

www.vishay.com

Vishay Vitramon

AUTOMOTIV

FREE

Surface Mount Multilayer Ceramic Chip Capacitors for Automotive Applications

FEATURES

- AEC-Q200 qualified with PPAP available
- Available in 0402 to 1812 body size
- Four dielectric materials
- AgPd termination available for silver epoxy bonding
- · High operating temperature
- · Wet build process
- Reliable Noble Metal Electrode (NME) system
- RoHS and ELV (end-of-life vehicles) compliance, see Selection Charts
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

For more than 25 years Vishay Vitramon has supported the automotive industry with robust, highly reliable MLCCs that have made it a leader in this segment. All Vishay Vitramon MLCCs are manufactured in "Precious Metal Technology" (PMT / NME) and a wet build process. They are qualified according to AEC-Q200 with PPAP available on request. Applications for these devices include automotive "under the hood", safety and comfort electronics. Their termination finish is 100 % matte tin plate finish and AgPd which is used with silver epoxy bonding. A polymer (flexible) termination with 100 % matte tin plate finish is offered for boardflex sensitive applications.

COG (NPO) DIELECTRIC

GENERAL SPECIFICATION

Note

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +150 °C (above +125 °C changed characteristics, see 2.3)

Capacitance Range: 1 pF to 22 nF Voltage Range: 25 V_{DC} to 3000 V_{DC}

Temperature Coefficient of Capacitance (TCC): 0 ppm/°C ± 30 ppm/°C from -55 °C to +125 °C

Dissipation Factor (DF):

0.1 % maximum at 1.0 V_{RMS} and 1 MHz for values \leq 1000 pF 0.1 % maximum at 1.0 V_{RMS} and 1 kHz for values > 1000 pF

Insulating Resistance:

at +25 °C 100 000 M Ω min. or 1000 Ω F whichever is less at +125 °C 10 000 M Ω min. or 100 Ω F whichever is less

Aging: 0 % maximum per decade

Dielectric Strength Test:

performed per method 103 of EIA 198-2-E.

Applied test voltages

 $\begin{array}{lll} \leq 250 \; V_{DC}\text{-rated:} & 250 \; \% \; \text{of rated voltage} \\ 500 \; V_{DC}\text{-rated:} & 200 \; \% \; \text{of rated voltage} \\ 630 \; V_{DC}, \; 1000 \; V_{DC}\text{-rated:} & 150 \; \% \; \text{of rated voltage} \\ 3000 \; V_{DC}\text{-rated:} & 120 \; \% \; \text{of rated voltage} \\ \end{array}$

X7R, X8R DIELECTRIC

GENERAL SPECIFICATION

Note

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +150 °C

(X7R above +125 °C changed characteristics, see 2.3)

Capacitance Range: 120 pF to 1.0 µF

Voltage Range: 16 V_{DC} to 1000 V_{DC}

Temperature Coefficient of Capacitance (TCC):

X7R: \pm 15 % from -55 °C to +125 °C, with 0 V_{DC} applied X8R: \pm 15 % from -55 °C to +150 °C, with 0 V_{DC} applied

Dissipation Factor (DF):

10 V ratings: 5 % maximum at 1.0 V_{RMS} and 1 kHz 16 V, 25 V ratings: 3.5 % maximum at 1.0 V_{RMS} and 1 kHz > 25 V ratings: 2.5 % maximum at 1.0 V_{RMS} and 1 kHz

Insulating Resistance:

at +25 °C 100 000 M Ω min. or 1000 Ω F whichever is less at +125 °C 10 000 M Ω min. or 100 Ω F whichever is less

Aging Rate: 1 % maximum per decade

Dielectric Strength Test:

performed per method 103 of EIA 198-2-E.

Applied test voltages

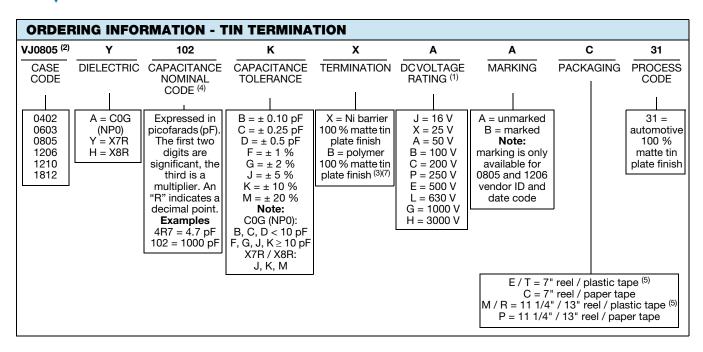
 $\leq 250 \text{ V}_{DC}\text{-rated:} \\ 500 \text{ V}_{DC}\text{-rated:} \\ 630 \text{ V}_{DC}, 1000 \text{ V}_{DC}\text{-rated:} \\ \text{min. } 150 \text{ \% of rated voltage} \\ \text{min. } 120 \text{ \% of rated voltage}$

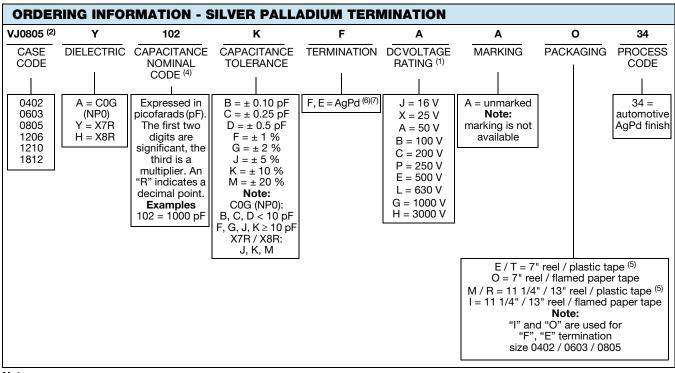
Revision: 29-May-2018 **1** Document Number: 45040 For technical questions, contact: mlcc@vishay.com

www.vishay.com

Vishay Vitramon

DIEL FOTDIO	0405 0005	MAXIMUM VOLTAGE	CAPAC	ITANCE	
DIELECTRIC	CASE CODE	(V)	MINIMUM	MAXIMUM	
	0402	100	1.0 pF	220 pF	
	0603	200	1.0 pF	1.0 nF	
COG (NPO)	0805	500	1.0 pF	3.9 nF	
	1206	630	1.0 pF	10 nF	
	1210	630	100 pF	12 nF	
	1812	3000	27 pF	22 nF	
	0402	100	120 pF	47 nF	
	0603	200	330 pF	150 nF	
X7R	0805	500	330 pF	470 nF	
A/h	1206	630	220 pF	1.0 µF	
	1210	630	390 pF	1.0 µF	
	1812	630	10 nF	1.0 µF	
	0402	100	330 pF	6.8 nF	
	0603	100	470 pF	33 nF	
X8R	0805	100	470 pF	100 nF	
	1206	50	1.0 nF	220 nF	
	1210	50	10 nF	390 nF	


Note

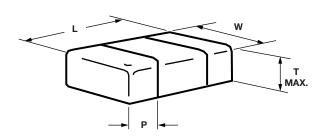

• Detail ratings see "Selection Chart"

www.vishay.com

Vishay Vitramon

Notes

- (1) DC voltage rating should not be exceeded in application. Other application factors may affect the MLCC performance. Consult for questions: mlcc@vishav.com
- (2) Case size designator may be replaced by a four digit drawing number
- (3) Polymer termination for size 0603 and larger, contact mlcc@vishay.com for availability of ratings. Packaging only plastic tape "T" / "R"
- (4) Non-standard values please contact: mlcc@vishay.com for availability
- (5) Packaging "T" and "R" is used for 1812 size
- (6) Termination code "E" is for conductive epoxy assembly.
- (7) Termination code "B" and "F" are not available with X8R in 0402, 0603 100 V, 0805 100 V.


Revision: 29-May-2018 3 Document Number: 45040

www.vishay.com

Vishay Vitramon

DIMENSIONS in inches (millimeters)

CASE CODE	STYLE	LENGTH	WIDTH	MAXIMUM THICKNESS	TERMINAT (F	TIONS PAD P)
CODE		(L)	(W)	(T)	MINIMUM	MAXIMUM
0402	VJ0402	0.040 + 0.004 / - 0.002 (1.00 + 0.10 / - 0.05)	0.020 + 0.004 / - 0.002 (0.50 + 0.10 / - 0.05)	0.024 (0.60)	0.004 (0.10)	0.016 (0.41)
0603	VJ0603	0.063 ± 0.006 (1.60 ± 0.15)	0.031 ± 0.006 (0.80 ± 0.15)	0.038 (0.97)	0.012 (0.30)	0.018 (0.46)
0805	VJ0805	0.079 ± 0.008 (2.00 ± 0.20)	0.049 ± 0.008 (1.25 ± 0.20)	0.057 (1.45)	0.010 (0.25)	0.028 (0.71)
1206	VJ1206	0.126 ± 0.010 (3.20 ± 0.25)	0.063 ± 0.010 (1.60 ± 0.25)	0.067 (1.70)	0.010 (0.25)	0.028 (0.71)
1210	VJ1210	0.126 ± 0.010 (3.20 ± 0.25)	0.098 ± 0.010 (2.50 ± 0.25)	0.076 (1.94)	0.010 (0.25)	0.028 (0.71)
1812	VJ1812	0.177 ± 0.010 (4.50 ± 0.25)	0.126 ± 0.010 (3.20 ± 0.25)	0.086 (2.18)	0.010 (0.25)	0.030 (0.76)

Note

Polymer (B-termination) have increased dimensions: part length increased by 0.006" (0.15 mm)

www.vishay.com

Vishay Vitramon

SELECTIO	ON CHART	T								
DIELECTRIC						COG (NPO)				
STYLE		VJ0	402		VJ0603	, ,		VJC	805	
CASE CODE		04	02		0603			30	05	
VOLTAGE (V		25 / 50	100	50	100	200	50	100	200	500
VOLTAGE CO		X/A	В	Α	В	С	Α	В	С	E
CAP. CODE	CAP.									
1R0	1.0 pF	••	••	••	••	••	••	••	••	••
1R2	1.2 pF	••	••	••	••	••	••	••	••	••
1R5 1R8	1.5 pF 1.8 pF	••	••	••	••	••	••	••	••	••
2R2	2.2 pF	••	••	••	••	••	••	••	••	••
2R7	2.2 pr 2.7 pF	••	••	••	••	••	••	••	••	••
3R3	3.3 pF	••	••	••	••	••	••	••	••	••
3R9	3.9 pF	••	••	••	••	••	••	••	••	••
4R7	4.7 pF	••	••	••	••	••	••	••	••	••
5R6	5.6 pF	••	••	••	••	••	••	••	••	••
6R8	6.8 pF	••	••	••	••	••	••	••	••	••
8R2	8.2 pF	••	••	••	••	••	••	••	••	••
100	10 pF	••	••	••	••	••	••	••	••	••
120	12 pF	••	••	••	••	••	••	••	••	••
150 180	15 pF 18 pF	••	••	••	••	••	••	••	••	••
220	22 pF	++	++	••	••	••	••	••	••	••
270	22 pF 27 pF	++	++	••	••	••	••	••	••	••
330	33 pF	++	++	••	••	••	••	••	••	••
390	39 pF	++	++	••	••	••	••	••	••	••
470	47 pF	++	++	••	••	••	••	••	••	••
560	56 pF	++	++	++	++	++	••	••	••	••
680	68 pF	++	++	++	++	++	••	••	••	••
820	82 pF	++	++	++	++	++	••	••	••	••
101	100 pF	++	++	++	++	++	++	++	++	++
121	120 pF	++	++	++	++	++	++	++	++	++
151 181	150 pF 180 pF	++		++	++	++	++	++	++	++
221	220 pF	++		++	++	+	++	++	++	++
271	270 pF	TT		++	++	+	++	++	++	+
331	330 pF			++	++		++	++	++	+
391	390 pF			++	++		++	++	++	+
471	470 pF			++	++		++	++	+	+
561	560 pF			++			++	++	+	
681	680 pF			++			++	++	+	
821	820 pF			++			++	++	+	
102 122	1.0 nF 1.2 nF			++			++	++	+	
152	1.2 nF 1.5 nF						++	+		
182	1.8 nF						+	+		
222	2.2 nF						+	'		
272	2.7 nF						+			
332	3.3 nF						+			
392	3.9 nF						+			
472	4.7 nF				1					
562	5.6 nF									
682 822	6.8 nF 8.2 nF									
103	8.2 nF 10 nF	1								
123	12 nF									
153	15 nF									
183	18 nF									
223	22 nF									
273	27 nF									
333	33 nF									
393	39 nF									
473	47 nF				1					
563	56 nF			l	L					<u> </u>

Notes

- •• Paper tape, Plastic tape, ++ Paper tape, + Plastic tape, see table "Product drawings (in use)"
- (1) See soldering recommendations within this data book, or visit <u>www.vishay.com/doc?45034</u>
 - RoHS and ELV (end-of-life vehicles) compliant
 - Not RoHS and ELV (end-of-life vehicles) compliant

Revision: 29-May-2018 5 Document Number: 45040

www.vishay.com

Vishay Vitramon

DIEL ECTOR	^								('() ()							
DIELECTRIC STYLE	<i>-</i>			VJ120	ne (1)			V.I	C0G 1210 ⁽¹				V.	J1812 ⁽¹⁾		
CASE CODE	=			120					1210	•			•	1812		
VOLTAGE (\	/ _{DC})	50	100	200	250	500 / 630	50	100	200	500 / 630	50	100	200	500 / 630	1000	300
VOLTAGE C	ODE	Α	В	С	Р	E/L	Α	В	O	E/L	Α	В	С	E/L	G	Н
CAP. CODE																
1R0	1.0 pF	••	••	••		••										
1R2	1.2 pF	••	••	••		••										
1R5 1R8	1.5 pF 1.8 pF	••	••	••		••										┼
2R2	2.2 pF	••	••	••		••										╁
2R7	2.7 pF	••	••	••		••										
3R3	3.3 pF	••	••	••		••										
3R9	3.9 pF	••	••	••		••										
4R7	4.7 pF	••	••	••		••										
5R6	5.6 pF	••	••	••		••										
6R8	6.8 pF	••	••	••		••										
8R2	8.2 pF	••	••	••		••										
100	10 pF	••	••	••		••										₩
120 150	12 pF 15 pF	••	••	••		••										
180	15 pF 18 pF	••	••	••		••										
220	22 pF	••	••	••		••										\vdash
270	27 pF	••	••	••		••									•	
330	33 pF	••	••	••		••									•	_
390	39 pF	••	••	••		••					•	•	•	•	•	•
470	47 pF	••	••	••		••					•	•	•	•	•	•
560	56 pF	••	••	••		••					•	•	•	•	•	•
680	68 pF	••	••	••		••					•	•	•	•	•	•
820	82 pF	••	••	••		••					•	•	•	•	•	_
101	100 pF	+	+	+		+	+	+	+	+	•	•	•	•	•	•
121 151	120 pF	+	+	+		+	+	+	+	+	•	•	•	•	•	4
181	150 pF 180 pF	+	+	+		+	+	+	+	+	•	•	•	•	·	1
221	220 pF	+	+	+		+	+	+	+	+	•	•	•	•	•	1
271	270 pF	+	+	+		+	+	+	+	+	•	•	•	•	•	1
331	330 pF	+	+	+		+	+	+	+	+	•	•	•	•	•	
391	390 pF	+	+	+		+	+	+	+	+	•	•	•	•	•	
471	470 pF	+	+	+		+	+	+	+	+	•	•	•	•	•	
561	560 pF	+	+	+		+	+	+	+	+	•	•	•	•	•	
681	680 pF	+	+	+		+	+	+	+	+	•	•	•	•	•	
821	820 pF	+	+	+		+	+	+	+	+	•	•	•	•	•	
102	1.0 nF	+	+	+		+	+	+	+	+	•	•	•	•	•	
122 152	1.2 nF 1.5 nF	+	+	+			+	+	+	+	•	•	•	•	•	+-
182	1.8 nF	+	+	+			+	+	+	+	•	•	•	•	•	\vdash
222	2.2 nF	+	+	+	+		+	+	+	Т	•	•	•	•	•	\vdash
272	2.7 nF	+	+	+			+	+	+		•	•	•	•		1
332	3.3 nF	+	+	+			+	+	+		•	•	•	•		
392	3.9 nF	+	+				+	+	+		•	•	•	•		
472	4.7 nF	+	+				+	+	+		•	•	•	•		
562	5.6 nF	+	+				+	+	+		•	•	•			
682	6.8 nF	+	+				+	+	+		•	•	•			₩
822	8.2 nF	+	+				+	+	+		•	•	•			₩
103 123	10 nF 12 nF	+	+				+	+			•	•	•			\vdash
153	12 nF 15 nF						+	+			•	•				
183	18 nF										•					+
223	22 nF										•					t
273	27 nF												1			T
333	33 nF															
393	39 nF															
473	47 nF															
563	56 nF															

Notes

- •• Paper tape, Plastic tape, ++ Paper tape, + Plastic tape, see table "Product drawings (in use)"
- (1) See soldering recommendations within this data book, or visit www.vishay.com/doc?45034
 - RoHS and ELV (end-of-life vehicles) compliant
- Not RoHS and ELV (end-of-life vehicles) compliant

Revision: 29-May-2018 6 Document Number: 45040

www.vishay.com

SELECTIO	ON CHAP	RT															
DIELECTRIC		1							X7	'R							
STYLE			VJO	402			,	VJ0603						VJ0805	5		
CASE CODE			04	-02				0603						0805			
VOLTAGE (V	oc)	16	25	50	100	16	25	50	100	200	16	25	50	100	200	250	500
VOLTAGE CO		J	Х	Α	В	J	Х	Α	В	С	J	Х	Α	В	С	Р	Е
CAP. CODE	CAP.																
121	120 pF	••	••	••	••												
151	150 pF	••	••	••	••												
181	180 pF	••	••	••	••												
221	220 pF	••	••	••	••												<u> </u>
271	270 pF	••	••	••	••												ļ
331	330 pF	••	••	••	••			••	••	••	••	••	••	••	••		ļ
391	390 pF 470 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		
471 561	560 pF	••	••	••	••	••	••	••	••	••	••	••	••	•••	••		-
681	680 pF	••	••	••	••	••	••	••	••	••	•••	••	••	•••	••		
821	820 pF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		
102	1.0 nF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		
122	1.2 nF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		
152	1.5 nF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		
182	1.8 nF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		
222	2.2 nF	••	••	••	••	••	••	••	••	••	••	••	••	••	••		
272	2.7 nF	••	••	••	++	••	••	••	••	••	••	••	••	••	••		
332	3.3 nF	••	••	••	++	••	••	••	••	••	••	••	••	••	••		•
392	3.9 nF	••	••	••	++	••	••	••	••	••	••	••	••	••	••		
472	4.7 nF	••	••	••	++	••	••	••	••	••	••	••	••	••	••		
562	5.6 nF	••	••	++		••	••	••	••		••	••	••	••	••		
682 822	6.8 nF 8.2 nF	••	••	++		••	••	••	••		••	••	••	••	••		
103	10 nF	++	++	++		••	••	••	••		••	••	••	•••	••	••	
123	12 nF	++	++	++		••	••	••	++		••	••	••	••	•		
153	15 nF	++	++			••	••	••	++		••	••	••	••	•		
183	18 nF	++	++			••	••	••	++		••	••	••	••	•		
223	22 nF	++				••	••	••	++		••	••	••	••	•		
273	27 nF	++				••	••	••	++		••	••	••	••	•		
333	33 nF	++				••	••	++	++		••	••	••	•			
393	39 nF	++				••	••	++	++		••	••	••	•			
473	47 nF	++				••	••	++			••	••	••	•			
563	56 nF					••	++	++			••	••	••	+			ļ
683	68 nF					••	++	++			+	+	+	+			ļ
823	82 nF	!	1	1	1	••	++	++	-	1	+	+	+	+	-	-	
104 124	100 nF 120 nF	 	 	 	 	++	++	++		 	+	+	+	+			<u> </u>
154	150 nF	 	 	 	 	+				 	+	+	+				1
184	180 nF		1	1	1	T				1	+	+	Т				1
224	220 nF	l									+	+					<u> </u>
274	270 nF		i	İ	i	1				i	+	+					
334	330 nF										+	+					
394	390 nF										+						
474	470 nF										+						
564	560 nF	ļ				ļ											<u> </u>
684	680 nF	<u> </u>				 											<u> </u>
824	820 nF	.	ļ	ļ	ļ	 	1			ļ	ļ	 	ļ	 			
105 125	1.0 µF 1.2 µF	 	<u> </u>	<u> </u>	<u> </u>	-				<u> </u>		-		-			-
155	1.2 µF	-	-	-	-	1				-	-	1		1			}
185	1.8 µF	 	 	 	 	1				 		1		1			1
225	2.2 µF	 	 	 	 	 				 	1	 		 			1
275	2.7 µF					1											
335	3.3 µF		1	1	1	1				1							1
395	3.9 µF	Ī					Ì						İ				
475	4.7 µF																
565	5.6 µF																
685	6.8 µF																

- Paper tape,
 Plastic tape,
 Plastic tape,
 Plastic tape,
 See soldering recommendations within this data book, or visit www.vishay.com/doc?45034
- RoHS and ELV (end-of-life vehicles) compliant
- Not RoHS and ELV (end-of-life vehicles) compliant

www.vishay.com

Vishay Vitramon

	1									X7	R							
DIELECTRIC	,			V.	11206	(1)				V.	J1210	(1)			V	J1812	(1)	
CASE CODE				V (1206					V.	1210	•				1812	•	
VOLTAGE (V	(no)	16	25	50	100	200	500 / 630	16	25	50	100	200	500 / 630	50	100	200	500	630
VOLTAGE C	ODE	J	X	A	В	C	E/L	J	X	A	B	C	E/L	A	B	C	E	L
CAP. CODE	CAP.						-						-					
121	120 pF																	
151	150 pF																	
181	180 pF																	
221	220 pF						•											
271	270 pF						•											
331	330 pF						•											
391	390 pF						•						•					
471	470 pF						•						•					
561	560 pF						•						•					
681	680 pF						•						•					
821	820 pF			•	•	•	•						•					
102	1.0 nF	•	•	•	•	•	•				1		•					<u> </u>
122	1.2 nF	•	•	•	•	•	•				1		•					<u> </u>
152 182	1.5 nF	•	•	•	•	•	•				1		•					
222	1.8 nF 2.2 nF	•	•	•	•	•	•				1	•	•					-
272	2.2 nF 2.7 nF	•	•	•	•	•	•					•	•					
332	3.3 nF	•	•	•	•	•	•				1	•	•					
392	3.9 nF	•	•	•	•	•	•				1	•	•					
472	4.7 nF	•	•	•	•	•	•					•	•					
562	5.6 nF	•	•	•	•	•	•					•	•					
682	6.8 nF	•	•	•	•	•	•					•	•					
822	8.2 nF	•	•	•	•	•	•					•	•					
103	10 nF	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•
123	12 nF	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•
153	15 nF	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•
183	18 nF	•	•	•	•	•	+	•	•	•	•	•	•			•	•	•
223	22 nF	•	•	•	•	•		•	•	•	•	•	+	•	•	•	•	•
273	27 nF	•	•	•	•	•		•	•	•	•	•	+	•	•	•	•	•
333	33 nF	•	•	•	•	•		•	•	•	•	•	+	•	•	•	•	•
393	39 nF	•	•	•	•	•		•	•	•	•	•	+	•	•	•	•	•
473	47 nF	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•
563	56 nF	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•
683	68 nF	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•
823	82 nF	•	•	•	•	+		•	•	•	•	•		•	•	•	•	•
104 124	100 nF 120 nF	•	•	•	+	+		•	•	•	+	+		•	•	•	•	
154	150 nF	•	•		-	+		•	•	•	+	+		•		•		-
184	180 nF	•	•	+	+			•	•	•	+	+		•	•	•		
224	220 nF	+	+	+	+			+	+	+	+	т		•	•	•		
274	270 nF	+	+	+	+			+	+	+	+			•	•	•		
334	330 nF	+	+	+				+	+	+	+			•	•			
394	390 nF	+	+	+				+	+	+	+			•	•			
474	470 nF	+	+	+				+	+	+	+			•	•			
564	560 nF	+	+					+	+	+				•	•			
684	680 nF	+	+					+	+	+				•	•			
824	820 nF	+	+					+	+	+				•	•			
105	1.0 µF	+	+					+	+	+				•				
125	1.2 µF																	
155	1.5 µF																	ļ
185	1.8 µF																	ļ
225	2.2 µF										1							ļ
275	2.7 µF										1							<u> </u>
335	3.3 µF																	
395 475	3.9 µF		-			-			-		-							-
475 565	4.7 μF 5.6 μF		 			 					 							
685	6.8 µF										 				-	 	 	

Notes

- •• Paper tape, Plastic tape, ++ Paper tape, + Plastic tape, see table "Product drawings (in use)"
- (1) See soldering recommendations within this data book, or visit www.vishay.com/doc?45034
- RoHS and ELV (end-of-life vehicles) compliant
- Not RoHS and ELV (end-of-life vehicles) compliant

Revision: 29-May-2018 8 Document Number: 45040

www.vishay.com

Vishay Vitramon

DIELECTRIC						X8R								
STYLE			VJ0402			VJ0603		AON I	VJ0805		V 112	206 (1)	V 112	210 (1)
CASE CODE			0402			0603			0805			206		210
VOLTAGE (V _{DC}	J (2)	25	50	100	25	50	100	25	50			50	25	50
VOLTAGE COL		X	A	В	X	A	В	X	A	В	25 X	A	X	A
CAP. CODE	CAP.	1												
101	100 pF													
121	120 pF													
151	150 pF													
181	180 pF													
221	220 pF													
271	270 pF													
331	330 pF	••	••	••										
391	390 pF	••	••	••										
471	470 pF	••	••	••		••	••	••	••	••				
561	560 pF	••	••	••		••	••	••	••	••				<u> </u>
681	680 pF	••	••	••	••	••	••	••	••	••				L
821	820 pF	••	••	••	••	••	••	••	••	••				<u> </u>
102	1.0 nF	••	••	••	••	••	••	••	••	••	•	•		
122	1.2 nF	••	••	••	••	••	••	••	••	••	•	•		
152	1.5 nF	••	••		••	••	••	••	••	••	•	•		
182	1.8 nF	••	••		••	••	••	••	••	••	•	•		-
222 272	2.2 nF 2.7 nF	••	••		••	••	••	••	••	••	•	•		-
332	2.7 HF 3.3 nF	••			••	••	••	••	••	••	•	•		
392	3.9 nF	••			••	••	••	••	••	••	•	•		
472	4.7 nF	••			••	••	••	••	••	••	•	•		
562	5.6 nF	••			••	••		••	••	••	•	•		
682	6.8 nF	••			••	••		••	••	••	•	•		
822	8.2 nF				••	••		••	••	••	•	•		
103	10 nF				••	••		••	••	••	•	•	•	•
123	12 nF				••	••		••	••	••	•	•	•	•
153	15 nF				••	••		••	••	••	•	•	•	•
183	18 nF				••	••		••	••	••	•	•	•	•
223	22 nF				••			••	••	•	•	•	•	•
273	27 nF				••			••	•	•	•	•	•	•
333	33 nF				••			••	•		•	•	•	•
393	39 nF							••	•		•	•	•	•
473	47 nF							•	•		•	•	•	•
563	56 nF							•	•		•	•	•	•
683	68 nF							•			•	•	•	•
823	82 nF							•			•	•	•	•
104	100 nF	_						•			•	•	•	•
124	120 nF	1									•	•	•	•
154	150 nF	1				ļ					•		•	•
184	180 nF			ļ							•		•	•
224	220 nF	-	ļ			ļ					•		•	•
274	270 nF		-			-							•	•
334	330 nF	+	1			1							•	•
394 474	390 nF 470 nF	-	1		-	 		-	1				•	-
564		1	-	1	-	-		-				1	}	
684	560 nF 680 nF	1	 	1	1	 		1				1	}	
824	820 nF	1	 		1	 		1						
105	1.0 µF									<u> </u>				
125	1.2 µF	+	1		1	1		1	}	-	-	-		-

Notes

- Paper tape, Plastic tape
- (1) See soldering recommendations within this data book, or visit www.vishay.com/doc?45034
- (2) For other voltage ratings, please contact <u>mlcc@vishay.com</u>
- RoHS and ELV (end-of-life vehicles) compliant
- Not RoHS and ELV (end-of-life vehicles) compliant

www.vishay.com

Vishay Vitramon

PRODUCT DRAWING (in use)											
CASE CODE	CODE	X - TERMINATI (100 % MAT		F - TERMINATION CODE (AgPd)							
		DRAWING COG (NP0)	DRAWING X7R	DRAWING COG (NPO)	DRAWING X7R						
0402	•• = paper tape	7175	9172	7175	9072						
0402	++ = paper tape	7172	7172	7072	7072						
	•• = paper tape	7179	9155	7179	9097						
0000	++ = paper tape	7155	7155	7097	7097						
0603	• = plastic tape	-	-	7179	9097						
	+ = plastic tape	7155	7155	7097	7097						
	•• = paper tape	7188	9156	7188	9080						
0005	++ = paper tape	7156	7156	7080	7080						
0805	• = plastic tape	-	9156	7188	9080						
	+ = plastic tape	7156	7156	7080	7080						
	•• = paper tape	7180	-	-	-						
1206	• = plastic tape	-	9157	7180	9081						
	+ = plastic tape	7157	7157	7081	7081						
1010	• = plastic tape	-	9158	-	9099						
1210	+ = plastic tape	7158	7158	7099	7099						

STANDARI	STANDARD PACKAGING QUANTITIES (1)(2)											
		7" REEL Q	UANTITIES	11 1/4" AND 13" REEL QUANTITIES								
CASE CODE	TAPE SIZE	PAPER TAPE PACKAGING CODE "C" / "O" ⁽⁴⁾	PLASTIC TAPE PACKAGING CODE "E" / "T" ⁽⁶⁾	PAPER TAPE PACKAGING CODE "P" / "I" ⁽⁴⁾	PLASTIC TAPE PACKAGING CODE "M" / "R" ⁽⁶⁾							
0402	8 mm	5000 / 10 000 ⁽³⁾	n/a	10 000 / 30 000 ⁽³⁾	n/a							
0603 (7)	8 mm	4000	4000	10 000	10 000							
0805 (5)(7)	8 mm	3000	3000	10 000	10 000							
1206 (5)(7)	8 mm	3000	2500 / 3000	10 000	9000 / 10 000							
1210 ⁽⁵⁾	8 mm	n/a	2000 / 2500 / 3000	n/a	9000 / 10 000							
1812	12 mm	n/a	1000	n/a	4000							

Notes

- (1) Reference: EIA standard RS 481 "Taping of Surface Mount Components for Automatic Placement"
- (2) n/a = not available
- (3) Quantity can vary with customer request
- (4) Flamed paper tape code "O" (7" reel) and "I" (11 1/4" / 13" reel) for AgPd terminated parts (termination code F, E)
- (5) Packaging "C" / "P" or "E" / "M" and quantity can depend from product thickness
- (6) Packaging code "T", "R" are used for size 1812.
- (7) Polymer termination, code "B", only available in plastic tape "E" / "M"

Vishay Vitramon

1 - GENERAL CERTIFICATES

# Quality management system according to ISO/TS 16949: 2009	Yes
# Quality management system according to ISO 9001: 2008	Yes
# Environmental certification according to ISO 14001: 2004	Yes
# Health and safety system according to OHSA 18001	Yes

2 - TECHNICAL REQUIREMENTS

Unless specified in component specification, these parameters are the minimum requirements for the components.

2.1 OPERATING TEMPERATURE RANGE

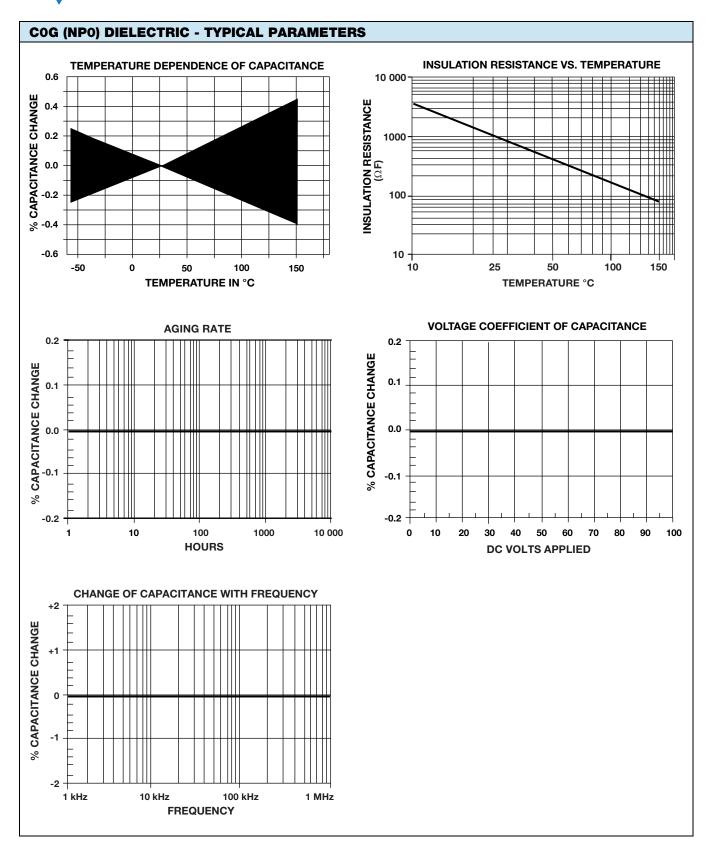
www.vishay.com

For standard applications	T _A : -55 °C to +125 °C	See characteristics 2.3
For high temperature applications	T _A : -55 °C to +150 °C	See characteristics 2.3
For ultra high temperature applications	T _A : -55 °C to +175 °C	See characteristics 2.3

2.2 STORAGE AND HANDLING CONDITIONS

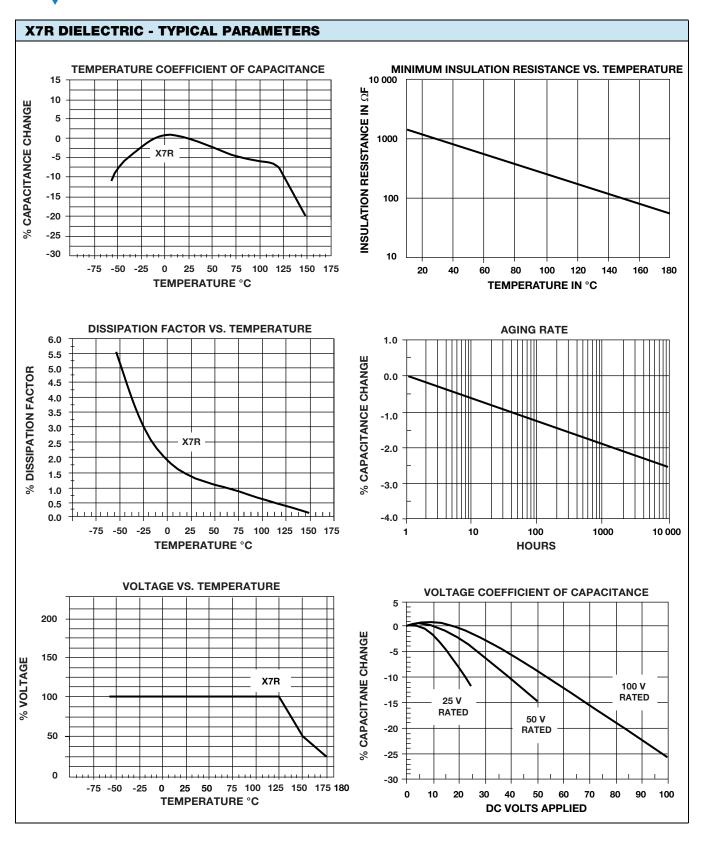
- (1) Store the components at 5 °C to 40 °C ambient temperature and \leq 70 % relative humidity conditions.
- (2) The product is recommended to be used within a time-frame of 2 years after shipment. Check solderability in case extended shelf life beyond the expiry date is needed.

Precautions

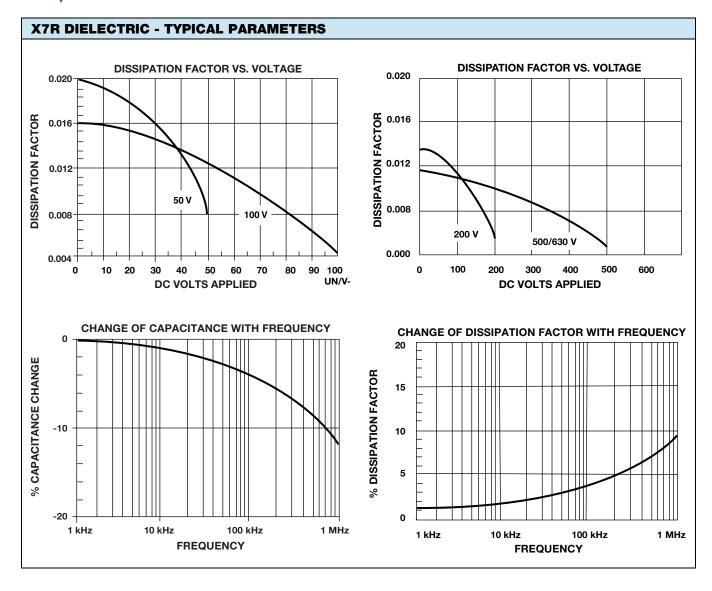

- a. Do not store products in an environment containing corrosive elements, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. This may cause corrosion or oxidization of the terminations, which can easily lead to poor soldering.
- b. Store products on the shelf and avoid exposure to moisture or dust.
- c. Do not expose products to excessive shock, vibration, direct sunlight and so on.

2.3 CHARACTERISTICS

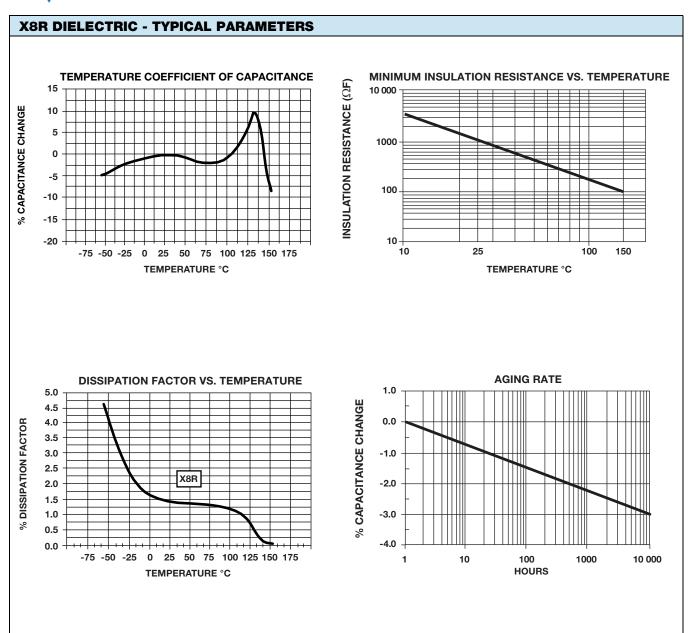
PARAMETER	CERAMIC TYPE	SYMBOL	RATINGS	TEST CONDITIONS/ REMARKS
Rated voltage in temperature range -55 °C to +125 °C	C0G (NP0)		25 V to 3000 V	
hated voltage in temperature range -55 °C to +125 °C	X7R	U_R	16 V to 630 V	
Rated voltage in temperature range -55 °C to +150 °C	X8R		25 V/50 V	
Derating at higher temperature up to +150 °C	C0G (NP0),		25 V to 100 V	$U_{DC} \le \frac{1}{2} U_{R}$
Defaulting at higher temperature up to +150°C	X7R		16 V to 100 V	$U_{DC} \le \frac{1}{2} U_{R}$
	C0G (NP0),		25 V to 100 V	$U_{DC} \le \frac{1}{4} U_{R}$
Derating at higher temperature up to +175 °C	X7R		16 V to 100 V	$U_{DC} \le \frac{1}{4} U_{R}$
	X8R		25 V/50 V	$U_{DC} \le \frac{1}{4} U_{R}$
Temperature coefficient in temperature range	C0G (NP0)	α_{C}	≤ ± 30 ppm/°C	if $C_R < 10$ pF: $\alpha_C \le \pm 120$ ppm/°C
-55 °C to +125 °C	X7R	ΔC	≤ ± 15 %	
—	C0G (NP0)	α_{C}	≤ ± 30 ppm/°C	if $C_R < 10$ pF: $\alpha_C \le \pm 120$ ppm/°C
Temperature coefficient in temperature range -55 °C to +150 °C	X7R	ΔC	+15 %/-30 %	
	X8R	ΔΟ	≤ ± 15 %	
Temperature coefficient in temperature range -55 °C to +175 °C	X7R	ΔC	+ 15 %/-50 %	
	C0G (NP0)		≤ 0.0015	
Dissipation factor in temperature range -55 °C to +175 °C	X7R	$tan \delta$	≤ 0.06	
33 3 3 1 1 1 3 3	X8R		≤ 0.06	



www.vishay.com



www.vishay.com



www.vishay.com

www.vishay.com

www.vishay.com

Vishay Vitramon

3 - LOT ACCEPTANCE TESTS

Process tests available in classes (on request)

GROUP	ACTION
А	Components are tested within the monitoring program of the supplier. The supplier shall submit the part numbers of the selected component to the customer during the component specification discussions.
В	Components (customer P/N) shall be tested quarterly. Records available only on special request by the customer.
С	Test with each shipment. Records are provided on a monthly basis. Customer special requirement; requirement should be determined in a specific component specification.

Upon request the records can be submitted in electronic format on monthly basis.

3.1 THERMAL STRENGTH, THERMAL SHOCK SENSIBILITY

Sample size	200
Handling	Mounted on PCB
Thermal shock	1 x 280 °C, no pre-heat, 5 s to 10 s
IR - test (IRATS)	U = U _R , T = room temperature, verified
Burn in (BIATS)	Equivalent to 12 h burn-in, 2 x U _R /125 °C, verification time to failure

Acceptance criteria: zero defects (IRATS and BIATS).

3.2 BOARD FLEX TEST

Sample size	20 pcs/lot
Frequency	At least three different part numbers of one component family matrix per quarter
Max. deflection	8 mm (data to be reported, available on request)

3.3 SOLDERABILITY/RESISTANCE TO SOLDERING HEAT

Temperature profile for reflow soldering of SMD parts IPC/JEDEC-J-STD-020C.

Test is done on a regular basis for samples taken randomly out of the line.

Acceptance criteria: at least 95 % new solder and no detachment or leaching of terminations.

4 - ENVIRONMENTAL REQUIREMENTS

A list of the chemical substances content, which must not be used or whose use shall be limited by international law, is available on request.

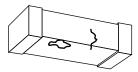
Vishay confirms that the components specified in this specification do not contain asbestos nor cadmium, not even in the smallest volumes.

The manufacturer/supplier confirms that the component during normal handling, storage and assembly, as well as during operation in the automobile, is non toxic.

Alternative Device Available, See GA....31G and GA....34G Automotive MLCC

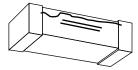
VJ....31 / VJ....34 Automotive MLCC

Vishay Vitramon

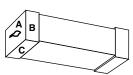

5 - INSPECTION CRITERIA

www.vishay.com

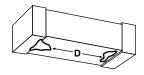
The supplier shall carry out visual examination with suitable equipment with approximately 10 x magnification and lighting appropriate to the specimen under test and the required quality level.


Chipping

The components shall be free of cracks or fissures. Small damages which do not deteriorate the performance of the component shall be less than 50 % of the surface of the MLCC as defined in EIA 595.


Delamination or Exposed Electrodes

No visible separation or delamination between layers of the capacitor and no exposed electrodes between the two terminals of the capacitor must be seen.


Metallization

For the metallization, no visible detachment of the metallized terminals and no exposed electrodes must be seen. Defects and gaps in the metallization on each sides of the terminal must not exceed 10 % of the total area (e.g. A, B, C, ...). Leaching shall not exceed 25 %.

Electrode Distance

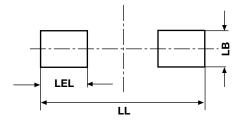
The ceramic body shall be free of any conducting material between the terminals which reduces the distance of the electrodes. The minimum distance "D" is 400 μ m for all package sizes, except 0402. For the component package 0402 the minimum distance is 200 μ m.

Vishay Vitramon

6 - BOARD FLEX TEST CONDITIONS

6.1 BOARD FLEX DEFINITIONS OF TEST

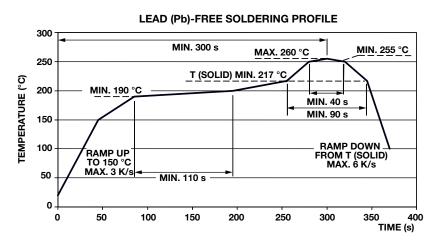
PCB thickness = (1.6 ± 0.1) mm


Copper thickness = 35 µm

Material FR4 (EP-GC 02 according to DIN 40 802)

LAYOUT/PAD DESIGN (Dimensions in mm)			
CASE CODE	PAD SIZE		
CASE CODE	LL	LB	LEL
0603	2.20	1.00	0.75
0805	3.40	1.30	1.20
1206	4.50	1.80	1.20
1210	4.50	2.80	1.30
1812	4.75	3.60	1.50

Note


• LL = total length; LB = width of the pad; LEL = single pad length

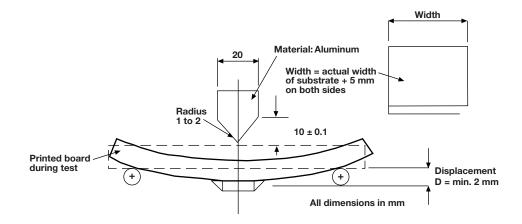
6.2 SOLDERING INSTRUCTIONS

THICKNESS, RECOMMENDED FOR SOLDER PASTE (Reflow soldering)		
CASE CODE	THICKNESS in µm	
0402	75 to 90	
0603	150 to 200	
0805	150 to 200	
1206	150 to 200	
1210	150 to 200	
1812	150 to 200	

6.3 TYPICAL TEMPERATURE PROFILE FOR REFLOW SOLDERING (Boardflex test)



Vishay Vitramon


www.vishay.com

6.4 MOUNTING, DIMENSIONS AND TESTING

Mounting

Testing

6.5 PERFORMANCE OF THE TEST(S)

- A) Electrical test according to component specification (Cap, DF, IR)
- B) Mounting to PCB
- C) Storage at room temperature (min. 10 h)
- D) Board flex test

6.6 DETAILS

X7R, X8R	PCB to be deflected continuously, speed 1 mm/s (± 0.5 mm/s)	
COG	PCB to be deflected in steps until cracks or other damages are visible or can be measured. Dwell time between steps: (5 ± 1) s	

6.7 FAILURE CRITERIA

X7R, X8R	Piezoelectric sensor, no failures up to min. 2 mm
C0G (NP0)	Δ C/C < 1 % or < 1 pF, no failures up to min. 2 mm
Both	Electrical test according to component specification

Revision: 29-May-2018 19 Document Number: 45040

www.vishay.com

Vishay Vitramon

7 - AEC-Q200 QUALIFICATION TESTING

NO.	AEC-Q200 TEST ITEM	REFERENCE
1	Pre- and post stress electrical test	User spec
3	High temp exposure (storage)	MIL-STD-202, method 108
4	Temperature cycling	JESD22, method JA-104
5	Destructive physical analysis	EIA-469
6	Moisture resistance	MIL-STD-202, method 106
7	Biased humidity	MIL-STD-202, method 103
8	Operation life	MIL-STD-202 method 108
9	External Visual	MIL-STD-883 method 2009
10	Physical dimension	JESD22, method JB-100
13	Mechanical shock	MIL-STD-202, method 213
14	Vibration	MIL-STD-202, method 204
15	Resistance to solder heat	MIL-STD-202, method 215
16	ESD	AEC-Q200 rev. C
17	Solderability	J-STD-002
20	Electrical characterization	User spec
21	Board flex	AEC-Q200-005
22	Terminal strength	AEC-Q200-006
23	Beam load	AEC-Q200-003

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED