Power MOSFET

100 V, 30 m Ω , 28 A, Single N-Channel

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS6B75NLWF Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

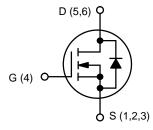
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parar	Symbol	Value	Unit		
Drain-to-Source Voltag	V_{DSS}	100	V		
Gate-to-Source Voltage	Э		V_{GS}	±16	V
Continuous Drain		T _C = 25°C	I _D	28	Α
Current R _{θJC} (Notes 1, 2, 3)	Steady	T _C = 100°C		19.7	
Power Dissipation	State	T _C = 25°C	P_{D}	56	W
R _{θJC} (Notes 1, 2)		T _C = 100°C		28	
Continuous Drain		$T_A = 25^{\circ}C$	I _D	7.0	Α
Current R _{θJA} (Notes 1, 2, 3)	Steady	T _A = 100°C		5.0	
Power Dissipation	State	T _A = 25°C	P _D	3.5	W
R _{θJA} (Notes 1 & 2)		T _A = 100°C		1.75	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	141	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to + 175	°C
Source Current (Body Diode)			I _S	43	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 1.7 A)			E _{AS}	177	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

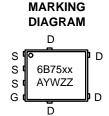
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	2.7	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	43	


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	30 mΩ @ 10 V	00.4
	46 mΩ @ 4.5 V	28 A

N-CHANNEL MOSFET

DFN5 (SO-8FL) CASE 488AA STYLE 1

6B75NL = NVMFS6B75NL 6B75LW = NVMFS6B75NLWF A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

OFF CHARACTERISTICS Drain-to-Source Breakdown Voltage V(BR)DSS VGS = 0 V. ID = 250 μA 100 62 Drain-to-Source Breakdown Voltage Emperature Coefficient Zero Gate Voltage Drain Current V(BR)DSS/IDS VGS = 0 V. ID = 250 μA 100 10	Unit	Max	Тур	Min	Test Condition		Symbol	Parameter
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								OFF CHARACTERISTICS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V			100	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		V _{(BR)DSS}	Drain-to-Source Breakdown Voltage
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mV/°C		62				V _{(BR)DSS} / T _J	
Gate—to–Source Leakage Current I $_{GSS}$ V $_{DS} = 0 \text{ V}$, V $_{GS} = 16 \text{ V}$ 100 ON CHARACTERISTICS (Note 4) VOS = 16 V 100 Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250 μA 1.0 3.0 Threshold Temperature Coefficient VGS(TH)/TJ -5.3 -5.3 -5.3 Drain—to–Source On Resistance RDS(on) VGS = 10 V ID = 10 A 35 46 CHARGES, CAPACITANCES & GATE RESISTANCE Input Capacitance CISS VGS = 4.5 V 740	٨	10			$T_J = 25^{\circ}C$	$V_{GS} = 0 V,$	I _{DSS}	Zero Gate Voltage Drain Current
ON CHARACTERISTICS (Note 4) Gate Threshold Voltage V _{GS(TH)} V _{GS} = V _{DS} , I _D = 250 μA 1.0 3.0 Threshold Temperature Coefficient V _{GS} (TH)/T _J -5.3 -5.3 Drain-to-Source On Resistance R _{DS(on)} V _{GS} = 10 V V _{GS} = 10 V V _{GS} = 4.5 V 24.7 30 CHARGES, CAPACITANCES & GATE RESISTANCE Input Capacitance C _{ISS} V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V 260 -6.0 Reverse Transfer Capacitance C _{RSS} V _{GS} = 4.5 V, V _{DS} = 50 V; I _D = 25 A 5.4 -6.0 Total Gate Charge Q _{G(TOT)} V _{GS} = 4.5 V, V _{DS} = 50 V; I _D = 25 A 5.4 -6.0 Threshold Gate Charge Q _G (TH) V _{GS} = 10 V, V _{DS} = 50 V; I _D = 25 A 5.4 -6.0 Gate-to-Source Charge Q _G V _{GS} = 10 V, V _{DS} = 50 V; I _D = 25 A 3.2 -6.0 Gate-to-Drain Charge Q _G V _{GS} = 10 V, V _{DS} = 50 V; I _D = 25 A 3.2 -7.0 SWITCHING CHARACTERISTICS (Note 5) V _{GS} = 10 V, V _{DS} = 50 V, V _{DS} = 50 V, I _D = 25 A, R _G = 2.5 Ω 9.1 -7.5 Turn-Off Delay Time t _I V _{GS} = 2	μΑ	250			T _J = 125°C	V _{DS} = 80 V		
	nA	100			= 16 V	$V_{DS} = 0 V, V_{GS}$	I _{GSS}	Gate-to-Source Leakage Current
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								ON CHARACTERISTICS (Note 4)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	3.0		1.0	: 250 μA	$V_{GS} = V_{DS}, I_D =$	V _{GS(TH)}	Gate Threshold Voltage
$ \begin{array}{ c c c c c c c c } \hline Drain-to-Source On Resistance & R_{DS(on)} & V_{GS} = 4.5 \ V & I_D = 10 \ A & 35 & 46 \\ \hline \hline CHARGES, CAPACITANCES & GATE RESISTANCE \\ \hline Input Capacitance & C_{ISS} & & 740 & \\ \hline Output Capacitance & C_{OSS} & V_{GS} = 0 \ V, f = 1 \ MHz, \ V_{DS} = 25 \ V & 260 & \\ \hline Reverse Transfer Capacitance & C_{RSS} & & 20 & \\ \hline Total Gate Charge & Q_{G(TOT)} & & & 11.3 & \\ \hline Threshold Gate Charge & Q_{GS} & V_{GS} = 4.5 \ V, V_{DS} = 50 \ V; \ I_D = 25 \ A & 5.4 & \\ \hline Gate-to-Drain Charge & Q_{GS} & V_{GS} = 10 \ V, V_{DS} = 50 \ V; \ I_D = 25 \ A & 3.2 & \\ \hline SWITCHING CHARACTERISTICS (Note 5) & & & 3.8 & \\ \hline Turn-Off Delay Time & t_{d(OFF)} & V_{GS} = 4.5 \ V, V_{DS} = 50 \ V, \ I_D = 25 \ A, R_G = 2.5 \ \Omega & 16 & \\ \hline DRAIN-SOURCE DIODE CHARACTERISTICS \\ \hline Forward Diode Voltage & V_{SD} & V_{GS} = 0 \ V, \ I_S = 20 \ A & T_J = 25^{\circ}C & 0.94 & 1.2 \\ \hline T_J = 125^{\circ}C & 0.84 & \\ \hline \end{array}$	mV/°C		-5.3				V _{GS(TH)} /T _J	Threshold Temperature Coefficient
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30	24.7			V _{GS} = 10 V		
Input Capacitance Class Output Capacitance Class Output Capacitance Class VgS = 0 V, f = 1 MHz, VDS = 25 V 260	mΩ	46	35		I _D = 10 A	V _{GS} = 4.5 V	R _{DS(on)}	Drain-to-Source On Resistance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							TANCE	CHARGES, CAPACITANCES & GATE RESIS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			740				C _{ISS}	Input Capacitance
	pF		260		V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V		C _{OSS}	Output Capacitance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			20				C _{RSS}	Reverse Transfer Capacitance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nC		5.4				_	
			11.3				$Q_{G(TOT)}$	Total Gate Charge
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.6				Q _{G(TH)}	Threshold Gate Charge
Plateau Voltage V_{GP} 3.8 SWITCHING CHARACTERISTICS (Note 5) Turn-On Delay Time $t_{d(ON)}$ 9.1 Rise Time t_r $V_{GS} = 4.5 \text{ V}, V_{DS} = 50 \text{ V}, I_D = 25 \text{ A}, R_G = 2.5 \Omega}$ 16 Fall Time t_f 71.5 DRAIN-SOURCE DIODE CHARACTERISTICS Forward Diode Voltage V_{SD} $V_{GS} = 0 \text{ V}, I_S = 20 \text{ A}$ $T_J = 25^{\circ}\text{C}$ 0.94 1.2 $T_J = 125^{\circ}\text{C}$ 0.84			3.2				Q _{GS}	Gate-to-Source Charge
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.5				Q_{GD}	Gate-to-Drain Charge
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V		3.8				V_{GP}	Plateau Voltage
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					<u>_</u>			SWITCHING CHARACTERISTICS (Note 5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			9.1				t _{d(ON)}	Turn-On Delay Time
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns ns		88.3		s = 50 V	Vcs = 4.5 V. Vns	t _r	Rise Time
			16		$V_{GS} = 4.3 \text{ V}, V_{DS} = 30 \text{ V},$ $I_{D} = 25 \text{ A}, R_{G} = 2.5 \Omega$		t _{d(OFF)}	Turn-Off Delay Time
Forward Diode Voltage V_{SD} $V_{GS} = 0 \text{ V}, \\ I_{S} = 20 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ 0.94 1.2 $T_{J} = 125^{\circ}\text{C}$ 0.84			71.5					Fall Time
$I_{S} = 20 \text{ A}$ $I_{J} = 125^{\circ}\text{C}$ 0.84							s	DRAIN-SOURCE DIODE CHARACTERISTIC
$I_S = 20 \text{ A}$ $T_J = 125^{\circ}\text{C}$ 0.84		1.2	0.94		T _J = 25°C	V _{GS} = 0 V, I _S = 20 A	V_{SD}	Forward Diode Voltage
Reverse Recovery Time t _{RR} 38.4	V		0.84		T _J = 125°C			
, INA			38.4		V _{GS} = 0 V, dIS/dt = 100 A/μs, I _S = 25 A		t _{RR}	Reverse Recovery Time
Charge Time	ns		22.6					Charge Time
			15.8					Discharge Time
Reverse Recovery Charge Q _{RR} 40	nC		40					Reverse Recovery Charge

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

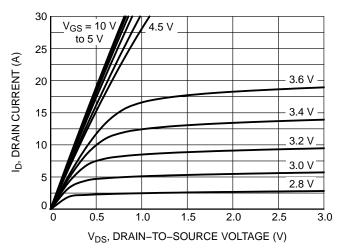


Figure 1. On-Region Characteristics

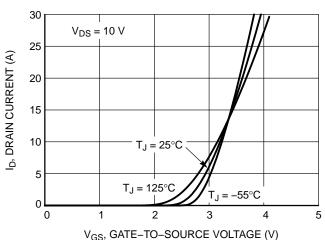


Figure 2. Transfer Characteristics

Figure 3. On–Resistance vs. Gate–to–Source Voltage

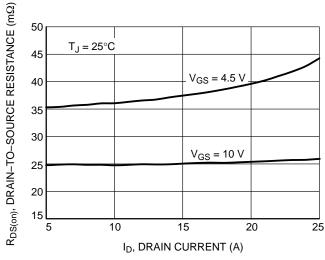


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

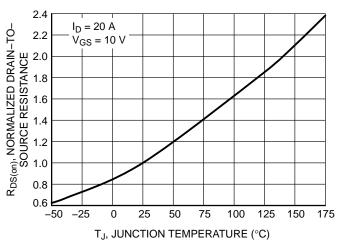


Figure 5. On–Resistance Variation with Temperature

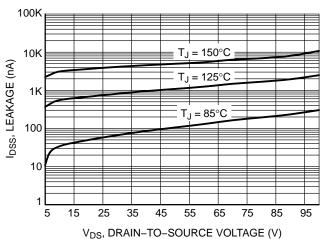
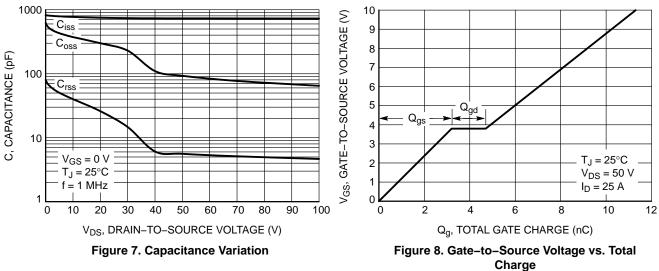



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

Charge

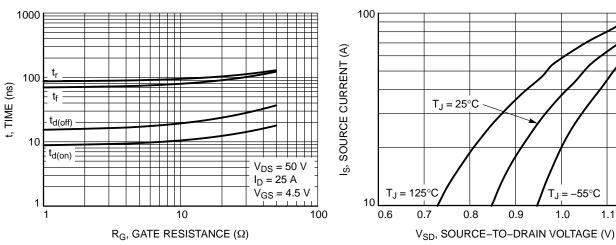


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

1.2

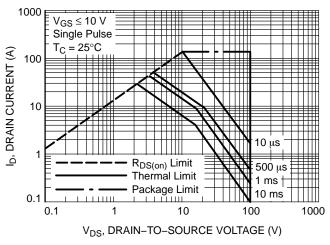


Figure 11. Maximum Rated Forward Biased Safe Operating Area

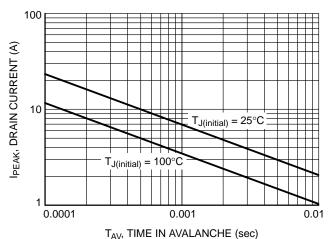


Figure 12. IPEAK vs. TAV

TYPICAL CHARACTERISTICS

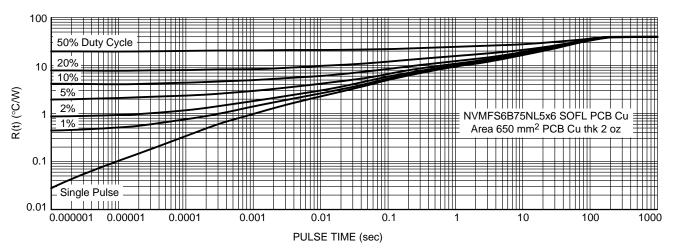


Figure 13. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS6B75NLT1G	6B75NL	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS6B75NLWFT1G	6B75LW	DFN5 (Pb–Free, Wettable Flanks)	1500 / Tape & Reel
NVMFS6B75NLT3G	6B75NL	DFN5 (Pb-Free)	5000 / Tape & Reel
NVMFS6B75NLWFT3G	6B75LW	DFN5 (Pb-Free, Wettable Flanks)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

0.10

0.10

SIDE VIEW

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N

DATE 25 JUN 2018

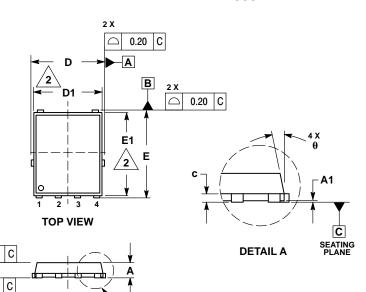
NOTES:

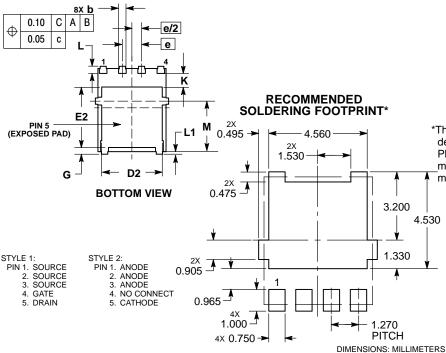
- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS

	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	0.90	1.00	1.10			
A1	0.00		0.05			
b	0.33	0.41	0.51			
С	0.23	0.28	0.33			
D	5.00	5.15	5.30			
D1	4.70	4.90	5.10			
D2	3.80	4.00	4.20			
E	6.00	6.15	6.30			
E1	5.70	5.90	6.10			
E2	3.45	3.65	3.85			
е		1.27 BSC				
G	0.51	0.575	0.71			
K	1.20	1.35	1.50			
L	0.51	0.575	0.71			
L1	0.125 REF					
М	3.00	3.40	3.80			
θ	0 °		12 °			

GENERIC MARKING DIAGRAM*

XXXXXX = Specific Device Code


= Assembly Location Α


= Lot Traceability

Υ = Year W = Work Week

ZZ

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and seven earnathy, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond