Single-Phase Voltage Regulator with SVID

Product Preview

NCP3293
High Efficiency, Integrated Power MOSFETs
The NCP3293, a single-phase synchronous buck regulator with SVID, integrates power MOSFETs to provide a high-efficiency and compact-footprint power management solution. The NCP3293 is able to deliver up to 20 A TDC output current on a wide output voltage range. Operating in high switching frequency up to 1 MHz allows employing small size inductors and capacitors while maintaining high efficiency due to integrated solution with high performance power MOSFETs. It provides differential voltage sense and comprehensive protections.

Features

- Vin = 4.5 V ~ 18 V
- Vout $=0.5 \mathrm{~V} \sim 2.0 \mathrm{~V}$ to Support Intel VR13 and VR13.HC SVID
- Integrated Power MOSFETs
- Up to 20 A Continuous Output Current and 30 A Pulse Current
- Integrated 5 V LDO or External 5 V Supply
- Enable with Programmable Vin UVLO
- 600 k / 800 k / 1000 kHz Switching Frequency
- Selectable Forced CCM and Auto DCM/CCM
- 16 Selectable Boot Voltages
- 16 Selectable SVID Addresses
- Output Discharge in Shutdown
- Programmable Current Limit
- Latch-Off Over-Voltage and Under-Voltage Protection
- Recoverable Thermal Shutdown Protection
- PQFN37, $5 \times 6 \mathrm{~mm}, 0.5 \mathrm{~mm}$ Pitch Package
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Point of Load
- Computing Applications
- Telecom and Networking
- Server and Storage System

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NCP3293MNTXG	PQFN37 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. Typical Application Circuit with Single Input Power Supply (LDO Enabled)

Figure 2. Typical Application Circuit with External 5 V Supply for VCC (LDO Disabled)

NCP3293

Figure 3. Functional Block Diagram

Table 1. PIN DESCRIPTION

Pin	Name	Type	Description
1	Ilim	Analog Output	Current Limit. A resistor between this pin and AGND to program current limit.
2	PGood	Logic Output	Power GOOD. Open-drain output. Provides a logic high valid power good output signal, indicating the regulator's output is in regulation window.
3	VIN	Power Input	Power Supply Input of LDO. Power supply input pin of internal 5 V LDO. A $1.0 \mu \mathrm{~F}$ or more ceramic capacitors must bypass this input to power ground. The capacitors should be placed as close as possible to this pin. A direct short from this pin to VDRV (pin 5) disables the internal LDO for applications with an external 5 V supply as power of VDRV and VCC.
4	VCC	Analog Power	Supply Voltage Input of Controller. A $2.2 \mu \mathrm{~F}$ or larger ceramic capacitor bypasses this input to GND. This capacitor should be placed as close as possible to this pin.
5	VDRV	Analog Power	Output of LDO and Supply Voltage Input of Gate Drivers. Output of integrated 5.0 V LDO and power supply input pin of gate drivers. A $4.7 \mu \mathrm{~F} / 25 \mathrm{~V}$ or larger ceramic capacitor bypasses this input to PGND. This capacitor should be placed as close as possible to this pin.
6	GL	Analog Output	Gate of Low-Side MOSFET. Directly connected with the gate of the low-side power MOSFET.
7~10,19	PGND	Power Ground	Power Ground. These pins are the power supply ground pins of the device, which are connected to source of internal low-side power MOSFET. Must be connected to the system ground.
11~18	SW	Power Bidirectional	Switch Node. Pins to be connected to an external inductor. These pins are interconnection between internal high-side MOSFET and low-side MOSFET.
20~24	PVIN	Power Input	Power Supply Input. These pins are the power supply input pins of the device, which are connected to drain of internal high-side power MOSFET. A $22 \mu \mathrm{~F}$ or more ceramic capacitors must bypass this input to PGND. The capacitors should be placed as close as possible to these pins.
25	PHASE	Power Return	Phase Node. Provides a return path for integrated high-side gate driver. It is internally connected to source of high-side MOSFET.
26	BST	Power Bidirectional	Bootstrap. Provides bootstrap voltage for high-side gate driver. A $0.22 \mu \mathrm{~F} / 25 \mathrm{~V}$ ceramic capacitor is required from this pin to PHASE (pin 25).
27	EN	Logic Input	Enable. Logic high enables controller while logic low disables controller. Input supply UVLO can be programmed at this pin.
28	Vboot	Analog Input	Boot-Up Voltage. A resistor from this pin to ground programs boot-up voltage.
29	Addr	Analog Input	SVID Address. A resistor from this pin to ground programs SVID address.
30	FB	Analog Input	Feedback. Inverting input to error amplifier.
31	Vsns-	Analog Input	Voltage Sense Negative Input. Connect this pin to remote voltage negative sense point.
32	AGND	Analog Ground	Analog Ground. Ground of controller. Must be connected to the system ground.
33	Data	Logic Bidirectional	Serial Data IO Port. Data port of SVID interface.
34	Clk	Logic Input	Serial Clock. Clock input of SVID interface.
35	Alert\#	Logic Output	ALERT\#. Open-drain output. Provides a logic low valid alert signal of SVID interface.
36	Mode	Analog Input	Mode. A resistor between this pin and AGND to program operation mode, nominal switching frequency, and options.

Table 2. MAXIMUM RATINGS

Rating	Symbol	Value		Unit
		Min	Max	
Power Supply Voltage to PGND	$\mathrm{V}_{\text {PVIN }}, \mathrm{V}_{\text {VIN }}$		23	V
PHASE/SW to PGND	$\mathrm{V}_{\text {PHASE }}, \mathrm{V}_{\text {SW }}$	$\begin{gathered} -0.6 \\ -5(<50 \mathrm{~ns}) \end{gathered}$	$\begin{gathered} 23 \\ 25(<10 \mathrm{~ns}) \end{gathered}$	V
Driver Supply Voltage to PGND	VDRV	-0.3	5.5	V
Analog Supply Voltage to AGND	VCC	-0.3	6.5	V
BST to PGND	BST_PGND	-0.3	$\begin{gathered} 30 \\ 33(<50 \mathrm{~ns}) \end{gathered}$	V
BST to PHASE/SW	BST_PHASE/SW	-0.3	6.5	V
GL to PGND	GL	$\begin{gathered} -0.3 \\ -2(<200 \mathrm{~ns}) \end{gathered}$	VDRV+0.3	V
Vsns- to AGND	Vsns-	-0.2	0.2	V
PGND to AGND	PGND	-0.3	0.3	V
Other Pins		-0.3	VCC+0.3	V
Human Body Model (HBM) ESD Rating are (Note 1)	ESD HBM		2000	V
Charge Device Model (CDM) ESD Rating are (Note 1)	ESD CDM		2000	V
Latch up Current: (Note 2)	ILU	-100	100	mA
Operating Junction Temperature Range	T_{J}	-40	125	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	-40	100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-55	150	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Top Case(Note 3)	RYJC	1.0		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Board (Note 3)	$\mathrm{R}_{\Psi \text { JB }}$	1.2		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Ambient (Note 3)	$\mathrm{R}_{\text {өJA }}$	27.0		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Power Dissipation (Note 4)	P_{D}	3.70		W
Moisture Sensitivity Level (Note 5)	MSL	1		-

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device is ESD sensitive. Handling precautions are needed to avoid damage or performance degradation.
2. Latch up Current per JEDEC standard: JESD78 class II.
3. The thermal resistance values are dependent of the internal losses split between devices and the PCB heat dissipation. This data is based on a typical operation condition with a 4-layer FR-4 PCB board, which has two, 1-ounce copper internal power and ground planes and 2-ounce copper traces on top and bottom layers with approximately 80% copper coverage. No airflow and no heat sink applied (reference EIA/JEDEC 51.7). It also does not account for other heat sources that may be present on the PCB next to the device in question (such as inductors, resistors etc.)
4. The maximum power dissipation (PD) is dependent on input voltage, output voltage, output current, external components selected, and PCB layout. The reference data is obtained based on $\mathrm{T}_{\text {JMAX }}=125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
5. Moisture Sensitivity Level (MSL): IPC/JEDEC standard: J-STD-020A.

Table 3. ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\right.$, typical values are referenced to $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, Min and Max values are referenced to $T_{A}=T_{J}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. unless other noted.)

Characteristics
Test Conditions Symbol Min Typ Max Units
VCC Under-Voltage (UVLO) Threshold VCC falling $V_{\text {DDUV- }}$ 4.0 VCC OK Threshold VCC rising $V_{\text {DDOK }}$ 4.4 VCC UVLO Hysteresis $V_{\text {DDHYS }}$ 200

SUPPLY CURRENT

PVIN Shutdown Current	EN low	$\mathrm{I}_{\text {SDPVIN }}$	-	0.062	6	$\mu \mathrm{A}$
VIN Quiescent Supply Current (VCC Current Included)	EN high, no switching, LDO enabled, $\mathrm{VIN}=18 \mathrm{~V}, \mathrm{VCC}=\mathrm{VDRV}$	$\mathrm{I}_{\text {QVIN }}$	-	11	18	mA
	EN high, no switching, LDO disabled, $\mathrm{V} / \mathrm{N}=\mathrm{VDRV}=\mathrm{VCC}=4.5 \mathrm{~V}$		-	11	18	
VIN Shutdown Current (VCC Current Included)	EN low, LDO enabled, VIN=18V, VCC=VDRV	$\mathrm{I}_{\text {SDVIN }}$	-	27	45	$\mu \mathrm{A}$
	EN low, LDO disabled, $\mathrm{V} / \mathrm{N}=\mathrm{VDRV}=\mathrm{VCC}=4.5 \mathrm{~V}$		-	60	100	

5 V LINEAR REGULATOR

Output Voltage	$6 \mathrm{~V}<\mathrm{VIN}<18 \mathrm{~V}$, IDRV $=0$ to 30 mA (External) EN high, no Switching	$\mathrm{V}_{\text {DRV }}$	4.8	5.0	5.3	V
Dropout Voltage	VIN $=5 \mathrm{~V}$, IDRV $=50 \mathrm{~mA}$ (External), EN high, no Switching	V_{DO}			250	mV

PWM MODULATION

Minimum On Time	(Note 6)	$T_{\text {on_min }}$		50		ns
Minimum Off Time	(Note 6)	$\mathrm{T}_{\text {off_min }}$		200		ns

REGULATION ACCURACY

DVID

Fast Slew Rate	Programmed at Mode Pin	FSR	10	$\mathrm{mV} / \mathrm{\mu s}$
			20	
Slow Slew Rate		SSR	FSR/2 FSR/4 (default) FSR/8 FSR/16	$\mathrm{mV} / \mathrm{us}$

VOLTAGE ERROR AMPLIFIER

FB Bias Current	$\mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$	I_{FB}	-50		50	nA

CURRENT-SENSE AMPLIFIER

Closed-Loop DC Gain		GAIN $_{\mathrm{CA}}$		-12.2		$\mathrm{~V} / \mathrm{V}$
-3 dB Gain Bandwidth	$($ Note 6)	BW $_{\mathrm{CA}}$		10		MHz
Input Offset Voltage	$\mathrm{V}_{\text {osCS }}=\mathrm{V}_{\text {SW }}-\mathrm{V}_{\text {PGND }}$ (Note 6)	$\mathrm{V}_{\text {OsCS }}$	-500	-	500	$\mu \mathrm{~V}$

6. Guaranteed by design, not tested in production.

Table 3. ELECTRICAL CHARACTERISTICS $\left(V_{I N}=12 \mathrm{~V}\right.$, typical values are referenced to $T_{A}=T_{J}=25^{\circ} \mathrm{C}$, Min and Max values are referenced to $T_{A}=T_{J}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. unless other noted.)

Characteristics	Test Conditions	Symbol	Min	Typ	Max	Units
ENABLE						
EN ON Threshold		VEN_TH	0.69	0.79	0.88	V
Hysteresis Resistance		$\mathrm{R}_{\mathrm{HYS}}$		40		$\mathrm{k} \Omega$
Hysteresis Current		$\mathrm{I}_{\text {EN_HYS }}$		5		$\mu \mathrm{A}$
EN Input Leakage Current	$\mathrm{EN}=0 \mathrm{~V}$	IEN_LK			1.0	$\mu \mathrm{A}$

SWITCHING FREQUENCY

Switching Frequency in CCM	Programmed at Mode Pin (Note 6)	$\mathrm{F}_{\text {SW }}$		1000		kHz
				800		
				600		
Source Current from Mode Pin		$\mathrm{I}_{\text {FSET }}$	48.5	50	51.5	$\mu \mathrm{A}$

SOFT START

System Reset Time	Measured from EN to start of soft start	$T_{\text {RST }}$	0.8	0.93	1.1	ms
Soft Start Slew Rate		SSSR		$\mathrm{FSR} / 4$		$\mathrm{mV} / \mathrm{us}$

PGOOD

PGOOD Startup Delay	Measured from end of Soft Start to PGOOD assertion	$\mathrm{T}_{\text {d_PGOOD }}$			6
PGOOD Shutdown Delay	Measured from EN to PGOOD de-as- sertion			5 s	
PGOOD Low Voltage	IPGOOD $=-4 \mathrm{~mA}$	$\mathrm{~V}_{\text {IPGOOD }}$			$\mu \mathrm{s}$
PGOOD Leakage Current	PGOOD $=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{IkgPGOOD}}$			1.0

PROTECTIONS

Valley Current Limit Threshold	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J=}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{R}_{\text {LIM }}=31.6 \mathrm{k} \Omega$	'LMT_Valley		30		A
		$\mathrm{R}_{\text {LIM }}=26.1 \mathrm{k} \Omega$			25		
		$\mathrm{R}_{\text {LIM }}=21.0 \mathrm{k} \Omega$			20		
		$\mathrm{R}_{\text {LIM }}=15.4 \mathrm{k} \Omega$			15		
		$\mathrm{R}_{\text {LIM }}=10.2 \mathrm{k} \Omega$			10		
		$\mathrm{R}_{\text {LIM }}=5.23 \mathrm{k} \Omega$			5		
Fast Under Voltage Protection (FUVP) Threshold	FB to AGND			0.15	0.2	0.25	V
Fast Under Voltage Protection (FUVP) Delay	(Note 6)				1.0		us
Slow Under Voltage Protection (SUVP) Threshold	COMP to AGND (Note 6)				3.0		V
Slow Under Voltage Protection (SUVP) Delay	(Note 6)				50		us
Absolute Over Voltage Threshold During Soft-Start	FB to AGND			1.92	2.0	2.08	V
Absolute Over Voltage Threshold Hysteresis	(Note 6)				-25		mV
Over Voltage Threshold Above DAC	FB rising		$\mathrm{V}_{\text {OVTH }}$	165	200	225	mV
Over Voltage Protection Hysteresis	FB falling (Note 6)		$\mathrm{V}_{\text {OVHYS }}$		-25		mV
Over Voltage Debounce Time	FB rising to GL high (Note 6)				1.0		us
Thermal Shutdown (TSD) Threshold	(Note 6)		$\mathrm{T}_{\text {sd }}$	140	150		${ }^{\circ} \mathrm{C}$

6. Guaranteed by design, not tested in production.

Table 3. ELECTRICAL CHARACTERISTICS $\left(V_{I N}=12 \mathrm{~V}\right.$, typical values are referenced to $T_{A}=T_{J}=25^{\circ} \mathrm{C}, \mathrm{Min}$ and Max values are referenced to $T_{A}=T_{J}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. unless other noted.)

Characteristics	Test Conditions	Symbol	Min	Typ	Max	Units
PROTECTIONS						
Recovery Temperature Threshold	(Note 6)	$\mathrm{T}_{\text {rec }}$		125		${ }^{\circ} \mathrm{C}$
Thermal Shutdown (TSD) Debounce Time	(Note 6)			125		ns
TEMPERATURE TELEMETRY						
Temperature Telemetry Tolerance	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=90 \sim 120^{\circ} \mathrm{C}$ (Note 6)		-4.0		+4.0	${ }^{\circ} \mathrm{C}$
VBOOT						
Sensing Current			9.7	10	10.3	$\mu \mathrm{A}$
ADDRESS						
Sensing Current			9.7	10	10.3	$\mu \mathrm{A}$
IMAX						
Sensing Current			12.125	12.5	12.875	$\mu \mathrm{A}$

CLK, DATA

Input High Voltage		V_{IH}	0.65			V
Input Low Voltage		V_{IL}			0.45	V
Input Threshold Hysteresis		$\mathrm{V}_{\mathrm{HYS}}$		85		mV
Buffer On Resistance (Data)		R_{ON}	4		13	Ω
Input Leakage Current	Pin voltage between 0 and 1.05 V		-1		1	mA
Input Capacitance	(Note 6)				4.0	pF
VR Clock to Data Delay	Time between CIk rising edge and valid Data level (Note 6)	Tco	4		12	ns
Setup Time	Time before Clk falling (sampling) edge that Data level must be valid (Note 6)	Tsu	7			ns
Hold Time	Time after Clk falling edge that the Data level remains valid (Note 6)	Thld	14			ns

ALERT\#

Output On Resistance		R_{ON}	4		13	Ω
Output Leakage Current	High Impedance State, ALERT \# = 3.3 V		-1.0	-	1.0	$\mu \mathrm{~A}$

ADC

Voltage Range	(Note 6)		0		2.0	V
Total Unadjusted Error (TUE)	(Note 6)		-1		1	$\%$
Differential Nonlinearity (DNL)	8-bit (Note 6)				1	LSB
Power Supply Sensitivity	(Note 6)			± 1		$\%$
Conversion Time	(Note 6)			30		$\mu \mathrm{~s}$
Round Robin	(Note 6)			90		$\mu \mathrm{~s}$

6. Guaranteed by design, not tested in production.

Table 4. VR13 VID CODES

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VIDO	Voltage(V)		HEX	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VIDO	Voltage(V)		HEX
								$\begin{aligned} & 5 \mathrm{mV} \\ & \text { Mode } \end{aligned}$	10 mV Mode										$\begin{aligned} & 5 \mathrm{mV} \\ & \text { Mode } \end{aligned}$	$\begin{aligned} & 10 \mathrm{mV} \\ & \text { Mode } \end{aligned}$	
0	0	0	0	0	0	0	0	0.000	0.000	00	0	0	1	1	0	0	0	0	0.485	0.970	30
0	0	0	0	0	0	0	1	0.250	0.500	01	0	0	1	1	0	0	0	1	0.490	0.980	31
0	0	0	0	0	0	1	0	0.255	0.510	02	0	0	1	1	0	0	1	0	0.495	0.990	32
0	0	0	0	0	0	1	1	0.260	0.520	03	0	0	1	1	0	0	1	1	0.500	1.000	33
0	0	0	0	0	1	0	0	0.265	0.530	04	0	0	1	1	0	1	0	0	0.505	1.010	34
0	0	0	0	0	1	0	1	0.270	0.540	05	0	0	1	1	0	1	0	1	0.510	1.020	35
0	0	0	0	0	1	1	0	0.275	0.550	06	0	0	1	1	0	1	1	0	0.515	1.030	36
0	0	0	0	0	1	1	1	0.280	0.560	07	0	0	1	1	0	1	1	1	0.520	1.040	37
0	0	0	0	1	0	0	0	0.285	0.570	08	0	0	1	1	1	0	0	0	0.525	1.050	38
0	0	0	0	1	0	0	1	0.290	0.580	09	0	0	1	1	1	0	0	1	0.530	1.060	39
0	0	0	0	1	0	1	0	0.295	0.590	OA	0	0	1	1	1	0	1	0	0.535	1.070	3A
0	0	0	0	1	0	1	1	0.300	0.600	OB	0	0	1	1	1	0	1	1	0.540	1.080	3B
0	0	0	0	1	1	0	0	0.305	0.610	OC	0	0	1	1	1	1	0	0	0.545	1.090	3C
0	0	0	0	1	1	0	1	0.310	0.620	OD	0	0	1	1	1	1	0	1	0.550	1.100	3D
0	0	0	0	1	1	1	0	0.315	0.630	OE	0	0	1	1	1	1	1	0	0.555	1.110	3E
0	0	0	0	1	1	1	1	0.320	0.640	OF	0	0	1	1	1	1	1	1	0.560	1.120	3F
0	0	0	1	0	0	0	0	0.325	0.650	10	0	1	0	0	0	0	0	0	0.565	1.130	40
0	0	0	1	0	0	0	1	0.330	0.660	11	0	1	0	0	0	0	0	1	0.570	1.140	41
0	0	0	1	0	0	1	0	0.335	0.670	12	0	1	0	0	0	0	1	0	0.575	1.150	42
0	0	0	1	0	0	1	1	0.340	0.680	13	0	1	0	0	0	0	1	1	0.580	1.160	43
0	0	0	1	0	1	0	0	0.345	0.690	14	0	1	0	0	0	1	0	0	0.585	1.170	44
0	0	0	1	0	1	0	1	0.350	0.700	15	0	1	0	0	0	1	0	1	0.590	1.180	45
0	0	0	1	0	1	1	0	0.355	0.710	16	0	1	0	0	0	1	1	0	0.595	1.190	46
0	0	0	1	0	1	1	1	0.360	0.720	17	0	1	0	0	0	1	1	1	0.600	1.200	47
0	0	0	1	1	0	0	0	0.365	0.730	18	0	1	0	0	1	0	0	0	0.605	1.210	48
0	0	0	1	1	0	0	1	0.370	0.740	19	0	1	0	0	1	0	0	1	0.610	1.220	49
0	0	0	1	1	0	1	0	0.375	0.750	1A	0	1	0	0	1	0	1	0	0.615	1.230	4A
0	0	0	1	1	0	1	1	0.380	0.760	1B	0	1	0	0	1	0	1	1	0.620	1.240	4B
0	0	0	1	1	1	0	0	0.385	0.770	1C	0	1	0	0	1	1	0	0	0.625	1.250	4C
0	0	0	1	1	1	0	1	0.390	0.780	1D	0	1	0	0	1	1	0	1	0.630	1.260	4D
0	0	0	1	1	1	1	0	0.395	0.790	1E	0	1	0	0	1	1	1	0	0.635	1.270	4E
0	0	0	1	1	1	1	1	0.400	0.800	1F	0	1	0	0	1	1	1	1	0.640	1.280	4 F
0	0	1	0	0	0	0	0	0.405	0.810	20	0	1	0	1	0	0	0	0	0.645	1.290	50
0	0	1	0	0	0	0	1	0.410	0.820	21	0	1	0	1	0	0	0	1	0.650	1.300	51
0	0	1	0	0	0	1	0	0.415	0.830	22	0	1	0	1	0	0	1	0	0.655	1.310	52
0	0	1	0	0	0	1	1	0.420	0.840	23	0	1	0	1	0	0	1	1	0.660	1.320	53
0	0	1	0	0	1	0	0	0.425	0.850	24	0	1	0	1	0	1	0	0	0.665	1.330	54
0	0	1	0	0	1	0	1	0.430	0.860	25	0	1	0	1	0	1	0	1	0.670	1.340	55
0	0	1	0	0	1	1	0	0.435	0.870	26	0	1	0	1	0	1	1	0	0.675	1.350	56
0	0	1	0	0	1	1	1	0.440	0.880	27	0	1	0	1	0	1	1	1	0.680	1.360	57
0	0	1	0	1	0	0	0	0.445	0.890	28	0	1	0	1	1	0	0	0	0.685	1.370	58
0	0	1	0	1	0	0	1	0.450	0.900	29	0	1	0	1	1	0	0	1	0.690	1.380	59
0	0	1	0	1	0	1	0	0.455	0.910	2A	0	1	0	1	1	0	1	0	0.695	1.390	5A
0	0	1	0	1	0	1	1	0.460	0.920	2B	0	1	0	1	1	0	1	1	0.700	1.400	5B
0	0	1	0	1	1	0	0	0.465	0.930	2C	0	1	0	1	1	1	0	0	0.705	1.410	5 C
0	0	1	0	1	1	0	1	0.470	0.940	2D	0	1	0	1	1	1	0	1	0.710	1.420	5D
0	0	1	0	1	1	1	0	0.475	0.950	2 E	0	1	0	1	1	1	1	0	0.715	1.430	5E
0	0	1	0	1	1	1	1	0.480	0.960	2 F	0	1	0	1	1	1	1	1	0.720	1.440	5 F

NCP3293

Table 4. VR13 VID CODES

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VIDO	Voltage(V)		HEX	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VIDO	Voltage(V)		HEX
								$\begin{aligned} & 5 \mathrm{mV} \\ & \text { Mode } \end{aligned}$	10 mV Mode										$\begin{aligned} & 5 \mathrm{mV} \\ & \text { Mode } \end{aligned}$	$\begin{aligned} & 10 \mathrm{mV} \\ & \text { Mode } \end{aligned}$	
0	1	1	0	0	0	0	0	0.725	1.450	60	1	0	0	1	0	0	0	0	0.965	1.930	90
0	1	1	0	0	0	0	1	0.730	1.460	61	1	0	0	1	0	0	0	1	0.970	1.940	91
0	1	1	0	0	0	1	0	0.735	1.470	62	1	0	0	1	0	0	1	0	0.975	1.950	92
0	1	1	0	0	0	1	1	0.740	1.480	63	1	0	0	1	0	0	1	1	0.980	1.960	93
0	1	1	0	0	1	0	0	0.745	1.490	64	1	0	0	1	0	1	0	0	0.985	1.970	94
0	1	1	0	0	1	0	1	0.750	1.500	65	1	0	0	1	0	1	0	1	0.990	1.980	95
0	1	1	0	0	1	1	0	0.755	1.510	66	1	0	0	1	0	1	1	0	0.995	1.990	96
0	1	1	0	0	1	1	1	0.760	1.520	67	1	0	0	1	0	1	1	1	1.000	2.000	97
0	1	1	0	1	0	0	0	0.765	1.530	68	1	0	0	1	1	0	0	0	1.005	2.010	98
0	1	1	0	1	0	0	1	0.770	1.540	69	1	0	0	1	1	0	0	1	1.010	2.020	99
0	1	1	0	1	0	1	0	0.775	1.550	6A	1	0	0	1	1	0	1	0	1.015	2.030	9A
0	1	1	0	1	0	1	1	0.780	1.560	6B	1	0	0	1	1	0	1	1	1.020	2.040	9B
0	1	1	0	1	1	0	0	0.785	1.570	6C	1	0	0	1	1	1	0	0	1.025	2.050	9C
0	1	1	0	1	1	0	1	0.790	1.580	6D	1	0	0	1	1	1	0	1	1.030	2.060	9D
0	1	1	0	1	1	1	0	0.795	1.590	6 E	1	0	0	1	1	1	1	0	1.035	2.070	9E
0	1	1	0	1	1	1	1	0.800	1.600	6 F	1	0	0	1	1	1	1	1	1.040	2.080	9F
0	1	1	1	0	0	0	0	0.805	1.610	70	1	0	1	0	0	0	0	0	1.045	2.090	A0
0	1	1	1	0	0	0	1	0.810	1.620	71	1	0	1	0	0	0	0	1	1.050	2.100	A1
0	1	1	1	0	0	1	0	0.815	1.630	72	1	0	1	0	0	0	1	0	1.055	2.110	A2
0	1	1	1	0	0	1	1	0.820	1.640	73	1	0	1	0	0	0	1	1	1.060	2.120	A3
0	1	1	1	0	1	0	0	0.825	1.650	74	1	0	1	0	0	1	0	0	1.065	2.130	A4
0	1	1	1	0	1	0	1	0.830	1.660	75	1	0	1	0	0	1	0	1	1.070	2.140	A5
0	1	1	1	0	1	1	0	0.835	1.670	76	1	0	1	0	0	1	1	0	1.075	2.150	A6
0	1	1	1	0	1	1	1	0.840	1.680	77	1	0	1	0	0	1	1	1	1.080	2.160	A7
0	1	1	1	1	0	0	0	0.845	1.690	78	1	0	1	0	1	0	0	0	1.085	2.170	A8
0	1	1	1	1	0	0	1	0.850	1.700	79	1	0	1	0	1	0	0	1	1.090	2.180	A9
0	1	1	1	1	0	1	0	0.855	1.710	7A	1	0	1	0	1	0	1	0	1.095	2.190	AA
0	1	1	1	1	0	1	1	0.860	1.720	7B	1	0	1	0	1	0	1	1	1.100	2.200	AB
0	1	1	1	1	1	0	0	0.865	1.730	7 C	1	0	1	0	1	1	0	0	1.105	2.210	AC
0	1	1	1	1	1	0	1	0.870	1.740	7D	1	0	1	0	1	1	0	1	1.110	2.220	AD
0	1	1	1	1	1	1	0	0.875	1.750	7E	1	0	1	0	1	1	1	0	1.115	2.230	AE
0	1	1	1	1	1	1	1	0.880	1.760	7F	1	0	1	0	1	1	1	1	1.120	2.240	AF
1	0	0	0	0	0	0	0	0.885	1.770	80	1	0	1	1	0	0	0	0	1.125	2.250	B0
1	0	0	0	0	0	0	1	0.890	1.780	81	1	0	1	1	0	0	0	1	1.130	2.260	B1
1	0	0	0	0	0	1	0	0.895	1.790	82	1	0	1	1	0	0	1	0	1.135	2.270	B2
1	0	0	0	0	0	1	1	0.900	1.800	83	1	0	1	1	0	0	1	1	1.140	2.280	B3
1	0	0	0	0	1	0	0	0.905	1.810	84	1	0	1	1	0	1	0	0	1.145	2.290	B4
1	0	0	0	0	1	0	1	0.910	1.820	85	1	0	1	1	0	1	0	1	1.150	2.300	B5
1	0	0	0	0	1	1	0	0.915	1.830	86	1	0	1	1	0	1	1	0	1.155	2.310	B6
1	0	0	0	0	1	1	1	0.920	1.840	87	1	0	1	1	0	1	1	1	1.160	2.320	B7
1	0	0	0	1	0	0	0	0.925	1.850	88	1	0	1	1	1	0	0	0	1.165	2.330	B8
1	0	0	0	1	0	0	1	0.930	1.860	89	1	0	1	1	1	0	0	1	1.170	2.340	B9
1	0	0	0	1	0	1	0	0.935	1.870	8A	1	0	1	1	1	0	1	0	1.175	2.350	BA
1	0	0	0	1	0	1	1	0.940	1.880	8B	1	0	1	1	1	0	1	1	1.180	2.360	BB
1	0	0	0	1	1	0	0	0.945	1.890	8 C	1	0	1	1	1	1	0	0	1.185	2.370	BC
1	0	0	0	1	1	0	1	0.950	1.900	8D	1	0	1	1	1	1	0	1	1.190	2.380	BD
1	0	0	0	1	1	1	0	0.955	1.910	8E	1	0	1	1	1	1	1	0	1.195	2.390	BE
1	0	0	0	1	1	1	1	0.960	1.920	8F	1	0	1	1	1	1	1	1	1.200	2.400	BF

NCP3293

Table 4. VR13 VID CODES

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VIDO	Voltage(V)		HEX	VID7	VID6	VID5	VID4	VID3	VID2	VID1	VIDO	Voltage(V)		HEX
								5 mV Mode	10 mV Mode										5 mV Mode	10 mV Mode	
1	1	0	0	0	0	0	0	1.205	2.410	C0	1	1	1	1	0	0	0	0	1.445	2.890	F0
1	1	0	0	0	0	0	1	1.210	2.420	C1	1	1	1	1	0	0	0	1	1.450	2.900	F1
1	1	0	0	0	0	1	0	1.215	2.430	C2	1	1	1	1	0	0	1	0	1.455	2.910	F2
1	1	0	0	0	0	1	1	1.220	2.440	C3	1	1	1	1	0	0	1	1	1.460	2.920	F3
1	1	0	0	0	1	0	0	1.225	2.450	C4	1	1	1	1	0	1	0	0	1.465	2.930	F4
1	1	0	0	0	1	0	1	1.230	2.460	C5	1	1	1	1	0	1	0	1	1.470	2.940	F5
1	1	0	0	0	1	1	0	1.235	2.470	C6	1	1	1	1	0	1	1	0	1.475	2.950	F6
1	1	0	0	0	1	1	1	1.240	2.480	C7	1	1	1	1	0	1	1	1	1.480	2.960	F7
1	1	0	0	1	0	0	0	1.245	2.490	C8	1	1	1	1	1	0	0	0	1.485	2.970	F8
1	1	0	0	1	0	0	1	1.250	2.500	C9	1	1	1	1	1	0	0	1	1.490	2.980	F9
1	1	0	0	1	0	1	0	1.255	2.510	CA	1	1	1	1	1	0	1	0	1.495	2.990	FA
1	1	0	0	1	0	1	1	1.260	2.520	CB	1	1	1	1	1	0	1	1	1.500	3.000	FB
1	1	0	0	1	1	0	0	1.265	2.530	CC	1	1	1	1	1	1	0	0	1.505	3.010	FC
1	1	0	0	1	1	0	1	1.270	2.540	CD	1	1	1	1	1	1	0	1	1.510	3.020	FD
1	1	0	0	1	1	1	0	1.275	2.550	CE	1	1	1	1	1	1	1	0	1.515	3.030	FE
1	1	0	0	1	1	1	1	1.280	2.560	CF	1	1	1	1	1	1	1	1	1.520	3.040	FF
1	1	0	1	0	0	0	0	1.285	2.570	D0											
1	1	0	1	0	0	0	1	1.290	2.580	D1											
1	1	0	1	0	0	1	0	1.295	2.590	D2											
1	1	0	1	0	0	1	1	1.300	2.600	D3											
1	1	0	1	0	1	0	0	1.305	2.610	D4											
1	1	0	1	0	1	0	1	1.310	2.620	D5											
1	1	0	1	0	1	1	0	1.315	2.630	D6											
1	1	0	1	0	1	1	1	1.320	2.640	D7											
1	1	0	1	1	0	0	0	1.325	2.650	D8											
1	1	0	1	1	0	0	1	1.330	2.660	D9											
1	1	0	1	1	0	1	0	1.335	2.670	DA											
1	1	0	1	1	0	1	1	1.340	2.680	DB											
1	1	0	1	1	1	0	0	1.345	2.690	DC											
1	1	0	1	1	1	0	1	1.350	2.700	DD											
1	1	0	1	1	1	1	0	1.355	2.710	DE											
1	1	0	1	1	1	1	1	1.360	2.720	DF											
1	1	1	0	0	0	0	0	1.365	2.730	E0											
1	1	1	0	0	0	0	1	1.370	2.740	E1											
1	1	1	0	0	0	1	0	1.375	2.750	E2											
1	1	1	0	0	0	1	1	1.380	2.760	E3											
1	1	1	0	0	1	0	0	1.385	2.770	E4											
1	1	1	0	0	1	0	1	1.390	2.780	E5											
1	1	1	0	0	1	1	0	1.395	2.790	E6											
1	1	1	0	0	1	1	1	1.400	2.800	E7											
1	1	1	0	1	0	0	0	1.405	2.810	E8											
1	1	1	0	1	0	0	1	1.410	2.820	E9											
1	1	1	0	1	0	1	0	1.415	2.830	EA											
1	1	1	0	1	0	1	1	1.420	2.840	EB											
1	1	1	0	1	1	0	0	1.425	2.850	EC											
1	1	1	0	1	1	0	1	1.430	2.860	ED											
1	1	1	0	1	1	1	0	1.435	2.870	EE											
1	1	1	0	1	1	1	1	1.440	2.880	EF											

Table 5. SUPPORTED SVID COMMANDS

$\#$	Command	Master Payload	Slave Payload	Description		
01h	SetVID_Fast	VID Code	Set the new VID target, VR Jumps to new VID target with controlled (up or down) slew rate programmed by the VR.			
02h	SetVID_Slow	VID Code	N/A	Set the VID target, VR jumps to new VID target with con- trolled slew rate (up or down) programmed by the VR.		
03h	SetVID_Decay	VID Code	N/A	Sets the VID target, VR jumps to new VID target, but does not control the slew rate, the output voltage decays at a rate proportional to the load current. SetVID_Decay is only used in VID down direction.		
04h	SetPS	Byte indicating power state for slave	N/A	Sends information to VR controller so it can configure VR to improve efficiency, especially at light load.		
05h	SetRegAddr	Address of the index in the data table	N/A	Sets the address pointer in the data register table. Typi- cally the next command SetRegData is the payload that gets loaded into this address.		
06h	SetRegData	New data register contents	Writes the contents to the data register that was previous- ly identified by the address pointer with SetRegAddr.			
07h	GetReg	Register Address	Specified register			
contents					\quad	Slave returns the contents of the specified register as the
:---						
payload; The majority of the VR monitoring data is ac-						
cessed through the GetReg command.						

Table 6. SUPPORTED SVID REGISTERS

Index	Name	Description	Master Access	Default
00h	Vendor ID	Uniquely identifies the VR vendor. The vendor ID assigned by Intel to ON Semiconductor is $0 \times 1 \mathrm{Ah}$	R	1Ah
01h	Product ID	Uniquely identifies the VR product. The VR vendor assigns this number.	R	85h
02h	Product Revision	Uniquely identifies the revision or stepping of the VR control IC.	R	00h
03h	Date code ID		R	00h
05h	Protocol ID	Identifies the SVID protocol the controller supports. $07 \mathrm{~h}=\mathrm{VR} 13.0$ and 5 mV VID; 04h = VR13.0 and 10 mV VID.	R	07h
06h	Capability	Informs the Master of the controllerd Capabilities, $1=$ supported, $0=$ not supported Bit $7=$ lout_format. Bit $7=0$ when $1 \mathrm{~A}=1 \mathrm{LSB}$ of Reg 15 h. Bit $7=1$ when Reg 15 FFh = Icc_Max. Default =1 Bit $6=$ ADC Measurement of Temp Supported $=1$ Bit $5=$ ADC Measurement of Pin Supported $=0$ Bit $4=$ ADC Measurement of Vin Supported $=0$ Bit 3 = ADC Measurement of lin Supported $=0$ Bit $2=$ ADC Measurement of Pout Supported $=0$ Bit $1=$ ADC Measurement of Vout Supported $=0$ Bit $0=$ ADC Measurement of lout Supported $=1$	R	C1h
10h	Status_1	Data register read after ALERT\# signal is asserted. Conveying the status of the VR. (pp.94, Intel \#456098)	R	00h
11h	Status_2	Data register showing optional status_2 data. (pp.94, Intel \#456098)	R	00h
12h	Temp Zone	Data register showing temperature zones the system is operating in. (pp.106, Intel \#456098) 1 tick is $3^{\circ} \mathrm{C}$.	R	00h
15h	I_out	8 bit binary word ADC of current. The ADC should be scaled such that FFh= IMAX for the VR for maximum resolution of the ADC data.	R	00h

Table 6. SUPPORTED SVID REGISTERS

Index	Name	Description	Master Access	Default
16h	V_out	Not supported.	R	00h
17h	VR_Temp	8 bit binary word ADC of temperature. Binary format in ${ }^{\circ} \mathrm{C}$, i.e. $64 \mathrm{~h}=100^{\circ} \mathrm{C}$. 00 h indicates this function is not supported. Default value of 19 h means $25^{\circ} \mathrm{C}$.	R	19h
18h	P_out	Not supported.	R	
1Bh	PIN_H	Not supported.	R	
1Ch	Status 2 Last read	When the status 2 register is read its contents are copied into this register. The format is the same as the Status 2 Register.	R	00h
21h	Icc_Max	Data register containing the Icc_Max. 1 LSB means 1 A. Default value 19h = 25 A.	R	19h
22h	Temp_Max	Data register containing the max temperature and the level VR_hot asserts. This value defaults to $100^{\circ} \mathrm{C}$.	R	64h
24h	SR_fast	Slew Rate for SetVID_fast commands. Binary format in mV/us.	R	OAh
25h	SR_slow	Slew Rate for SetVID_slow commands. It is 4X slower than the SR_fast rate. Binary format in $\mathrm{mV} / \mathrm{us}^{-}$	R	02h
26h	Vboot	The NCP3293 ramps to Vboot and hold at Vboot until it receives a new SVID SetVID command to move to a different voltage. Default value $=0 \mathrm{~V}$.	R	00h
2Ah	SR_Slow Selector	$\begin{aligned} & \text { 01h }=\text { Fast_SR/2 } \\ & 02 \mathrm{~h}=\text { Fast_SR/4 (Default) } \\ & 04 \mathrm{~h}=\text { Fast_SR/8 } \\ & 08 \mathrm{~h}=\text { Fast_SR/16 } \end{aligned}$	R/W	02h
2Eh	Pin_Max	Not supported.	R	
2Fh	Pin_Alert_TH	Not supported.	R	
30h	Vout_Max	Programmed by master and sets the maximum VID the VR will support. If a higher VID code is received, the VR should respond with "not supported" acknowledge. VR 13 VID format. Default values are FFh (1.52 V) in 5 mV mode and $97 \mathrm{~h}(2.0 \mathrm{~V})$ in 10 mV mode.	R/W	FFh
31h	VID setting	Data register containing currently programmed VID voltage. VID data format.	R	00h
32h	Pwr State	Register containing the current programmed power state.	R/W	00h
33h	Offset	Sets offset in VID steps added to the VID setting for voltage margining. Bit 7 is sign bit, $0=$ positive margin, $1=$ negative margin. Remaining 7 BITS are \# VID steps for margin 2s complement. $00 \mathrm{~h}=$ no offset $01 \mathrm{~h}=+1$ VID step $02 \mathrm{~h}=+2 \mathrm{VID}$ steps FFh $=-1$ VID step FEh $=-2$ VID steps.	R/W	00h
34h	MultivR Config	VR_Ready_0V=1; The VR_Ready line does not de-assert when issued a SetVID($0.0 \overline{\mathrm{~V}}$) orSetPS(4) command.	R	01h
3Ah	Work Point 0	VID target for WPO command	R/W	00h
3Bh	Work Point 1	VID target for WP1 command	R/W	00h
3Ch	Work Point 2	VID target for WP2 command	R/W	00h
3Dh	Work Point 3	VID target for WP3 command	R/W	00h
3Eh	Work Point 4	VID target for WP4 command	R/W	00h

DETAILED DESCRIPTION

General

The NCP3293, a single-phase synchronous buck regulator with SVID, integrates power MOSFETs to provide a high-efficiency and compact-footprint power management solution. The NCP3293 is able to deliver up to 20 A TDC output current on a wide output voltage range. Operating in high switching frequency up to 1 MHz allows employing small size inductors and capacitors while maintaining high
efficiency due to integrated solution with high performance power MOSFETs. It provides differential voltage sense and comprehensive protections.

Operation Modes

Operation mode, switching frequency, VID mode, and fast DVID slew rate are programmed at Mode pin with a $\pm 1 \%$ tolerance resistor as shown in Table 7 .

Table 7. MODE CONFIGURATION

Resistance @ Mode$\operatorname{Pin}(\Omega, \pm 1 \%)$	Frequency (kHz)	Operation Mode (PSO and PS1)	VID Mode		SR_fast
			VBOOT = 0 V to 1.5 V	VBOOT = 1.6 V to 1.8 V	
0	600	FCCM	5 mV	10 mV	$10 \mathrm{mV} / \mathrm{\mu s}$
499	800				
825	1000				$20 \mathrm{mV} / \mathrm{us}$
1.15k	800				
1.62k	600				
2.00k	800				$10 \mathrm{mV} / \mathrm{\mu s}$
2.49k	1000				
3.16k	800				
3.83k	600	Auto DCM/CCM	10 mV		
4.64k	800				
5.62k	1000				
6.65k	1000		5 mV		$20 \mathrm{mV} / \mathrm{\mu s}$
7.87k	800				
9.09k	600				
10.5k	600				$10 \mathrm{mV} / \mathrm{us}$
12.1k	800				
14.0k	1000				
16.2k	1000		10 mV		$20 \mathrm{mV} / \mathrm{us}$
18.7k	800				
21.5k	600				
24.9k	600	FCCM			$10 \mathrm{mV} / \mathrm{\mu s}$
28.7k	800				
33.2k	1000				
Float	800		5 mV		

The NCP3293 may operate in one of three power states, named PS0 (default), PS1, and PS2 as shown in Table 8, which is programmed by SVID SetPS command. The NCP3293 can acknowledge commands of SetPS3 and

SetPS4 but actually goes into PS2 mode after receiving those commands. The operation mode in PS0 and PS1 is selected at Mode pin. For VR13 applications, FCCM mode needs to be selected for PS0 and PS1.

Table 8. POWER STATUS AND OPERATION MODES

Power Status	Operation Mode
PS0	Forced CCM or Auto CCM/DCM (by Mode Pin) - normal mode (Default)
PS1	Forced CCM or Auto CCM/DCM (by Mode Pin) - low power mode
PS2	Auto CCM/DCM - very low power mode

To have a consistent mode-change behavior and eliminate possible gate driver failures in response to SVID SetPS command, an internal mode-change synchronization circuit is employed. After receival of SetPS command, the internal mode-change signal is triggered at either a rising edge of PWM signal or a time-out signal on a first-come first-served basis. The time-out signal is asserted when both high-side and low-side MOSFETs are off for more than 200 ns in DCM operation.

Current-Mode RPM Operation

The NCP3293 operates with the current-mode Ramp-Pulse-Modulation (RPM) scheme in PS0/1/2/3 operation states. In Forced CCM mode, the inductor current is always continuous and the device operates in quasi-fixed switching frequency, which has a typical value programmed by users through a resistor at pin FREQ. In Auto CCM/DCM mode, the inductor current is continuous and the device operates in quasi-fixed switching frequency in medium and heavy load range, while the inductor current becomes discontinuous and the device automatically operates in PFM mode with an adaptive fixed on time and variable switching frequency in light load range.

Serial VID interface (SVID)

The NCP3293 supports Intel serial VID interface. It communicates with the microprocessor through three wires (Clk, Data, ALERT\#). Clk, Data and ALERT\# should be pulled high to CPU I/O voltage VTT (which is typically 1.0 to 1.1 V) using external Resistors. The SVID bus will operate at a frequency up to 43 MHz . For NCP3293, supported SVID commands are listed in Table 5. All the supported registers are shown in Table 6.

SVID Address and Boot-Up Voltage

SVID address is programmed at Addr pin and boot-up voltage is programmed at Vboot pin as shown in Table 9 and Table 10.

ICC_MAX and I_OUT

The NCP3293 reports output current $\mathrm{I}_{\text {OUT }}$ as a linear fraction of a full-scale output current named $\mathrm{I}_{\text {MAX }}$. $\mathrm{I}_{\text {MAX }}$ has 9 discrete levels, which should be selected according to the current limit set in the application with an essential margin. The NCP3293 detects external resistance $\mathrm{R}_{\text {Ilim }}$ at $\mathrm{I}_{\text {lim }}$ pin during system reset time before soft start and stores a corresponding IMAX value into Icc_Max register as shown in Table 11. The real output current value IOUT can be obtained from the reading I_out in the register 0x15h with a converting factor of $\mathrm{I}_{\mathrm{MAX}} / 255$.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{OUT}}=\frac{\mathrm{I}^{\text {out }_{15 \mathrm{~h}}}}{255} \cdot \mathrm{I}_{\mathrm{MAX}} \tag{eq.1}
\end{equation*}
$$

Table 9. SVID ADDRESS SELECTION

Resistance (+/-1\%) @ Addr Pin	SVID Address
Float	1111 b
150 k	1110 b
127 k	1101 b
105 k	1100 b
88.7 k	1011 b
75.0 k	1010 b
61.9 k	1001 b
51.1 k	1000 b
43.2 k	0111 b
36.5 k	0110 b
30.1 k	0101 b
21.0 k	0100 b
14.0 k	0011 b
9.53 k	0010 b
5.62 k	0001 b
0	0000 b

Table 10. BOOT-UP VOLTAGE SELECTION

Resistance (+/-1\%) @ Vboot Pin	Boot-Up Voltage (V)
Float	1.8
150 k	1.7
127 k	1.6
105 k	1.5
88.7 k	1.35
75.0 k	1.25
61.9 k	1.2
51.1 k	1.1
43.2 k	1.05
36.5 k	1.0
30.1 k	0.95
21.0 k	0.9
14.0 k	0.85
9.53 k	0.8
5.62 k	0.75
0	0

Table 11. ICC_MAX PROGRAMMING

Resistance ($\pm \mathbf{1 \%)}$ @ Ilim Pin	$\mathrm{I}_{\text {MAX }}(\mathbf{A})$	ICC_MAX Register (21h)	Valley Current Limit (A)
$\mathrm{R}_{\text {LIM }}=31.6 \mathrm{k} \Omega$	35	23 h	30
$\mathrm{R}_{\text {LIM }}=26.1 \mathrm{k} \Omega$	30	1 Eh	25
$\mathrm{R}_{\text {LIM }}=21.0 \mathrm{k} \Omega$	25	19 h	20
$\mathrm{R}_{\text {LIM }}=15.4 \mathrm{k} \Omega$	20	14 h	15
$\mathrm{R}_{\text {LIM }}=10.2 \mathrm{k} \Omega$	15	0 Fh	10
$\mathrm{R}_{\text {LIM }}=5.23 \mathrm{k} \Omega$	10	0 hh	5

Enable and Input UVLO

The NCP3293 is enabled when the voltage at EN pin is higher than an internal threshold $\mathrm{V}_{\mathrm{EN}} \mathrm{TH}$. A hysteresis can be programmed by an external resistor REN connected to EN pin as shown in Figure 4. The high threshold VEN_H in ENABLE signal is

$$
\begin{equation*}
\mathrm{V}_{\mathrm{EN}, \mathrm{H}}=\mathrm{V}_{\mathrm{EN}, \mathrm{TH}} \tag{eq.2}
\end{equation*}
$$

Figure 4. Enable and Hysteresis Programming
The low threshold $V_{E N _L}$ in ENABLE signal is

$$
\begin{equation*}
\mathrm{V}_{\mathrm{EN} _\mathrm{L}}=\mathrm{V}_{\mathrm{EN} _\mathrm{TH}}-\mathrm{V}_{\mathrm{EN} _} \mathrm{HYS} \tag{eq.3}
\end{equation*}
$$

The hysteresis VEN_HYS is

$$
V_{E N _H Y S}=I_{E N _H Y S} \cdot\left(R_{H Y S}+R_{E N}\right)
$$

A UVLO function for input power supply can be implemented at EN pin. As shown in Figure 5, the UVLO
threshold can be programmed by two external resistors. The high threshold VIN_H in VIN signal is

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN} _\mathrm{H}}=\left(\frac{\mathrm{R}_{\mathrm{EN} 1}}{\mathrm{R}_{\mathrm{EN} 2}}+1\right) \cdot \mathrm{V}_{\mathrm{EN}, \mathrm{TH}}, \tag{eq.5}
\end{equation*}
$$

The low threshold VIN_L in VIN signal is

$$
\begin{equation*}
V_{I N_{-} L}=V_{\mathbb{I N}_{-} H}-V_{\mathrm{IN}_{-} H Y S} \tag{eq.6}
\end{equation*}
$$

Figure 5. Enable and Input Supply UVLO Circuit
The hysteresis VIN_HYS is
$V_{I N _H Y S}=I_{E N _H Y S} \cdot\left(R_{H Y S}\left(1+\frac{R_{E N 1}}{R_{E N 2}}\right)+R_{E N 1}\right)$, eq. 7)
To avoid undefined operation, EN pin should not be left float in applications.

Over Current Protection (OCP)

The NCP3293 protects converter from over current by a cycle-by-cycle current limitation. The average current limit ILMT can be calculated from the programmed valley current limit ILMT_Valley and inductor current ripple.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{LMT}}=\mathrm{I}_{\mathrm{LMT} \text { _Valley }}+\frac{\mathrm{V}_{\mathrm{O}} \cdot\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{O}}\right)}{2 \cdot \mathrm{~V}_{\mathrm{IN}} \cdot \mathrm{~L} \cdot \mathrm{~F}_{\mathrm{SW}}}=9.62 \cdot 10^{-4} \cdot \mathrm{R}_{\mathrm{llim}}+\frac{\mathrm{V}_{\mathrm{O}} \cdot\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{O}}\right)}{2 \cdot \mathrm{~V}_{\mathrm{IN}} \cdot \mathrm{~L} \cdot \mathrm{~F}_{\mathrm{SW}}} \tag{eq.8}
\end{equation*}
$$

where $\mathrm{R}_{\text {Ilim }}$ is resistance of the programming resistor at Ilim pin, V_{IN} is input voltage, V_{O} is output voltage, L is filter inductance, and F_{SW} is nominal switching frequency.

OCP detection starts from beginning of soft-start time TSS, and ends in shutdown. Inductor current is monitored by voltage sensing between SW pin and PGND pin. If over current happens and lasts for more than $50 \mu \mathrm{~s}$, the device latches off. The device may trip under voltage protection before OCP latch-off if output voltage drops down very fast.

To restart the device after OCP latch-off, the system needs to have either VCC or EN toggled state.

Under Voltage Protection (UVP)

UVP detection starts when PGOOD delay Td_PGOOD is expired right after soft start, and ends in shutdown. The NCP3293 pulls PGOOD low and turns off both high-side and low-side MOSFETs once FB voltage drops below 0.2 V for more than $1.0 \mu \mathrm{~s}$. To restart the device after UVP
latch-off, the system needs to have either VCC or EN toggled state.

Over Voltage Protection (OVP)

OVP detection starts from the beginning of soft-start time TSS and ends in shutdown. During normal operation the output voltage is monitored at FB pin. If FB voltage exceeds the OVP threshold for more than $1 \mu \mathrm{~s}$, OVP is triggered and PGOOD is pulled low. In the meanwhile, the high-side MOSFET is latched off and the low-side MOSFET is turned on. After the OVP trips, the DAC ramps slowly down to

zero, having a negative slew rate as the same value of soft start to reduce negative output voltage spike. The low-side MOSFET toggles between on and off as the output voltage follows the OVP threshold down with a hysteresis. After the DAC gets to zero, the high-side MOSFET holds off and the low-side MOSFET keeps on. During soft-start, the OVP threshold is set to a fixed value of 2.0 V , and it changes to DAC +200 mV after DAC starts to ramp down due to OVP. To restart the device from OVP latch-off, the system needs to have either VCC or EN toggled state.

(b) During Start Up

Figure 6. Function of Over Voltage Protection

Thermal Shutdown (TSD)

The NCP3293 has an internal thermal shutdown protection to protect the device from overheating in an extreme case that the die temperature exceeds $150^{\circ} \mathrm{C}$. TSD detection is activated when VCC and EN are valid. Once the
thermal protection is triggered, the whole chip shuts down. If the temperature drops below $125^{\circ} \mathrm{C}$, the system automatically recovers and a normal power-up sequence follows.

LAYOUT GUIDELINES

Electrical Layout Considerations

Good electrical layout is a key to make sure proper operation, high efficiency, and noise reduction. Electrical layout guidelines are:

- Power Paths: Use wide and short traces for power paths (such as VIN, VOUT, SW, and PGND) to reduce parasitic inductance and high-frequency loop area. It is also good for efficiency improvement.
- Power Supply Decoupling: The device should be well decoupled by input capacitors and input loop area should be as small as possible to reduce parasitic inductance, input voltage spike, and noise emission. Usually, a small low-ESL MLCC is placed very close to PVIN and PGND pins.
- VCC Decoupling: Place decoupling caps as close as possible to the controller VCC and VDRV pins. The filter resistor at VCC pin should be not higher than 2.2Ω to prevent large voltage drop.
- Switching Node: SW node should be a copper pour, but compact because it is also a noise source.
- Bootstrap: The bootstrap cap and an option resistor need to be very close and directly connected between pin 26 (BST) and pin 25 (PHASE). No need to externally connect pin 25 to SW node because it has been internally connected to other SW pins.
- Ground: It would be good to have multiple ground planes. Directly connect the exposed PGND pad to
ground plane through multiple vias. Connect AGND pin to ground planes through a via close to the pin.
- Voltage Sense: Use Kelvin sense pair and arrange a "quiet" path for the differential output voltage sense. Keep the FB trace short to minimize its capacitance to ground.
- SVID Bus: The Serial VID bus is a high speed data bus and the bus routing should be done to limit noise coupling from the switching node. The SVID lines must be ground referenced and each line's width and spacing should be such that they have nominal 50Ω impedance with the board stackup. For details, please refer to Intel SVID routing guidelines.

Thermal Layout Considerations

Good thermal layout helps high power dissipation from a small package with reduced temperature rise. Thermal layout guidelines are:

- The exposed pads must be well soldered on the board.
- A four or more layers PCB board with solid ground planes is preferred for better heat dissipation.
- More free vias are welcome to be around IC and underneath the exposed pads to connect the inner ground layers to reduce thermal impedance.
- Use large area copper pour to help thermal conduction and radiation.
- Do not put the inductor to be too close to the IC, thus the heat sources are distributed.

PACKAGE DIMENSIONS

Abstract

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

