademark of STMicroelectronics

Doc ID024715 Rev 2

www.st.com

This is information on a product in full production.

1 Characteristics

Table 2. Absolute ratings (limiting values, at 25 °C, unless otherwise specified, anode terminals short-circuited)

Paramete	Value	Unit	
Repetitive peak reverse voltage	50	V	
Forward rms current		45	А
Average forward current, $\delta = 0.5$ $T_c = 95 \text{ °C}$		30	А
Surge non repetitive forward current	180	А	
Storage temperature range	-65 to + 175	°C	
Maximum operating junction temperature	150	°C	
	ParameterRepetitive peak reverse voltageForward rms currentAverage forward current, $\delta = 0.5$ Surge non repetitive forward currentStorage temperature rangeMaximum operating junction temperature	ParameterRepetitive peak reverse voltageForward rms currentAverage forward current, $\delta = 0.5$ $T_c = 95 \ ^{\circ}C$ Surge non repetitive forward current $t_p = 10 \ ms \ sinusoidal$ Storage temperature rangeMaximum operating junction temperature	ParameterValueRepetitive peak reverse voltage50Forward rms current45Average forward current, $\delta = 0.5$ $T_c = 95 \ ^{\circ}C$ 30Surge non repetitive forward current $t_p = 10 \ ms \ sinus \ sinu$

1. $\frac{dPtot}{dT_j} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

Table 3. Thermal resistance

Symbol	Parameter	Value (max)	Unit
R _{th(j-c)}	Junction to case	2.6	°C/W

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
	Reverse leakage current	T _j = 125 °C	V _R = 35 V		25		
$I_R^{(1)}$		T _j = 25 °C	V - V			0.8	mA
		T _j = 125 °C	$v_{R} = v_{RRM}$		30	60	
V _F ⁽²⁾	Forward voltage drop	T _j = 25 °C	I _F = 5 A		0.32		
		T _j = 125 °C			0.25		
		T _j = 25 °C	I _F = 10 A		0.37		V
		T _j = 125 °C			0.33		v
		T _j = 25 °C	- I _F = 15 A		0.415	0.47	
		T _j = 125 °C			0.39	0.45	

Table 4. Static electrical characteristics (anode terminals short-circuited)

1. Pulse test: $t_p = 5 \text{ ms}, \delta < 2\%$

2. Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$

To evaluate the conduction losses use the following equation:

$$P = 0.205 \text{ x } I_{F(AV)} + 0.017 I_{F}^{2}_{(RMS)}$$

Figure 1. Average forward power dissipation versus average forward current

Figure 3. Relative variation of thermal impedance junction to case versus pulse duration

Figure 5. Junction capacitance versus reverse voltage applied (typical values)

Figure 2. Average forward current versus ambient temperature ($\delta = 0.5$)

Figure 4. Reverse leakage current versus reverse voltage applied (typical values)

Figure 6. Forward voltage drop versus forward current (typical values)

10000

1000

100

Figure 7. Thermal resistance junction to ambient versus copper surface under tab (typical values)

4/8

Doc ID024715 Rev 2

2 Package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK[®] is an ST trademark.

Figure 8. PowerFLAT-8L dimensions (definitions)

Table 5. PowerFLAT-8L dimensions (values)

			Dimen	sions		
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80		1.00	0.031		0.039
A1	0.02		0.05	0.001		0.002
A2		0.25			0.010	
b	0.30		0.50	0.012		0.020
D		5.20			0.205	
D2	4.11		4.31	0.162		0.170
е		1.27			0.050	
E		6.15			0.242	
E2	3.50		3.70	0.138		0.146
L	0.50		0.80	0.020		0.031
К	1.275		1.575	0.050		0.062

Doc ID024715 Rev 2

Figure 9. Footprint (dimensions in mm)

3 Ordering information

Table	6.	Ordering	information
Tuble	ν.	oracing	mormation

Order code	Marking	Package	Weight	Base qty	Delivery mode
FERD30S50DJF	FD30S50	PowerFLAT 5x6	95 mg	3000	Tape and reel

4 Revision history

Table 7.	Document	revision	historv
1001011	Dooumon	101101011	

Date	Revision	Changes
28-Jun-2013	1	Initial release.
18-Nov-2013	2	Updated <i>Table 1</i> and <i>Table 4</i> . Inserted new <i>Figure 1</i> , <i>Figure 2</i> , <i>Figure 4</i> and <i>Figure 6</i> . Product name changed from FERD30S50DJF to FERD30S50.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID024715 Rev 2

