MOSFET – Power, Dual, N-Channel, DFN6 3X3 mm 20 V, 5.8 A/4.6 A

Features

- Exposed Drain Package
- Excellent Thermal Resistance for Superior Heat Dissipation
- Low Threshold Levels
- Low Profile (< 1 mm) Allows It to Fit Easily into Extremely Thin Environments
- This is a Pb–Free Device

Applications

- DC-DC Converters (Buck and Boost Circuits)
- Power Supplies
- Hard Disk Drives

MOSFET I MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

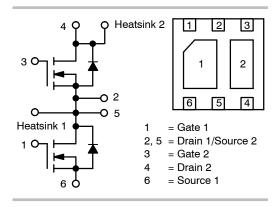
Param	Symbol	Value	Unit		
Drain-to-Source Voltag	je		V _{DSS}	20	V
Gate-to-Source Voltag	е		V _{GS}	±20	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	4.3	А
Current (Note 1)	State	$T_A = 85^{\circ}C$		3.0	
	t ≤ 5.0 s T			5.8	
Power Dissipation (Note 1)			PD	1.74	W
Pulsed Drain Current		t ≤10 μs	I _{DM}	17.2	А
Operating Junction and	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body D	ا _S	1.6	А		
Lead Temperature for S (1/8" from case for 10 s		urposes	ΤL	260	°C

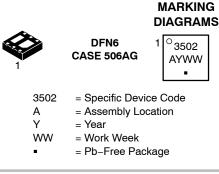
MOSFET II MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Paran	Symbol	Value	Unit		
Drain-to-Source Voltag	je		V _{DSS}	20	V
Gate-to-Source Voltag	е		V _{GS}	±12	V
Continuous Drain	Steady	T _A = 25°C	I _D	3.6	А
Current (Note 1)	State	T _A = 85°C		2.5	
	t ≤ 5.0 s			4.6	
Power Dissipation (Note 1)	Steady State	$T_A = 25^{\circ}C$	PD	1.74	W
Pulsed Drain Current	-	t ≤10 μs	I _{DM}	13.8	А
Operating Junction and	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body [۱ _S	1.7	А		
Lead Temperature for S (1/8" from case for 10 s		urposes	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)


ON Semiconductor®


http://onsemi.com

MOSFET I V_{(BR)DSS} R_{DS(on)} MAX I_D MAX 20 V 60 mΩ @ 4.5 V 5.8 A

MOSFET II

V _{(BR)DSS} R _{DS(on)} MAX		I _D MAX
20 V	90 mΩ @ 4.5 V	4.6 A

ORDERING INFORMATION

Device	Package	Shipping [†]
NTLGD3502NT1G	DFN6 (Pb-free)	3000/Tape & Reel
NTLGD3502NT2G	DFN6 (Pb–free)	3000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

2. Surface Mounted on FR4 Board using the minimum recommended pad size of 30 $\rm mm^2, 1~oz.~Cu$

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{ hetaJA}$	72	°C/W
Junction-to-Ambient – t \leq 5 s (Note 1)	$R_{ hetaJA}$	40	
Junction-to-Ambient - Steady State min Pad (Note 2)	$R_{ hetaJA}$	110	
Junction-to-Ambient - Pulsed (25% duty cycle) min Pad (Note 2)	R _{0JA}	60	

MOSFET I ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Conditio	ons	Min	Тур	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Off Characteristics							
		V _{(BR)DSS}	V _{GS} = 0 V, I _D = 2	250 μΑ	20			V
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \hline \end{tabular} \hline \begin{tabular}{ c c c c } \hline \hline \end{tabular} \hline \hline tabula$		V _{(BR)DSS} /T _J	I _D = 250 μA, ref t	o 25°C		10		mV/°C
$ \begin{array}{ c c c c c } \hline \mbox{Gate-to-Source Leakage Current} & l_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V & 100 \ nA \\ \hline \mbox{On Characteristics (Note 3)} \\ \hline \mbox{Gate Threshold Voltage} & V_{GS(TH)} & V_{GS} = V_{DS}, \ l_{D} = 250 \ \mu A & 1.0 & 1.7 & 2.0 & V \\ \hline \mbox{Negative Threshold Temperature} & V_{GS(TH)} & V_{GS} = V_{DS}, \ l_{D} = 250 \ \mu A & 1.0 & 1.7 & 2.0 & V \\ \hline \mbox{Negative Threshold Temperature} & V_{GS(TH)} & V_{GS} = 4.5 \ V, \ l_{D} = 4.3 \ A & 50 & 60 & m\Omega \\ \hline \mbox{Forward Transconductance} & g_{FS} & V_{DS} = 10 \ V, \ l_{D} = 4.0 \ A & 5.9 & 5.9 & S \\ \hline \mbox{Charges, Capacitances & Gate Resistance} & & & & & & & & & & & & & & & & & & &$	Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 16 V	$T_J = 25^{\circ}C$			1.0	μΑ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				T _J = 125°C			10	
$ \begin{array}{ c c c c c } \hline Gate Threshold Voltage & V_{GS(TH)} & V_{GS} = V_{DS}, I_D = 250 \ \mu A & 1.0 & 1.7 & 2.0 & V \\ \hline Negative Threshold Temperature & V_{GS(TH)}/T_J & & & & & & & & & & & & & & & & & & &$	Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	±20 V			±100	nA
$ \begin{array}{ c c c c c c } \hline Negative Threshold Temperature Coefficient V_{GS(TH)}/T_J Coefficient V_{GS(TH)}/T_J Coefficient V_{GS} = 4.5 V, I_D = 4.3 A & 50 & 60 & m\Omega \\ \hline Drain-to-Source On Resistance & R_{DS(on)} & V_{GS} = 4.5 V, I_D = 4.3 A & 50 & 60 & m\Omega \\ \hline Forward Transconductance & g_{FS} & V_{DS} = 10 V, I_D = 4.0 A & 5.9 & S \\ \hline Charges, Capacitances & Gate Resistance & \\ \hline Input Capacitance & C_{ISS} & & & & & & & & & & & & & & & & & & $	On Characteristics (Note 3)							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 1$	250 μΑ	1.0	1.7	2.0	V
$ \begin{array}{ c c c c } \hline Forward Transconductance & g_{FS} & V_{DS} = 10 \ V, \ I_D = 4.0 \ A & 5.9 & S \\ \hline \mbox{Charges, Capacitances & Gate Resistance} \\ \hline \mbox{Input Capacitance} & C_{ISS} & V_{OS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 10 \ V \\ \hline \mbox{Output Capacitance} & C_{OSS} & & 1138 & 200 \\ \hline \mbox{Output Capacitance} & C_{OSS} & & 52 & 90 \\ \hline \mbox{Total Gate Charge} & Q_{G(TOT)} & V_{GS} = 4.5 \ V, \ V_{DS} = 10 \ V, \ I_D = 4.3 \ A \\ (Note 3) & & 1.0 & & \\ \hline \mbox{Gate-to-Drain Charge} & Q_{GS} & & & & & & & & & & & & & & & & & & &$		V _{GS(TH)} /T _J				-4.4		mV/°C
$\begin{tabular}{ c c c c c } \hline Charges, Capacitances & Gate Resistance & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D =	= 4.3 A		50	60	mΩ
$\begin{array}{ c c c c c c } \hline \mbox{Input Capacitance} & C_{ISS} & V_{GS} = 0 \ V, \ \mbox{f} = 1 \ \mbox{MHz}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 4.0 A			5.9		S
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Charges, Capacitances & Gate Resi	stance						
$ \begin{array}{ c c c c c } \hline Reverse Transfer Capacitance & C_{RSS} & & & & & & & & & & & & & & & & & & $	Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz,	V _{DS} = 10 V		250	480	pF
$ \begin{array}{ c c c c } \hline Total Gate Charge & Q_{G(TOT)} & V_{GS} = 4.5 \ V, \ V_{DS} = 10 \ V; \ I_D = 4.3 \ A, \ (Note 3) & 1.0 & 0.0 & 0.$	Output Capacitance	C _{OSS}				138	200	
$ \begin{array}{ c c c c c } \hline Gate-to-Source Charge & Q_{GS} & (Note 3) & 1.0 & 0.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	Reverse Transfer Capacitance	C _{RSS}				52	90	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10$	V; I _D = 4.3 A		2.9	4.0	nC
$ \begin{array}{c c c c c c c c c } \hline Gate Resistance & R_G & & & & & & & & & & & & & & & & & & &$	Gate-to-Source Charge	Q _{GS}	(Note 3)			1.0		1
Switching Characteristics, $V_{GS} = 4.5 V$ (Note 4) $V_{GS} = 4.5 V$, $V_{DD} = 10 V$, $I_D = 4.3 A$, $R_G = 10 \Omega$ 7.0 12 ns Rise Time t_r $I_D = 4.3 A$, $R_G = 10 \Omega$ 17.5 25 8.6 15 Turn-Off Delay Time $t_d(OFF)$ I_T 3.3 5.0 17 12 ns Fall Time t_f $V_{GS} = 0 V$, $I_S = 1.6 A$ $T_J = 25^{\circ}C$ 0.78 1.2 V Poward Diode Voltage V_{SD} $V_{GS} = 0 V$, $I_S = 1.6 A$ $T_J = 25^{\circ}C$ 0.63 10 Reverse Recovery Time t_{RR} $V_{GS} = 0 V$, $d_{ISD}/d_t = 100 A/\mu s$, $I_S = 1.0 A$ 16.7 16.7 ns Charge Time t_a $V_{GS} = 0 V$, $d_{ISD}/d_t = 100 A/\mu s$, $I_S = 1.0 A$ 8.2 10.7 ns	Gate-to-Drain Charge	Q _{GD}				1.1		
$\begin{tabular}{ c c c c c c c c c c } \hline Turn-On Delay Time & t_d(ON) & t_d(OFF) & V_{GS} = 4.5 \ V, \ V_{DD} = 10 \ V, \\ I_D = 4.3 \ A, \ R_G = 10 \ \Omega & 17.5 & 25 & 17.5 & 25 & 8.6 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 1$	Gate Resistance	R _G				1.5		Ω
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Switching Characteristics, V _{GS} = 4.8	5 V (Note 4)				-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD}	= 10 V,		7.0	12	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time	t _r	I _D = 4.3 A, R _G =	10 Ω		17.5	25	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(OFF)}				8.6	15	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f				3.3	5.0	1
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Drain-Source Diode Characteristics							
Reverse Recovery Time t_{RR} $V_{GS} = 0 V, d_{ISD}/d_t = 100 A/\mu s,$ $I_S = 1.0 A$ 16.7nsCharge Time t_a 8.28.28.216.716.7	Forward Diode Voltage	V _{SD}	V_{GS} = 0 V, I _S = 1.6 A	$T_J = 25^{\circ}C$		0.78	1.2	V
Charge Time t _a I _S = 1.0 A 8.2				T _J = 125°C		0.63		1
Charge Time t _a 8.2	Reverse Recovery Time	t _{RR}	$V_{GS} = 0 V, d_{ISD}/d_t =$	100 A/μs,		16.7		ns
Discharge Time t _b 8.5	Charge Time	t _a	– I _S = 1.0 A			8.2		1
	Discharge Time	t _b	1			8.5		1

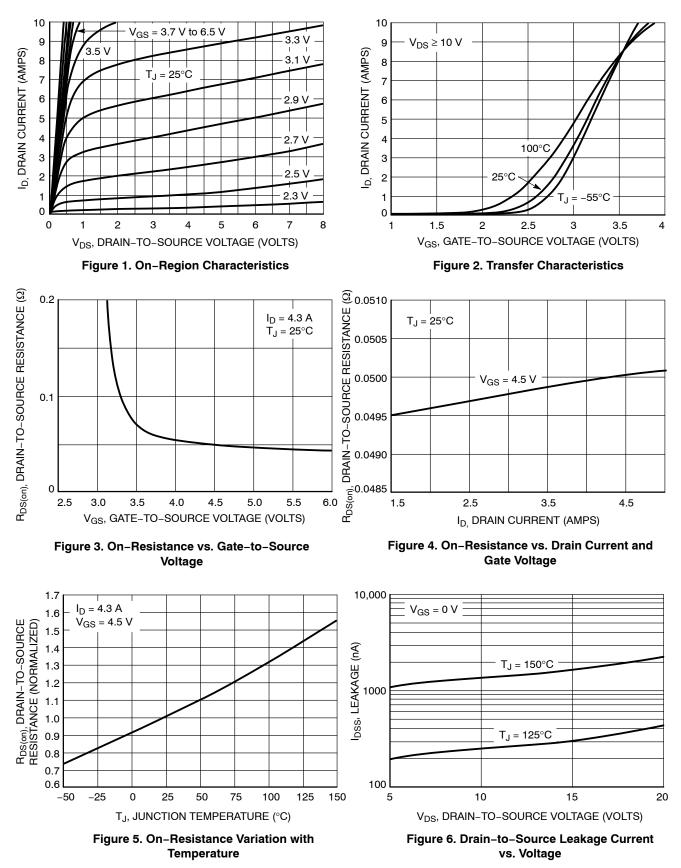
Reverse Recovery Charge

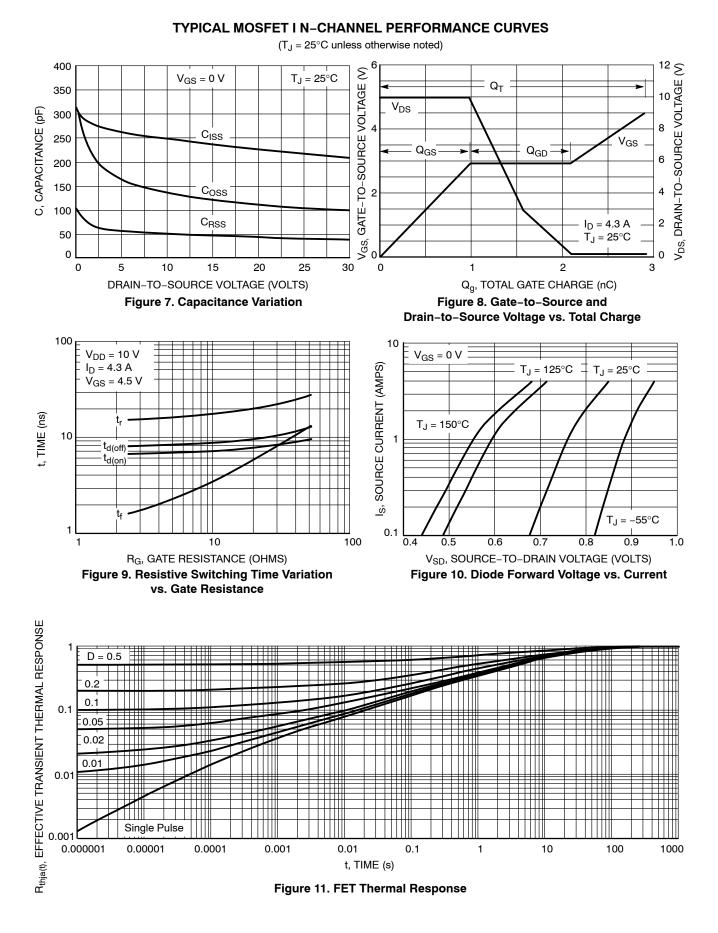
3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% 4. Switching characteristics are independent of operating junction temperatures

 $\mathsf{Q}_{\mathsf{R}\mathsf{R}}$

7.0

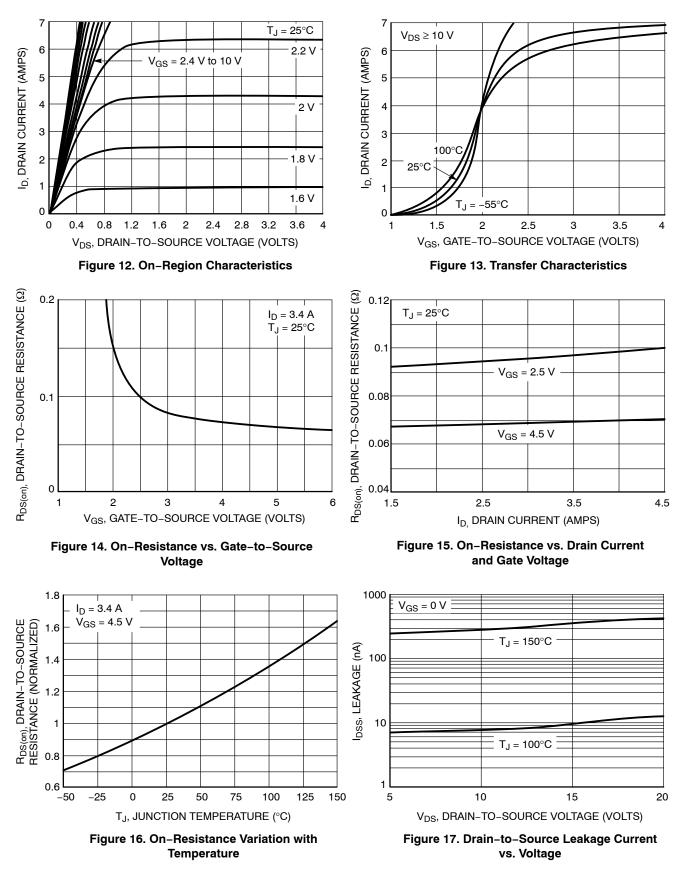
nC

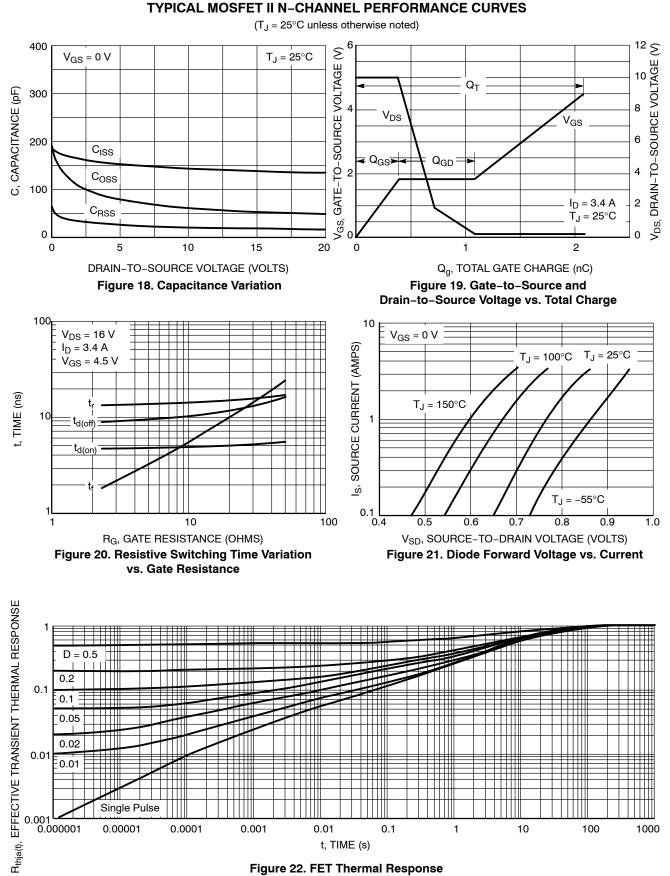

MOSFET II ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter	Symbol	Test Condition	ons	Min	Тур	Max	Unit
Off Characteristics							
Drain–to–Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_{D} = 250 μA		20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, ref t	o 25°C		22		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 16 V	T _J = 25°C T _J = 125°C			1 10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	±12 V			±100	nA
On Characteristics (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	250 μA	0.6		2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-2.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D =	= 3.4 A		70	90	mΩ
		V _{GS} = 2.5 V, I _D = 1.7 A			95	120	1
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 3.4 A			6.7		S
Charges, Capacitances & Gate Res	stance						
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 10 V			144	275	pF
Output Capacitance	C _{OSS}				67	125	1
Reverse Transfer Capacitance	C _{RSS}				22	40	1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 10	V; I _D = 3.4 A		2.1	5.0	nC
Threshold Gate Charge	Q _{G(TH)}				0.11		1
Gate-to-Source Charge	Q _{GS}				0.42		1
Gate-to-Drain Charge	Q _{GD}				0.7		
Switching Characteristics, V _{GS} = 4.	5 V (Note 6)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD}			4.8	10	ns
Rise Time	t _r	I _D = 3.4 A, R _G =	- 10 Ω		13.6	25	1
Turn-Off Delay Time	t _{d(OFF)}				9.0	20	
Fall Time	t _f]			1.9	5.0	
Drain-Source Diode Characteristics	5						
Forward Diode Voltage	V _{SD}	V_{GS} = 0 V, I _S = 1.7 A	$T_J = 25^{\circ}C$		0.8	1.15	V
			T _J = 150°C		0.63]
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 V, d_{ISD}/d_t =$			12		ns
Charge Time	t _a	I _S = 1.0 A			8.0]
Discharge Time	t _b				4.0		1
Reverse Recovery Charge	Q _{RR}	7			5.0		nC

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% 6. Switching characteristics are independent of operating junction temperatures

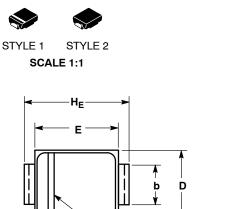
TYPICAL MOSFET I N-CHANNEL PERFORMANCE CURVES

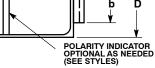

(T_J = $25^{\circ}C$ unless otherwise noted)

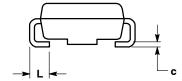


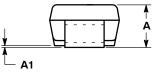
TYPICAL MOSFET II N-CHANNEL PERFORMANCE CURVES

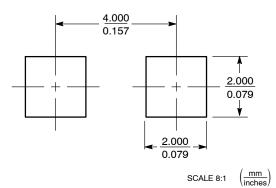
(T_J = 25°C unless otherwise noted)


igure 22. FET Thermal Response


MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

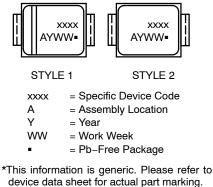

ON Semiconductor[®]


DATE 23 SEP 2015



SMA CASE 403D **ISSUE H**

SOLDERING FOOTPRINT*


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M,

DIMERSION IN THE FORMATION INCL.
 CONTROLLING DIMENSION: INCH.
 DIMENSION 5 SHALL BE MEASURED WITHIN DIMENSION L.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.97	2.10	2.20	0.078	0.083	0.087	
A1	0.05	0.10	0.20	0.002	0.004	0.008	
b	1.27	1.45	1.63	0.050	0.057	0.064	
С	0.15	0.28	0.41	0.006	0.011	0.016	
D	2.29	2.60	2.92	0.090	0.103	0.115	
Е	4.06	4.32	4.57	0.160	0.170	0.180	
HE	4.83	5.21	5.59	0.190	0.205	0.220	
L	0.76	1.14	1.52	0.030	0.045	0.060	

device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

STYLE 2: NO POLARITY STYLE 1: PIN 1. CATHODE (POLARITY BAND) 2. ANODE

DOCUMENT NUMBER:	IENT NUMBER: 98AON04079D Electronic versions are uncontrolled except when accessed directly from the Document Reposition Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SMA		PAGE 1 OF 1			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconductor	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically			

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥