MOSFET – Power, Single P-Channel -60 V, -6 A, 260 mΩ

Features

- Small Footprint (3.3 x 3.3 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVTFS5124PLWF Wettable Flanks Product
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

		,		
Parameter				Unit
Drain-to-Source Voltage				
Gate-to-Source Voltage				
	T _{mb} = 25°C	۱ _D	-6.0	А
Steady	$T_{mb} = 100^{\circ}C$		-4.0	
State	T _{mb} = 25°C	PD	18	W
	$T_{mb} = 100^{\circ}C$		9.0	1
	$T_A = 25^{\circ}C$	۱ _D	-2.4	А
Steady State	T _A = 100°C		-1.7	1
	T _A = 25°C	PD	3.0	W
	T _A = 100°C		1.5	1
T _A = 25	°C, t _p = 10 μs	I _{DM}	-24	А
Storage T	emperature	T _J , T _{stg}	–55 to +175	°C
iode)		۱ _S	-18	А
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = -50 V, V _{GS} = -10 V, I _{L(pk)} = -13 A, L = 0.1 mH, R _G = 25 Ω)				mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)				°C
	steady Steady State State $T_A = 25$ Storage T iode) Source Av = -50 V, H, R _G = 2 poldering F	heter e Tmb = 25°C Tmb = 100°C Tmb = 25°C Tmb = 100°C Tmb = 100°C Tmb = 25°C Tmb = 100°C Tmb = 100°C Tmb = 25°C Tmb = 100°C Tmb = 25°C Tmb = 100°C Tmb = 100°C	SymbolSymbolVossVossVossVossVossVossVossVossSteady Tmb = 100°CTmb = 25°CIDTmb = 100°CPDTmb = 100°CIDTa = 25°CIDTa = 25°CPDTa = 100°CPDTa = 100°CIDMSteady Ta = 100°CTa = 25°C, tp = 10 µsIDMStorage TemperatureIsSource Avalanche = -50 V, VGS = -10 V, H, RG = 25 Ω Didering PurposesTL	$\begin{array}{c c c c c } & & & & & & & & & & & & & & & & & & &$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

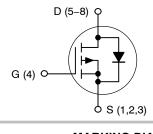
THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) – Steady State (Note 2 and 3)	$R_{\PsiJ-mb}$	8.4	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	49.2	

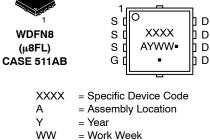
1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

- 2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

4. Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
–60 V	260 mΩ @ –10 V	-6 A
	380 mΩ @ −4.5 V	-07

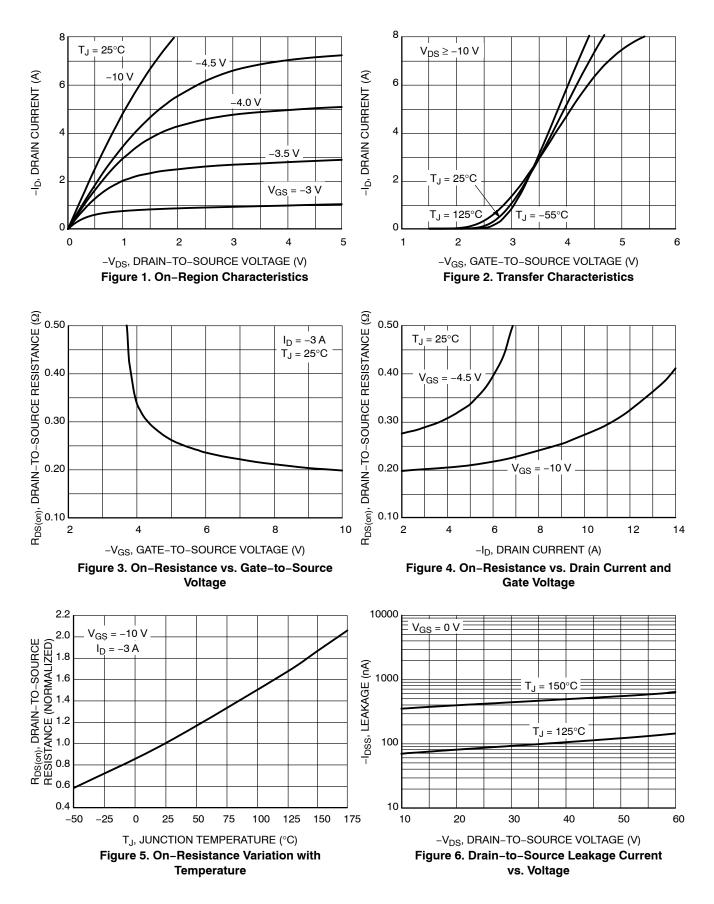
P-Channel MOSFET

MARKING DIAGRAM

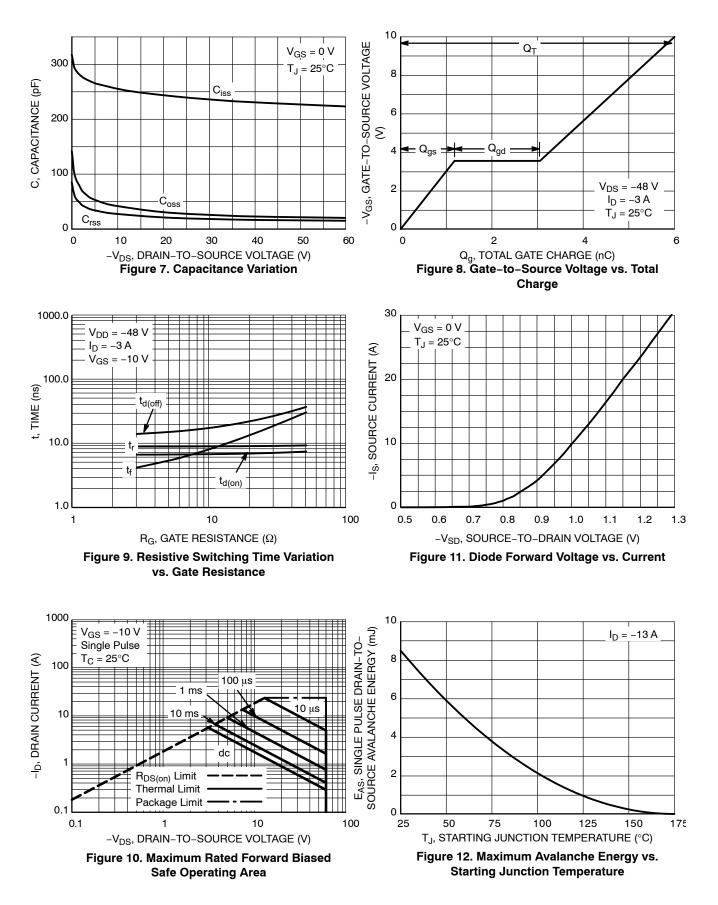
= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION


See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

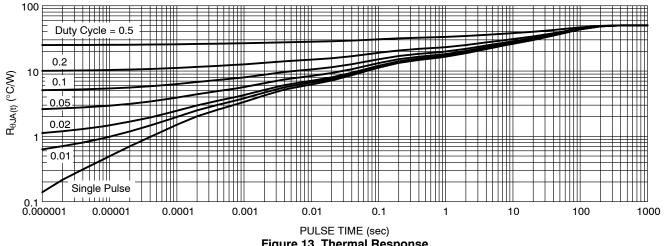

Parameter	Symbol	Test Condition		Min	Тур	Мах	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_{D} = -250 μ A		-60			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1.0	μA
		$V_{DS} = -60 V$	T _J = 125°C			-10	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= ±20 V			± 100	nA
ON CHARACTERISTICS (Note 5)					•		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} =$	= –250 μA	-1.5		-2.5	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V, I	_D = -3 A		200	260	mΩ
		V _{GS} = -4.5 V,	_D = -3 A		290	380	
Forward Transconductance	9fs	V _{DS} = -15 V, I	_D = -5 A	4			S
CHARGES AND CAPACITANCES					•		
Input Capacitance	C _{iss}				250		
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = ⁻ V _{DS} = -2	.0 MHz, 5 V		27		pF
Reverse Transfer Capacitance	C _{rss}	V _{DS} = -25 V			17		1
Total Gate Charge	Q _{G(TOT)}	V_{GS} = -4.5 V, V_{DS} = -48 V, I _D = -3 A			3.5		nC
Threshold Gate Charge	Q _{G(TH)}				0.4		
Gate-to-Source Charge	Q _{GS}				1.2		
Gate-to-Drain Charge	Q _{GD}				1.9		
Total Gate Charge	Q _{G(TOT)}	$\label{eq:VGS} \begin{array}{l} V_{GS} = -10 \text{ V}, V_{DS} = -48 \text{ V}, \\ I_D = -3 \text{ A} \end{array}$			6		
SWITCHING CHARACTERISTICS (No	te 6)						
Turn-On Delay Time	t _{d(on)}				7		
Rise Time	t _r	V _{GS} = -4.5 V, V _D	s = -48 V.		14		ns
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = -3 \rm A, R_{\rm G}$	= 2.5 Ω		13		
Fall Time	t _f				10		1
DRAIN-SOURCE DIODE CHARACTEF	ISTICS				•		
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$ $I_{S} = -3 A$	$T_J = 25^{\circ}C$		-0.87	-1.0	V
			T _J = 125°C		-0.74		
Reverse Recovery Time	t _{RR}	$\begin{array}{l} V_{GS}=0 \text{ V},\\ dI_S/dt=100 \text{ A}/\mu\text{s},\\ I_S=-3 \text{ A} \end{array}$			17		ns
Charge Time	t _a				14		1
Discharge Time	t _b				3		1
Reverse Recovery Charge	Q _{RR}				19		nC

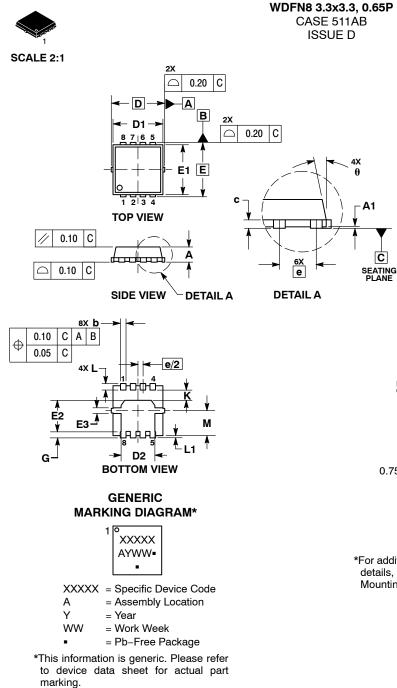
Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



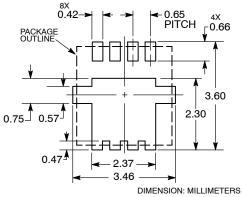

Figure 13. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVTFS5124PLTAG	5124	WDFN8 (Pb–Free)	1500 / Tape & Reel
NVTFS5124PLWFTAG	24LW	WDFN8 (Pb–Free)	1500 / Tape & Reel
NVTFS5124PLTWG	5124	WDFN8 (Pb-Free)	5000 / Tape & Reel
NVTFS5124PLWFTWG	24LW	WDFN8 (Pb-Free)	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pb-Free indicator, "G" or microdot " .", may or may not be present.


DATE 23 APR 2012

NOTES:

LES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. 1. 2. 3.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
с	0.15	0.20	0.25	0.006	0.008	0.010	
D		3.30 BSC			.130 BSC)	
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
Е		3.30 BSC		0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е		0.65 BSC	;	0.026 BSC			
G	0.30	0.41	0.51	0.012	0.016	0.020	
К	0.65	0.80	0.95	0.026	0.032	0.037	
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
М	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1					
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the							

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcula performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥