Operational Amplifier, Rail-to-Rail Output, $\mathbf{3} \mathbf{~ M H z}$ BW

TLV271, TLV272, NCV272, TLV274, NCV274

The TLV/NCV27x operational amplifiers provide rail-to-rail output operation. The output can swing within 320 mV to the positive rail and 50 mV to the negative rail. This rail-to-rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3 MHz bandwidth. The opamp can operate on supply voltage as low as 2.7 V over the temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The high bandwidth provides a slew rate of $2.4 \mathrm{~V} / \mu \mathrm{s}$ while only consuming $550 \mu \mathrm{~A}$ of quiescent current. Likewise the opamp can run on a supply voltage as high as 16 V (single) and 36 V (dual quad) making it ideal for a broad range of battery-operated applications. Since this is a CMOS device it has high input impedance and low bias currents making it ideal for interfacing to a wide variety of signal sensors. In addition it comes in a variety of compact packages with different pinout styles allowing for use in high-density PCB's.

Features

- Rail-To-Rail Output
- Wide Bandwidth: 3 MHz
- High Slew Rate: 2.4 V/us
- Wide Power-Supply Range: 2.7 V to 16 V (TLV271),

36 V (TLV/NCV272/274)

- Low Supply Current: $550 \mu \mathrm{~A}$
- Low Input Bias Current: 45 pA
- Wide Temperature Range: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- TSOP-5, Micro-8, SOIC-8, SOIC-14, TSSOP-14 Packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Notebook Computers
- Portable Instruments
- Signal Conditioning
- Automotive
- Power Supplies
- Current Sensing ON Semiconductor ${ }^{\text {® }}$ www.onsemi.com

DEVICE MARKING INFORMATION
See general marking information in the device marking section on page 2 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

MARKING DIAGRAMS

TLV271, TLV272, NCV272, TLV274, NCV274

PIN CONNECTIONS

Single Channel Configuration

TLV271

Dual Channel Configuration
TLV272, NCV272
OUT

Quadruple Channel Configuration
TLV274, NCV274

ORDERING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping ${ }^{\dagger}$
TLV271SN1T1G (Style 1 Pinout)	Single	No	ADG	TSOP-5	3000 / Tape and Reel
TLV271SN2T1G (Style 2 Pinout)			ADH		3000 / Tape and Reel
TLV272DR2G			V272	SOIC-8	2500 / Tape and Reel
TLV272DMR2G			V272	Micro-8/MSOP-8	4000 / Tape and Reel
TLV274DR2G			V274	SOIC-14	2500 / Tape and Reel
TLV274DTBR2G			V274	TSSOP-14	2500 / Tape and Reel
NCV272DR2G*		Yes	V272	SOIC-8	2500 / Tape and Reel
NCV272DMR2G*	Dual		V272	Micro-8/MSOP-8	4000 / Tape and Reel
NCV274DR2G*	Quad		V274	SOIC-14	2500 / Tape and Reel
NCV274DTBR2G*			V274	TSSOP-14	2500 / Tape and Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MAXIMUM RATINGS

Symbol	Rating		Value	Unit
V_{DD}	Supply Voltage (Note 1)	$\begin{array}{r} \text { TLV271 } \\ \text { TLV/NCV272/274 } \end{array}$	$\begin{gathered} 16.5 \\ 36 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {ID }}$	Input Differential Voltage		\pm Supply Voltage	V
V_{1}	Input Common Mode Voltage Range (Note 1)		$\begin{gathered} -0.2 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{DD}}+\right. \\ 0.2 \mathrm{~V}) \end{gathered}$	V
1	Maximum Input Current		± 10	mA
10	Output Current Range		± 100	mA
	Continuous Total Power Dissipation (Note 1)		200	mW
T_{J}	Maximum Junction Temperature		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating Ambient Temperature Range (free-air)		-40 to 125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature Range		-65 to 150	${ }^{\circ} \mathrm{C}$
ESD ${ }_{\text {HBM }}$	ESD Capability, Human Body Model		2	kV
ESD ${ }_{\text {CDM }}$	ESD Capability, Charged Device Model	TLV271 TLV/NCV272 TLV/NCV274	$\begin{gathered} \hline \text { TBD } \\ 2 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
	Mounting Temperature (Infrared or Convection - 20 sec)		260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Continuous short-circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V+ or V - will adversely affect reliability.

THERMAL INFORMATION

Parameter	Symbol	Package	Single Layer Board (Note 2)	Multi-Layer Board (Note 3)	Unit
Junction-to-Ambient	$\theta_{\text {JA }}$	TSOP-5	333	195	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Micro-8 / MSOP-8	236	167	
		SOIC-8	190	131	
		SOIC-14	142	101	
		TSSOP-14	179	128	

2. Values based on a 1 S standard PCB according to JEDEC51-3 with 1.0 oz copper and a $300 \mathrm{~mm}^{2}$ copper area
3. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a $100 \mathrm{~mm}^{2}$ copper area

TLV271 DC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V} \& \pm 5 \mathrm{~V}\right.$ (Note 4), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Input Offset Voltage	V_{10}	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=50 \Omega$			0.5	5	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				7	
Offset Voltage Drift	$\mathrm{ICV}_{\text {OS }}$	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=50 \Omega$			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	CMRR	$0 \mathrm{~V} \leq \mathrm{VIC} \leq \mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	58	70		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		55			
		$0 \mathrm{~V} \leq \mathrm{VIC} \leq \mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	65	130		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		62			
		$0 \mathrm{~V} \leq \mathrm{VIC} \leq \mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	69	140		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		66			
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 16 V , VIC $=\mathrm{V}_{\mathrm{DD}} / 2$, No Load		70	135		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		65			
Large Signal Voltage Gain	$A_{V D}$	$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	97	106		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		76			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	97	123		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		76			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	100	127		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		86			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	100	130		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		90			
Input Bias Current	I_{B}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		45	150	pA
			$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$			1000	
Input Offset Current	I_{10}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		45	150	pA
			$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$			1000	
Differential Input Resistance	$\mathrm{r}_{\mathrm{i}}(\mathrm{d})$				1000		G Ω
Common-mode Input Capacitance	$\mathrm{C}_{\text {IC }}$	$\mathrm{f}=21 \mathrm{kHz}$			8		pF

4. $V_{D D}= \pm 5 \mathrm{~V}$ is shorthand for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.

TLV271 DC ELECTRICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V} \& \pm 5 \mathrm{~V}$ (Note 4), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Output Swing (High-level)	V_{OH}	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	2.55	2.58		V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		2.48			
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	3.15	3.21		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		3.00			
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	4.8	4.93		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		4.75			
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	4.92	4.96		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		4.9			
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	1.9	2.1		V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		1.5			
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	2.5	2.89		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		2.1			
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	4.5	4.68		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		4.35			
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	4.7	4.78		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		4.65			
Output Swing (Low-level)	VoL	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OL}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		0.1	0.15	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				0.22	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OL}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		0.03	0.15	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				0.22	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OL}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		0.03	0.1	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				0.15	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OL}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$		0.05	0.08	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				0.1	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OL}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		0.5	0.7	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				1.1	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OL}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		0.13	0.7	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				1.1	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OL}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		0.13	0.4	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				0.5	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{I}_{\mathrm{OL}}=-5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$		0.16	0.3	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				0.35	
Output Current	Io	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	Positive rail		4.0		mA
			Negative rail		5.0		
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	Positive rail		7.0		
			Negative rail		8.0		
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	Positive rail		13		
			Negative rail		12		

4. $\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$ is shorthand for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.

TLV271 DC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V} \& \pm 5 \mathrm{~V}\right.$ (Note 4), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Power Supply Quiescent Current	IDD	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		380	560	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		385	620	
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		390	660	
			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		400	800	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				1000	

4. $\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$ is shorthand for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.

TLV271 AC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, 5 \mathrm{~V}, \& \pm 5 \mathrm{~V}\right.$ (Note 5), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Unity Gain Bandwidth	UGBW	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		3.2		MHz
			$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \text { to } \\ 10 \mathrm{~V} \end{gathered}$		3.5		
Slew Rate at Unity Gain	SR	$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	1.35	2.1		V/uS
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		1			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1.45	2.3		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		1.2			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	1.8	2.6		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		1.3			
Phase Margin	θ_{m}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			45		-
Gain Margin		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			14		dB
Settling Time to0.1%	t_{s}	$\begin{aligned} & \mathrm{V} \text {-step }(\mathrm{pp})=1 \mathrm{~V}, \mathrm{AV}=-1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		2.9		$\mu \mathrm{S}$
		$\begin{aligned} & \mathrm{V} \text {-step }(\mathrm{pp})=1 \mathrm{~V}, \mathrm{AV}=-1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=47 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ \pm 5 \mathrm{~V} \end{gathered}$		2.0		
Total Harmonic Distortion plus Noise	THD+N	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{f}=10 \mathrm{kHz} \end{aligned}$	$\mathrm{AV}=1$		0.004		\%
			$A V=10$		0.04		
			AV $=100$		0.3		
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}= \\ & 2 \mathrm{k} \Omega, \mathrm{f}=10 \mathrm{kHz} \end{aligned}$	$\mathrm{AV}=1$		0.004		
			$A V=10$		0.04		
			AV $=100$		0.03		
Input-Referred Voltage Noise	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$			30		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=10 \mathrm{kHz}$			20		
Input-Referred Current Noise	i_{n}	$\mathrm{f}=1 \mathrm{kHz}$			0.6		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$

5. $\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$ is shorthand for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.

TLV/NCV 272/274 DC ELECTRICAL CHARACTERISTICS
($\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}, 36 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Input Offset Voltage	V_{10}	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			1.3	± 3	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				± 4	
Offset Voltage Drift	$\mathrm{ICV}_{\text {OS }}$	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {SS }}+0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}$	$V_{D D}=2.7 \mathrm{~V}$	90	110		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		69			
		$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {SS }}+0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	102	125		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		80			
		$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {SS }}+0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	110	130		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		87			
		$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {SS }}+0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}$	120	145		
		$\begin{array}{ll} \hline \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \begin{array}{l} (\mathrm{TLV} / \mathrm{NCV} 272) \\ (\mathrm{TLV} / \mathrm{NCV} 274) \end{array} \end{array}$		$\begin{aligned} & 95 \\ & 85 \end{aligned}$			
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $36 \mathrm{~V}, \mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$, No Load		114	135		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		100			
Large Signal Voltage Gain	AvD	$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	96	118		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		86			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	96	120		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		86			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$V_{D D}=10 \mathrm{~V}$	98	120		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		88			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}$	98	120		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		88			
Input Bias Current	I_{B}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \text { to } 36 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	200	pA
			TLV/NCV272			2000	
			TLV/NCV274			1500	
Input Offset Current	I_{10}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	75	pA
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \text { to } 36 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	TLV/NCV272			500	
			TLV/NCV274			200	
Channel Separation	XTLK	DC	TLV/NCV272		100		dB
			TLV/NCV274		115		dB
Differential Input Resistance	$\mathrm{R}_{\mathrm{i}(\mathrm{d})}$				5		$\mathrm{G} \Omega$
Common-mode Input Capacitance	$\mathrm{ClC}_{\text {I }}$				3.5		pF

TLV/NCV 272/274 DC ELECTRICAL CHARACTERISTICS
($\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}, 36 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Output Swing (High-level)	V_{OH}	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		0.006	0.15	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				0.22	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		0.013	0.20	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				0.25	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		0.023	0.08	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				0.10	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}$		0.074	0.10	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				0.15	
Output Swing (Low-level)	$\mathrm{V}_{\text {OL }}$	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		0.005	0.15	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				0.22	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		0.01	0.10	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				0.15	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		0.022	0.3	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				0.35	
		$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}$		0.065	0.3	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				0.35	
Output Current	10	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	Positive rail		50		mA
			Negative rail		70		
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	Positive rail		60		
			Negative rail		50		
		$V_{D D}=10 \mathrm{~V}$	Positive rail		65		
			Negative rail		50		
		$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}$	Positive rail		65		
			Negative rail		50		
Power Supply Quiescent Current	I_{DD}	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2,$ Per channel, no load	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		405	525	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		410	530	
			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		416	540	
			$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}$		465	600	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				700	

NOTE: Power dissipation must be limited to prevent junction temperature from exceeding $150^{\circ} \mathrm{C}$. See Absolute Maximum Ratings for more information.

TLV271, TLV272, NCV272, TLV274, NCV274

TLV/NCV 272/274 AC ELECTRICAL CHARACTERISTICS
$\left(\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}, 36 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, and $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Unity Gain Bandwidth	UGBW	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		3		MHz
Slew Rate at Unity Gain	SR	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		2.8		V/uS
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		2.7		
			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		2.6		
			$V_{D D}=36 \mathrm{~V}$		2.4		
Phase Margin	θ_{m}	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$			50		。
Gain Margin		$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$			14		dB
Settling Time to 0.1\%	ts	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{pp}}$, Gain = 1, $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		0.6		$\mu \mathrm{S}$
		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}_{\text {pp }}$, Gain $=1, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		1.2		
		$\mathrm{V}_{\mathrm{O}}=8.5 \mathrm{~V}_{\mathrm{pp}}$, Gain $=1, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		3.4		
		$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{pp}}$, Gain $=1, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}$		3.2		
Total Harmonic Distortion plus Noise	THD+N	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{Av}=1$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		0.05		\%
		$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{Av}=1$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		0.009		
		$\mathrm{V}_{\mathrm{IN}}=7.5 \mathrm{~V}_{\mathrm{pp},}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{Av}=1$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		0.004		
		$\mathrm{V}_{\mathrm{IN}}=28.5 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{Av}=1$	$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}$		0.001		
Input-Referred Voltage Noise	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$			30		$\mathrm{nV} / \sqrt{\text { Hz }}$
		$\mathrm{f}=10 \mathrm{kHz}$			20		
Input-Referred Current Noise	i_{n}	$\mathrm{f}=1 \mathrm{kHz}$			90		$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$

TLV271, TLV272, NCV272, TLV274, NCV274

TYPICAL CHARACTERISTICS

Figure 1. CMRR vs. Frequency for TLV271

Figure 3. 2.5 V V ${ }_{\text {OL }}$ vs. $\mathrm{I}_{\text {out }}$

Figure 5. 3.3 V Vol vs. Iout

Figure 2. Input Bias and Offset Current vs. Temperature for TLV271

Figure 4. 2.5 V V ${ }_{\mathrm{OH}}$ vs. $\mathrm{I}_{\text {out }}$

Figure 6. 3.3 $\mathrm{V} \mathrm{V}_{\mathrm{OH}}$ vs. $\mathrm{I}_{\text {out }}$

TLV271, TLV272, NCV272, TLV274, NCV274

TYPICAL CHARACTERISTICS

Figure 7. V_{OL} vs. $\mathrm{I}_{\mathrm{out}}$

Figure 9. $10 \mathrm{~V} \mathrm{~V}_{\mathrm{OL}}$ vs. $\mathrm{I}_{\text {out }}$

Figure 11. Peak-to-Peak Output vs. Supply vs. Frequency

Figure 8. V_{OH} vs. $\mathrm{I}_{\mathrm{out}}$

Figure 10. $10 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}$ vs. $\mathrm{I}_{\text {out }}$

Figure 12. Quiescent Current Per Channel vs. Supply Voltage for TLV/NCV272/274

TLV271, TLV272, NCV272, TLV274, NCV274

TYPICAL CHARACTERISTICS

Figure 13. PSRR vs. Frequency for TLV271

Figure 14. PSRR vs. Frequency for TLV/NCV272/274

Figure 15. Open Loop Gain and Phase vs.
Frequency

Figure 16. Gain Bandwidth Product vs. Temperature

Figure 17. Slew Rate vs. Supply Voltage

TLV271, TLV272, NCV272, TLV274, NCV274

TYPICAL CHARACTERISTICS

Figure 18. Slew Rate vs. Temperature

Figure 20. 2.5 V Inverting Large Signal Pulse Response

Figure 22. 2.5 V Inverting Small Signal Pulse Response

Figure 19. Voltage Noise vs. Frequency

$500 \mathrm{~ns} /$ div
Figure 21. 2.5 V Non-Inverting Large Signal Pulse Response

Figure 23. 2.5 V Non-Inverting Small Signal Pulse Response

TLV271, TLV272, NCV272, TLV274, NCV274

TYPICAL CHARACTERISTICS

Figure 24. 3 V Inverting Large Signal Pulse Response

Figure 26. 3 V Inverting Small Signal Pulse Response

$500 \mathrm{~ns} /$ div
Figure 28. 6 V Inverting Large Signal Pulse Response

500 ns/div
Figure 25. 3 V Non-Inverting Large Signal Pulse Response

$500 \mathrm{~ns} / \mathrm{div}$
Figure 27. 3 V Non-Inverting Small Signal Pulse Response

$500 \mathrm{~ns} /$ div
Figure 29. 6 V Non-Inverting Large Signal Pulse Response

TLV271, TLV272, NCV272, TLV274, NCV274

TYPICAL CHARACTERISTICS

500 ns/div
Figure 30. 6 V Inverting Small Signal Pulse Response

500 ns/div
Figure 31. 6 V Non-Inverting Small Signal Pulse Response

Figure 32. CMRR vs. Frequency for TLV/NCV272/274

Figure 34. Low Level Output vs. Output Current for TLV/NCV272/274

Figure 35. High Level Output vs. Output Current for TLV/NCV272/274

TLV271, TLV272, NCV272, TLV274, NCV274
TYPICAL CHARACTERISTICS

Figure 36. Non-inverting Small Signal Transient Response for TLV/NCV272/274

Figure 38. Non-inverting Large Signal Transient Response for TLV/NCV272/274

Figure 37. Inverting Small Signal Transient Response for TLV/NCV272/274

Figure 39. Inverting Large Signal Transient Response for TLV/NCV272/274

TLV271, TLV272, NCV272, TLV274, NCV274

APPLICATIONS

Figure 40. Voltage Reference

Figure 42. Comparator with Hysteresis

Figure 41. Wien Bridge Oscillator

Given: $f_{o}=$ center frequency

$$
A\left(f_{0}\right)=\text { gain at center frequency }
$$

Choose value $\mathrm{f}_{0}, \mathrm{C}_{\mathrm{Q}}$
Then: $R 3=\frac{Q}{\pi f_{O} C}$

$$
\mathrm{R} 1=\frac{\mathrm{R} 3}{2 \mathrm{~A}\left(\mathrm{f}_{\mathrm{O}}\right)}
$$

$$
R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}
$$

For less than 10% error from operational amplifier, $\left(\left(Q_{O} f_{O}\right) / B W\right)<0.1$ where f_{0} and $B W$ are expressed in Hz . If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 43. Multiple Feedback Bandpass Filter

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME

Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH

THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD

FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

DIM	MILLIMETERS	
	MIN	MAX
\mathbf{A}	2.85	3.15
\mathbf{B}	1.35	1.65
\mathbf{C}	0.90	1.10
\mathbf{D}	0.25	0.50
\mathbf{G}	0.95	BSC
\mathbf{H}	0.01	0.10
\mathbf{J}	0.10	0.26
\mathbf{K}	0.20	0.60
\mathbf{M}	0	10°
\mathbf{S}	2.50	3.00

GENERIC MARKING DIAGRAM*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5-DRAIN
. P-DRAIN
7. N -DRAIN
8. N-DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
N 1. DRAIN, DIE
2. DRAIN, \#1
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24:

PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	- PAGE 2 OF2

onsemi and OnSeMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

SIDE.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE
STYLE $5:$

PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE

1. COMMON CATHODE
2. COMMON ANODE
3. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Documment Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE $\mathbf{2}$ OF 2 |

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DUES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN
4. DIMENSIUNS D AND E DD NDT INCLUDE MLLD FLASH, PRDTRUSIDr GR GATE BURRS, MILD FLASH, PRDTRUSIUNS, $G R$ GATE BURRS SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH IR PRZTRUSIDN SHALL NDT EXCEED 0.25 mm PER SIDE. DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE TI THE LIWEST PDINT IN THE PACKAGE BGDY.
GENERIC MARKING DIAGRAM*

= Specific Device Code
$\begin{array}{ll}\text { XXXX } & =\text { Specific Device Code } \\ \text { A } & =\text { Assembly Location }\end{array}$
Y = Year
W = Work Week

- = Pb-Free Package

END VIEW
0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FIDTPRINT

DIM	MILLIMETERS		
	MIN.	NIM.	MAX.
A	---	--	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
C	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
e	0.65 BSC		
H_{E}	4.75	4.90	
L	0.40	5.05	

PITCH
STYLE 1:
PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 2:

PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1

STYLE 3:

PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE
4. P-GATE
4. P-GATE
5. P-DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN or may not be present. Some products may not follow the Generic Marking

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-14 WB
CASE 948G
ISSUE C
DATE 17 FEB 2016

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	
BSC				
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC	0.252	BSC	
M	00°	8°	0°	8°

GENERIC MARKING DIAGRAM*

SOLDERING FOOTPRINT

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

onsemi and ONSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

