

HIGH EFFICIENCY ULTRAFAST DIODE

MAIN PRODUCT CHARACTERISTICS

I _{F(AV)}	3A
V _{RRM}	200 V
Tj (max)	175 °C
V _F (max)	0.75 V
trr (max)	35 ns


FEATURES AND BENEFITS

- Very low conduction losses
- Negligible switching losses
- Low forward and reverse recovery times
- High junction temperature

The STTH302 which is using ST's new 200V planar technology, is specially suited for switching mode base drive & transistor circuits.

The device is also intended for use as a free wheeling diode in power supplies and other power switching applications.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit
V _{RRM}	Repetitive peak reverse voltage	200	V
I _{F (AV)}	Average forward current	3	Α
I _{FSM}	Surge non repetitive forward current	130	Α
T _{stg}	Storage temperature range	- 65 to + 175	°C
Tj	Maximum operating junction temperatu	175	°C

THERMAL PARAMETERS

Symbol	Parameter	Value	Unit
Rth (j-a)	Junction-ambient*	25	°C/W

^{*} On infinite heatsink with 10mm lead length.

November 2001 - Ed: 1A 1/5

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Con	Min.	Тур.	Max.	Unit	
I _R *	Reverse leakage current	$T_j = 25$ °C $V_R = V_{RRM}$				3	μΑ
		T _j = 125°C			4	75	
V _F **	Forward voltage drop	T _j = 25°C	I _F = 3A			0.95	V
		T _j = 125°C			0.66	0.75	

To evaluate the maximum conduction losses use the following equations:

 $P = 0.60 \times I_{F(AV)} + 0.05 I_{F}^{2}(RMS)$

DYNAMIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
trr	Reverse recovery time	$I_F = 1A$ $dI_F/dt = -50A/\mu s$ $V_R = 30V$	T _j = 25°C			35	ns
tfr	Forward recovery time	$I_F = 3A \ dI_F/dt = 50A/\mu s$ $V_{FR} = 1.1 \ x \ V_F \ max$	T _j = 25°C		70		ns
V _{FP}	Forward recovery voltage	,,,	T _j = 25°C		1.6		V

577

Fig. 1: Average forward power dissipation versus average forward current.

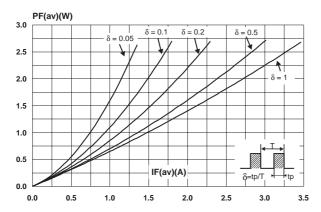
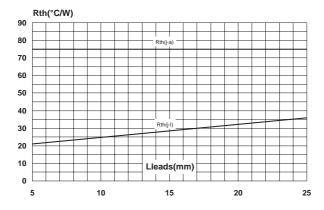
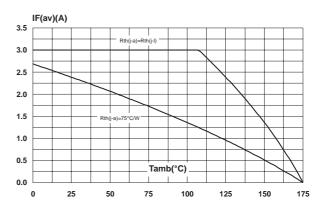
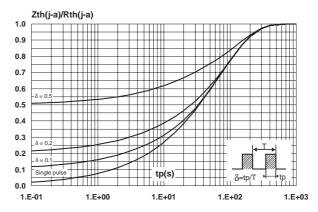


Fig. 3: Thermal resistance versus lead length.


Fig. 5: Forward voltage drop versus forward current.

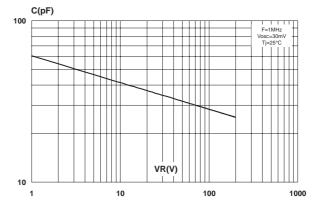

Fig. 2: Average forward current versus ambient temperature (δ =0.5).

Fig. 4: Relative variation of thermal impedance junction ambient versus pulse duration (printed circuit board epoxy FR4, Lleads = 10mm).

Fig. 6: Junction capacitance versus reverse voltage applied (typical values).

 $\overline{\Delta}$

Fig. 7: Reverse recovery time versus dI_F/dt (90% confidence).

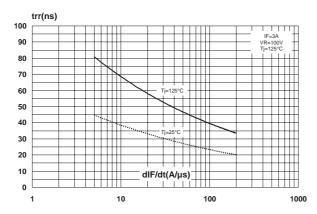
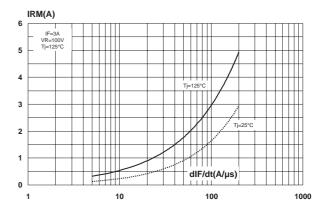
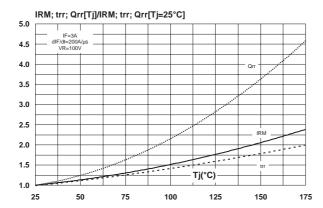
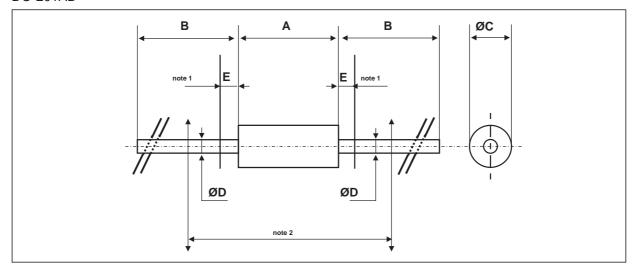




Fig. 8: Peak reverse recovery current versus dI_F/dt (90% confidence).


Fig. 9: Relative variations of dynamic parameters versus junction temperature.

4/5

PACKAGE MECHANICAL DATA

DO-201AD

		DIMEN	SIONS				
REF.	Millimeters		Inches		NOTES		
	Min.	Max.	Min.	Max.			
А		9.50		0.374	1 - The lead diameter Ø D is not_controlled over zone E		
В	25.40		1.000				
ØC		5.30		0.209	2 - The minimum axial length within which the device may be		
ØD		1.30		0.051	placed with its leads bent at right angles is 0.59"(15 mm)		
Е		1.25		0.049			

Ordering code	Marking	Package	Weight	Base qty	Delivery mode
STTH302	STTH302	DO-201AD	1.16 g	600	Ammopack
STTH302RL	STTH302	DO-201AD	1.16 g	1900	Tape and reel

- White band indicates cathode
- Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore

Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

