
								F	REVISI	ONS										
LTR						DESCR		N					DA	ATE (Y	R-MO-I	DA)		APPF	ROVED	
A	Table	e I. Ma	ike cha	nges to	o condi	nits to I _d itions co I ro						ł		14-()9-18			C. SA	FFLE	
REV																				
SHEET																				
REV	Α	Α	Α	Α	<u> </u>															
SHEET	15	16	17	18																
REV STATUS		L	L	RE\	/	1	Α	Α	Α	Α	Α	А	А	Α	Α	Α	А	Α	Α	Α
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A					PARE K OFF	D BY FICER			I	DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990										
MICRO	NDAF DCIR(AWIN	CUIT			CKED JESH I	BY PITHAD	AIA									mariti				
THIS DRAWII FOR U	NG IS A ISE BY	VAILA ALL	BLE		ROVE ARLES	D BY S F. SAI	FLE									SINGL R, MO				Đ
DEPA AND AGEI DEPARTMEI		OF THE		DRA	WING	APPRO 14-0)VAL E 5-21	ATE								, 1010				
AM	ISC N/A			REV	ISION	LEVEL					ZE A		GE CC 67268			ļ	5962-	·1021	5	
												SHEET	Г	1	OF	18				

DSCC FORM 2233 APR 97

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device class Q) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.

1.2 <u>PIN</u>. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	Circuit function
01	RHR801	Radiation hardened, high speed comparator amplifier

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class		Device requireme									
Q or V	Cer	Certification and qualification to MIL-PRF-38535									
1.2.4 <u>Case outline(s)</u> . The	case outline(s) are as designa	ated in MIL-STD-1835	5 and as follows:								
Outline letter	Descriptive designator	Terminals	Package style								
Х	See figure 1	8	Flat pack <u>1</u> /								
1.2.5 Lead finish. The lead	d finish is as specified in MIL-P	RF-38535 for device	classes Q and V.								
1/ Al ₂ O ₃ ceramic header wit	th metalized bottom side and p	ullback of 0.01 inch x	: 0.02 inch.								
<u></u>											
	DARD	SIZE		5962-10215							
	JIT DRAWING ND MARITIME	Α									
	HIO 43218-3990		REVISION LEVEL	SHEET 2							
DSCC FORM 2234											

1.3 Absolute maximum ratings. 2/3/

$\begin{array}{l} Supply \mbox{ voltage } (V_{CC}) & \dots & \\ Differential \mbox{ input voltage } (V_{ID}) & \dots & \\ Input \mbox{ voltage } (V_{IN}) & \dots & \\ Storage \mbox{ temperature range } (T_{stg}) & \dots & \\ Maximum \mbox{ junction temperature } (T_J) & \dots & \\ Thermal \mbox{ resistance, junction-to-case } (\theta_{JC}) & \dots & \\ \end{array}$	
Lead temperature (soldering, 10 seconds)	+260°C <u>7</u> /
1.4 <u>Recommended operating conditions</u> .	
Supply voltage (V _{CC})	3 V to 5 V
Common-mode input voltage range (VICM)	V _{CC} + 0.5 V to +V _{CC} - 1.2 V
Ambient operating temperature range (T _A)	55°C to +125°C
1.5 Radiation features.	
Maximum total dose available (dose rate = 50 – 300 rads(Si)/s)	100 krads(Si) <u>8</u> /
Maximum total dose available (dose rate = 10 mrads(Si)/s)	30 krads(Si) <u>8</u> /
Single event phenomenon (SEP) :	
No single event latch up (SEL) effective LET	≤ 120 MeV/(mg/cm ²)
Single event transient (SET) (σ_{sat} = 3.8 x 10 ⁻⁶ cm ² /device) at effective LET.	60 MeV/(mg/cm ²)

2/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

- 3/ All voltage values, except differential voltage are within respect to network ground terminal.
- 4/ Differential voltage are the non-inverting input terminal with respect to the inverting input terminal.
- 5/ The magnitude of input and output voltages must never exceed V_{CC} + 0.3 V.
- 6/ Short circuits can cause excessive heating and destructive dissipation. Values are normal.
- 7/ Distance of not less than 1.5 mm from the device body and the same lead shall not be re-soldered until three minutes have elapsed.
- 8/ For device type 01, this part has been tested at high dose rate, the radiation end point limits for the noted parameters are guaranteed for the conditions specified in MIL-STD-883, method 1019, condition A. For low dose rate, the radiation end point limits for the noted parameters are guaranteed for the conditions specified in MIL-STD-883, method 1019, condition D.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 3
DSCC FORM 2234			

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at <u>http://quicksearch.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM F1192 - Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of semiconductor Devices.

(Copies of these documents are available online at <u>http://www.astm.org</u> or from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA, 19428-2959).

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 as specified herein, or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V.

3.2.1 <u>Case outline</u>. The case outline shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table IA and shall apply over the full ambient operating temperature range.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 4
DSCC FORM 2234			

Downloaded from Arrow.com.

Test	Symbol	Conditions $-55^{\circ}C \le T_A \le +1$		Group A subgroups	Device type	Limits		Unit
		unless otherwise s				Min	Max	
+V _{CC} = 3.3 V, -V _{CC} = 0 V (un	less otherwise	specified)						
High output supply current	+ICC	+V _{IN} = 1 V, -V _{IN} = 0 V	+VIN = 1 VVIN = 0 V.		01	1.2	1.6	mA
		V _{OUT} = high level,		2	-	1.4	2.1	
		no load		3		0.95	1.3	_
			P, R	1		1.2	2.5	
Low output supply current	-ICC	+V _{IN} = 1 V, -V _{IN} = 0 V	V,	1	01	1.3	1.8	mA
		V _{OUT} = high level,		2	-	1.6	2.3	_
		no load		3	_	1	1.5	_
			P, R	1		1.3	3	
High input threshold	+VTRIP	V _{ICM} = 0.5 V,		1	01	-7	7	mV
		V _{ICM} = 1.65 V,		2	-	-8	8	_
		V _{ICM} = 2.1 V		3		-8	8	
Low input threshold	-VTRIP	V _{ICM} = 0.5 V,		1	01	-7	7	mV
		V _{ICM} = 1.65 V,		2		-8	8	_
		V _{ICM} = 2.1 V		3		-8	8	
Input offset voltage	VIO	V _{ICM} = 0.5 V,		1	01	-7	7	mV
		V _{ICM} = 1.65 V,		2	-	-8	8	_
		V _{ICM} = 2.1 V		3		-8	8	
Hysteresis voltage	V _{HYST}	V _{ICM} = 0.5 V,		1	01	1.5	4	mV
		V _{ICM} = 1.65 V,		2	_	-	20	_
		V _{ICM} = 2.1 V		3		-	20	
Non inverting input bias	+I _{IB}	V _{ICM} = 1.65 V		1	01	-5	-	μA
current				2		-4	-	
				3		-7	-	
Inverting input bias current	-I _{IB}	V _{ICM} = 1.65 V		1	01	-5	-	μA
				2		-4	-	
				3		-7	-	
High level output voltage	VOH	V _{ID} =+1 V,		1	01	3.05	3.3	V
		I _{SOURCE} = +3.3 mA.		2	-	3	3.3	-
				3		3.1	3.3	
See footnotes at end of table	9.							
			SIZE A				5962-	10215
	ND MARITIM		~		ON LEVEL		SHEET	

Test	Symbol	$\begin{array}{l} Conditions \underline{1}/\\ -55^{\circ}C \leq T_A \leq +125^{\circ}C \end{array}$	Group A subgroups	Device type	E Limits		Unit
		unless otherwise specified			Min	Max	
V _{CC} = 3.3 V, -V _{CC} = 0 V (unle	ess otherwise	specified)		,,			
ow level output voltage	V _{OL}	V _{ID} = -1 V,	1	01	-	250	mV
		I _{SINK} = -3.3 mA	2		-	300	
			3		-	200	
Output sink current	ISINK	V _{ID} = -500 mV,	1	01	18	22	mA
		$V_{OUT} = +V_{CC}$	2	4 -	14	20	_
			3		19	26	
Output source current	ISOURCE	V _{ID} = +500 mV,	1	01	20	25	mA
		$V_{OUT} = -V_{CC}$	2	-	17	23	-
			3		22	29	
Propagation time logic "0" to	t _{PLH}	50 mV overdrive,	9	01	6	9.5	ns
logic "1"		C _L = 30 pF, V _{ICM} = 1.65 V	10	4 -	7	12	_
			11	-	6	9.5	_
		100 mV overdrive, $C_L = 30 \text{ pF},$	9	-	5.5	9	_
		C _L = 30 μF, V _{ICM} = 1.65 V	10	-	6.5	10.5	_
			11		5.5	9	
Propagation time logic "1" to	t PHL	50 mV overdrive $C_L = 30 \text{ pF},$	9	01	6	9.5	ns
logic "0"		V _{ICM} = 1.65 V	10	-	7	12	_
			11		6	9.5	-
		100 mV overdrive, $C_{\rm L} = 30 \rm pE$	9	-	5.5	9	
		C _L = 30 pF, V _{ICM} = 1.65 V	10	-	6.5	10.5	
			11		5.5	9	
Dutput rise time	t _R	50 mV overdrive, $C_L = 30 \text{ pF}$	9	01	-	9	ns
			10		-	10	_
			11		-	10	
Dutput fall time	t⊨	50 mV overdrive, $C_L = 30 \text{ pF}$	9	01	-	9	ns
			10		-	10	_
			11		-	10	
See footnotes at end of table							

Α

REVISION LEVEL

А

5962-10215

6

SHEET

TABLE IA	Electrical	performance	characteristics	 continued
	LICCUICUI	periornance	characteristics	continucu.

DSCC FORM 2234 APR 97

MICROCIRCUIT DRAWING DLA LAND AND MARITIME

COLUMBUS, OHIO 43218-3990

	TABLE IA.	Electrical performance characte	<u>ristics</u> – conti	nued.			
Test	Symbol	Conditions <u>1</u> / -55°C $\leq T_A \leq +125°C$	Group A subgroups	Device type	Limits		Unit
		unless otherwise specified			Min	Max	
+V _{CC} = 3.3 V, -V _{CC} = 0 V (unle	ss otherwise	specified)					
Maximum input frequency	F _{MAX}	V _{IN} = 1 Vp-p sine wave,	4	01	55	_	MHz
		C _L = 10 pF, output between 45% and 55% -	5		55	_	
			6		50	-	
Common-mode rejection <u>2</u> /	CMRR	V _{ICM} = 0.5 V to +V _{CC} - 1.2 V	1	01	70	_	dB
ratio ($\Delta V_{IC}/\Delta V_{IO}$)			2		50	-	
			3		60	-	
Supply voltage rejection 2/	SVR	+V _{CC} = 3 V to 3.6 V,	1	01	55	_	dB
ratio ($\Delta V_{CC} / \Delta V_{IO}$)		V _{ICM} = 1.65 V	2		42	_	
			3		45	-	

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10215
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	7

Test	Symbol Conditions $\underline{1}/$ -55°C \leq T _A \leq +125°C		Group A subgroups	Device type	Limits		Unit	
		unless otherwise sp				Min	Max	
+V _{CC} = 5 V, -V _{CC} = 0 V (unless	otherwise sp	pecified)			,			
High output supply current	+I _{CC}	+V _{IN} = 1 V, -V _{IN} = 0 V	,	1	01	1.3	1.8	mA
		V _{OUT} = high level, no load		2	-	1.5	2.3	_
				3	-	1	1.5	_
			P, R	1		1.3	6	
Low output supply current	-ICC	$+V_{IN} = 1 V$, $-V_{IN} = 0 V$ $V_{OUT} = high level,$,	1	01	1.5	2	mA
		no load		2	-	1.8	2.5	-
				3	-	1.2	1.7	_
High input threshold		V _{ICM} = 0.5 V,	P, R	1	01	1.5 -7	6 7	mV
High input threshold	+VTRIP	_		1	01			
		V _{ICM} = 2.5 V,		2	-	-8	8	_
		V _{ICM} = 3.8 V		3		-8	8	
Low input threshold	-Vtrip	V _{ICM} = 0.5 V,		1	01	-7	7	mV
		V _{ICM} = 2.5 V,		2	-	-8	8	_
		V _{ICM} = 3.8 V		3		-8	8	
Input offset voltage	V _{IO}	V _{ICM} = 0.5 V,		1	01	-7	7	mV
		V _{ICM} = 2.5 V,		2	-	-8	8	_
		V _{ICM} = 3.8 V		3		-8	8	
Hysteresis voltage	V _{HYST}	V _{ICM} = 0.5 V,		1	01	1.5	4	mV
		V _{ICM} = 2.5 V,		2		-	20	
		V _{ICM} = 3.8 V		3		-	20	
Non inverting input bias current	+I _{IB}	V _{ICM} = 2.5 V		1	01	-6	-	μA
				2		-5	-	
				3		-8	-	
nverting input bias current	-I _{IB}	V _{ICM} = 2.5 V		1	01	-6	-	μA
				2		-5	-	-
				3		-8	-	
High level output voltage	V _{OH}	V _{ID} = +1 V,		1	01	4.7	5	V
		I _{SOURCE} = +5 mA				4.6	5	-
				3		4.8	5	
See footnotes at end of table.		i		i		i		
STANE MICROCIRCU		NG	SIZE A				5962-	10215

Test	Symbol	Conditions <u>1</u> / -55°C \leq T _A \leq +125°C	Group A subgroups	Device type	Lin	nits	Unit
		$-55^{\circ}C \le T_A \le +125^{\circ}C$ unless otherwise specified	000 g. e e p e	9F-	Min	Max	
$+V_{CC} = 5 V, -V_{CC} = 0 V$ (unle	ess otherwise sp	pecified)		, , , , , , , , , , , , , , , , , , , 			-r
Low level output voltage	V _{OL}	V _{ID} = -1 V,	1	01	-	300	mV
		I _{SINK} = -5 mA	2		-	400	
			3		-	300	<u> </u>
Output sink current	ISINK	V _{ID} = -500 mV,	1	01	30	40	mA
		V_{OUT} = + V_{CC}	2		25	35	
			3		30	45	
Output source current	ISOURCE	V _{ID} = +500 mV,	1	01	40	50	mA
		V _{OUT} = -V _{CC}	2		35	45	
			3		45	55	
Propagation time logic "0" tPLH to logic "1"	tPLH	50 mV overdrive,	9	01	6	9.5	ns
	$C_L = 30 \text{ pF},$	10		6	10		
		V _{ICM} = 2.5 V	11		5.5	10	
		100 mV overdrive,	9] [5.5	9	
	$C_L = 30 \text{ pF},$	10		5.5	9.5		
	V _{ICM} = 2.5 V	11		5	9		
Propagation time logic "1"	t _{PHL}	50 mV overdrive,	9	01	6	9.5	ns
to logic "0"		C _L = 30 pF, V _{ICM} = 2.5 V	10		6	10	
			11] [5.5	10	
		100 mV overdrive,	9] [5.5	9	_
		C _L = 30 pF, V _{ICM} = 2.5 V	10] [5.5	9.5	
			11		5	9	
Output rise time	t _R	50 mV overdrive,	9	01	-	6	ns
		C _L = 30 pF	10		-	7	
			11		-	7	
Output fall time	t⊨	50 mV overdrive,	9	01	-	6	ns
		C _L = 30 pF	10		-	7	
			11		-	7	
See footnotes at end of tabl	le.						
STA MICROCIRO	NDARD CUIT DRAWI	NG SIZE				5962-	10215

REVISION LEVEL

А

SHEET

9

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 DSCC FORM 2234 APR 97

	TABLE IA.	Electrical performance characte	<u>ristics</u> – conti	nued.			
Test	Symbol	$\begin{array}{c c} Conditions \ \underline{1}/ & Group \ A\\ -55^{\circ}C \leq T_A \leq +125^{\circ}C & subgroups \end{array}$		Device type	Lir	Limits	
		unless otherwise specified			Min	Max	
$+V_{CC} = 5 V$, $-V_{CC} = 0 V$ (unless	otherwise sp	ecified)					
Maximum input frequency	f _{MAX}	V _{IN} = 1 Vp-p sine wave,	4	01	85	-	MHz
		C _L = 10 pF, output between 45% and 55%	5	_	90	_	
			6		80	_	
Common-mode rejection 2/	CMRR	V _{ICM} = 0.5 V to +V _{CC} - 1.2 V	1	01	70	_	dB
ratio (ΔV _{IC} /ΔV _{IO})			2		60	-	
			3		60	_	
Supply voltage rejection 2/	SVR	+V _{CC} = 4.5 V to 5 V,	1	01	60	_	dB
ratio ($\Delta V_{CC}/\Delta V_{IO}$)		V _{ICM} = 2.375 V	2		50	_	
			3		50	-	

<u>1</u>/ RHA devices supplied to this drawing have been characterized through all levels M, D, P, L, and R of irradiation. However, this device is tested only at the "P" level for low dose and at the "R" level for high dose rate. Pre and Post irradiation values are identical unless otherwise specified in Table IA. When performing post irradiation electrical measurements for any RHA level, T_A = +25°C. The radiation end points limits for the noted parameters are guaranteed for the conditions specified in MIL-STD-883, method D for low dose rate and condition A for high dose rate.

2/ Parameter tested in go-no-go mode only.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table IA.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuits delivered to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 10
DSCC FORM 2234			

Downloaded from Arrow.com.

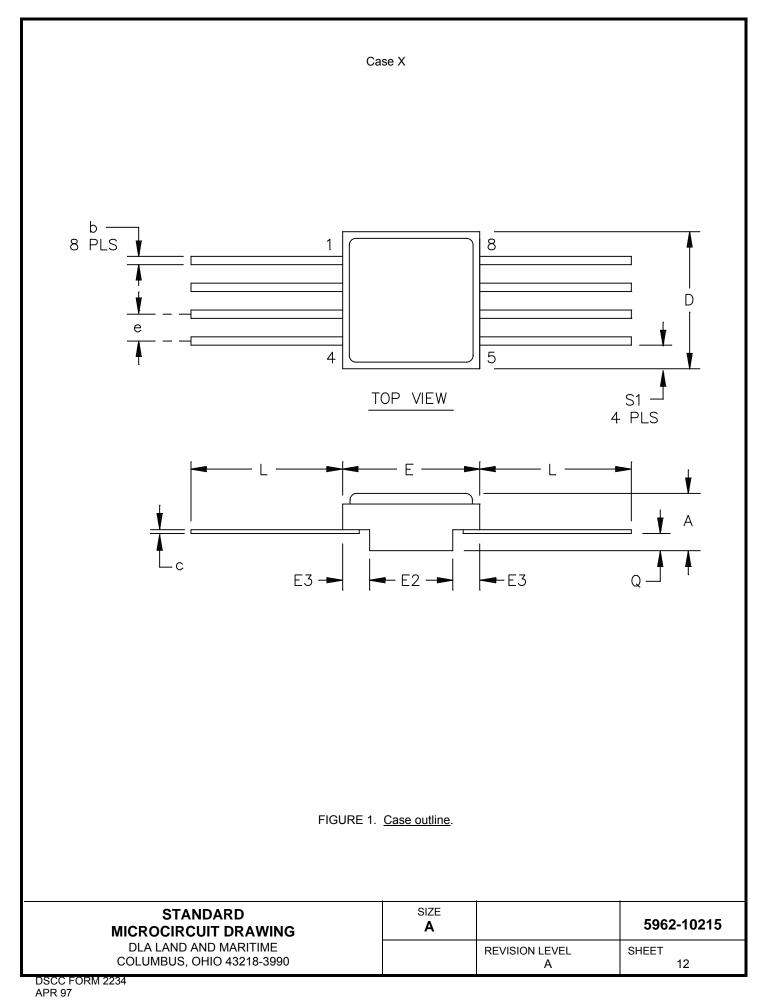
TABLE IB. SEP test limits. 1/2/

			V _{CC} = ±1.	Bias for latch-up	
Devi typ		T _A = temperature ±10°C <u>3</u> /	Effective LET no transient [MeV/(mg/cm ²)]	Maximum device cross section	test, V _{CC} = ±2.6 V, no latch up LET = <u>3/ 4/</u>
01		+25°C for SET +125°C for SEL	LET ≤ 3	3.8 x 10 ⁻⁶ cm ² /device	≤ 120

1/ For SEP test conditions, see 4.4.4.4 herein.

- 2/ Technology characterization and model verification supplemental by in line data may be used in lieu of end of line testing. Test plan must be approved by technical review board (TRB) and qualifying activity.
- <u>3</u>/ Worst case temperature is T_A = +125°C ±10°C for SEL test and T_A = +25°C ±10°C for SET test.
- <u>4</u>/ Tested to a LET of \leq 120 MeV/(mg/cm²) for device type 01 with no latch up (SEL).

4. VERIFICATION


4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection.

- 4.2.1 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 11
DSCC FORM 2234			

Case X – continued.

	Dimensions					
Symbol	Inches			Millimeters		
	Min	Med	Max	Min	Med	Max
А	.088	.096	.104	2.24	2.44	2.64
b	.015	.017	.019	0.38	0.43	0.48
с	.004	.005	.006	0.10	0.13	0.16
D	.250	.255	.260	6.35	6.48	6.61
E	.250	.255	.260	6.35	6.48	6.61
E2	.170	.175	.180	4.32	4.45	4.58
E3	.035	.040	.045	0.88	1.01	1.14
е		.050 BSC		1.27 BSC		
L	.256		.291	6.51		7.38
Q	.026	.031	.036	0.66	0.79	0.92
S1	.036	.044	.052	0.92	1.12	1.32
n		8			8	

NOTES:

- 1. The US government preferred system of measurement is the metric SI system. However, since this item was originally designed using inch-pound units of measurement, in the event of conflict between the metric and inch pound units, the inch pound units shall take precedence.
- 2. N is the maximum number of terminal positions.

FIGURE 1. Case outline.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 13
DSCC FORM 2234		·	

Device type	01
Case outline	Х
Terminal number	Terminal symbol
1	NC
2	-INPUT
3	+INPUT
4	-V _{CC}
5	NC
6	OUT
7	+V _{CC}
8	NC

FIGURE 2. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10215
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	14

Test requirements	Subgi	oups
·	(in accord	ance with
	MIL-PRF-38	535, table III)
	Device	Device
	class Q	class V
Interim electrical	1,9	1,9
parameters (see 4.2)		
Final electrical	1,2,3,4,5,6, <u>1</u> /	1,2,3,4, <u>1/ 2</u> /
parameters (see 4.2)	9,10,11	5,6,9,10,11
Group A test	1,2,3,4,5,6,	1,2,3,4,5,6,
requirements (see 4.4)	9,10,11	9,10,11
Group C end-point electrical	1,2,3,4,5,6,	1,2,3,4, <u>2</u> /
parameters (see 4.4)	9,10,11	5,6,9,10,11
Group D end-point electrical	1,4,9	1,4,9
parameters (see 4.4)		
Group E end-point electrical	1,9	1,9
parameters (see 4.4)		

TABLE IIA. Electrical test requirements.

<u>1</u>/ PDA applies to subgroup 1.

2/ Delta limits as specified in table IIB shall be required where specified, and the delta limits shall be computed with reference to the previous electrical parameters.

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections, and as specified herein.

4.4.1 Group A inspection.

a. Tests shall be as specified in table IIA herein.

b. Subgroups 7 and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.

4.4.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.2.1 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

4.4.3 <u>Group D inspection</u>. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10215
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	15

Parameters	Symbol	Test conditions	Delta limits	Units
Change high output	∆+lcc	+V _{CC} = 3.3 V or 5 V,	± 20	μA
supply current		-V _{CC} = 0 V, +V _{IN} = 1 V,		
		-V _{IN} = 0 V,		
		V _{OUT} = high level, no load		
Change low output	∆-lcc	+V _{CC} = 3.3 V or 5 V,	± 20	μA
supply current		$-V_{CC} = 0 V, +V_{IN} = 0 V,$		
		-V _{IN} = 1 V,		
		V _{OUT} = low level, no load		
Change input offset	ΔVIO	+V _{CC} = 3.3 V or 5 V,	± 1	mV
voltage		$-V_{CC} = 0 V, V_{ICM} = V_{CC/2}$		
Change hysteresis	ΔVHYST	+V _{CC} = 3.3 V or 5 V,	± 400	μV
voltage		$-V_{CC} = 0 V, V_{ICM} = V_{CC/2}$		
Change non inverting	Δ+I _B	$+V_{CC} = 5 V,$	± 500	nA
input bias current		$-V_{CC} = 0 V, V_{ICM} = V_{CC/2}$		
Change inverting input	∆-l _B	$+V_{CC} = 5 V,$	± 500	nA
bias current		$-V_{CC} = 0 V, V_{ICM} = V_{CC/2}$		
Change high level	ΔVOH	$+V_{CC} = 3.3 \text{ V or } 5 \text{ V},$	± 5	mV
output voltage		$-V_{CC} = 0 V, V_{ID} = +1 V,$		
		$I_{\text{SOURCE}} = 3.3 \text{ mA or 5 mA}$		
Change low level	ΔV _{OL}	$+V_{CC} = 3.3 \text{ V or } 5 \text{ V},$	± 10	mV
output voltage	AVOL	$-V_{CC} = 0 V, V_{ID} = -1 V,$		
		I _{SINK} = 3.3 mA or 5 mA		
Change output sink	Δlsink	$+V_{CC} = 3.3 V,$	± 100	μA
current	2'SINK	$-V_{CC} = 0.0 \text{ V},$ $-V_{CC} = 0 \text{ V}, \text{ V}_{ID} = -500 \text{ mV},$		·
		$V_{OUT} = +V_{CC}$		
		$+V_{CC} = 3.3 V,$	± 200	μA
		$-V_{CC} = 0 V, V_{ID} = -500 mV,$		•
		$V_{OUT} = +V_{CC}$		
Change output source		$+V_{CC} = 3.3 \text{ V or } 5 \text{ V},$	± 800	μA
current		$-V_{CC} = 0 V,$		1
		-v _{CC} = 0 v, V _{ID} = +500 mV		
Change propagation	At	$V_{OUT} = -V_{CC}$	± 200	ps
time logic "0" to "1"	∆tpLH	$+V_{CC} = 3.3 \text{ V or } 5 \text{ V},$	± 200	20
		-V _{CC} = 0 V, 100 mV overdrive,		
		$C_L = 30 \text{ pF}$		
Change propagation	ΔtphL	$+V_{CC} = 3.3 \text{ V or } 5 \text{ V},$	± 200	ps
time logic "1" to "0"		$-V_{CC} = 0.0 V,$		
		100 mV overdrive,		
		C _L = 30 pF		

TABLE IIB. Burn-in and operating life test delta parameters.

<u>1</u>/ Deltas are performed at room temperature, $T_A = +25^{\circ}C$.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 16
DSCC FORM 2234 APR 97			

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table IIA herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table IA at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table IIA herein.

4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019 condition A and condition D as specified herein.

4.4.4.1.1 <u>Accelerated annealing test</u>. Accelerated annealing testing shall be performed on all devices requiring a RHA level greater than 5 krads (Si). The post-anneal end-point electrical parameter limits shall be as specified in table IA herein and shall be the pre-irradiation end-point electrical parameter limits at 25° C $\pm 5^{\circ}$ C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.

4.4.4.2 <u>Dose rate induced latchup testing</u>. When required by the customer, dose rate induced latchup testing shall be performed in accordance with test method 1020 of MIL-STD-883 and as specified herein. Tests shall be performed on devices, SEC, or approved test structures at technology qualification and after any design or process changes which may effect the RHA capability of the process.

4.4.3 <u>Single event phenomena (SEP)</u>. When specified in the purchase order or contract, SEP testing shall be performed on class V devices. SEP testing shall be performed on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may affect the upset or latchup characteristics. Test four devices with zero failures. ASTM F1192 may be used as a guideline when performing SEP testing. The recommended test conditions for SEP are as follows:

- a. The ion beam angle of incidence shall be between normal to the die surface and 60° to the normal, inclusive (for example: $0^{\circ} \le$ angle $\le 60^{\circ}$). No shadowing of the ion beam due to fixturing or package related affects is allowed.
- b. The fluence shall be ≥ 100 errors or $\geq 10^7$ ions/cm².
- c. The flux shall be between 10^2 and 10^5 ions/cm²/s. The cross-section shall be verified to be flux independent by measuring the cross-section at two flux rates which differ by at least an order of magnitude.
- d. The particle range shall be \geq 20 micron in silicon.
- e. The test temperature shall be +25°C for the transient measurements and the maximum rated operating temperature ± 10 °C for the latchup measurements.
- f. Bias conditions shall be $V_{CC} = V_{CC}$ maximum for the latchup measurements.
- g. For SEL test limits, see Table IB herein.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-10215
		REVISION LEVEL A	SHEET 17
DSCC FORM 2234			

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime-VA and have agreed to this drawing.

6.7 <u>Additional information</u>. When applicable, a copy of the following additional data shall be maintained and available from the device manufacturer:

a. RHA upset levels.

b. Test conditions (SEP).

c. Number of transients (SEP).

d. Occurrence of latchup (SEL).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10215
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	18

APR 97
Downloaded from Arrow.com.

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 14-09-18

Approved sources of supply for SMD 5962-10215 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962R1021501VXC	F8859	RHR801K01V

- <u>1</u>/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u> Vendor name and address

F8859

ST Microelectronics 3 rue de Suisse CS 60816 35208 RENNES cedex2-FRANCE

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.