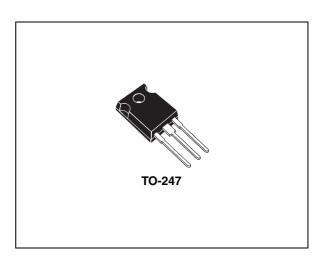


STW12NK95Z

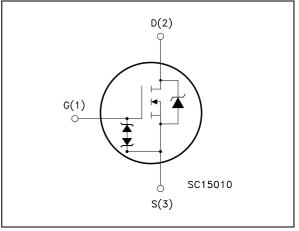
N-channel 950V - 0.69Ω - 10A - TO-247 Zener - Protected SuperMESH™ PowerMOSFET

General features

Туре	V _{DSS} (@Tjmax)	R _{DS(on)}	I _D	Pw
STW12NK95Z	950 V	< 0.90Ω	10 A	230W


- Gate charge minimized
- 100% avalanche tested
- Extremely high dv/dt capability

Description


The SuperMESH[™] series is obtained through an extreme optimization of ST's well established strip-based PowerMESH[™] layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications.

Applications

Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STW12NK95Z	W12NK95Z	TO-247	Tube

Contents

1	Electrical ratings	3
	1.1 Protection features of gate-to-source zener diodes	4
2	Electrical characteristics	5
	2.1 Electrical characteristics (curves)	7
3	Test circuit	10
4	Package mechanical data	11
5	Revision history	13

1

Electrical ratings

Table 1.	Absolute maximum ratings
----------	--------------------------

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	950	V
V _{DGR}	Drain-gate voltage (R _{GS} = 20KΩ)	950	V
V _{GS}	Gate-source voltage	± 30	V
۱ _D	Drain current (continuous) at $T_C = 25^{\circ}C$	10	А
۱ _D	Drain current (continuous) at T _C =100°C	6.3	А
I _{DM} ⁽¹⁾	I _{DM} ⁽¹⁾ Drain current (pulsed)		А
P _{TOT}	Total dissipation at $T_{C} = 25^{\circ}C$	230	W
	Derating Factor	1.85	W/°C
V _{ESD (G-S)}	Gate source ESD (HBM-C=100pF, R=1,5KΩ)	6000	V
dv/dt ⁽²⁾	dv/dt ⁽²⁾ Peak diode recovery voltage slope		V/ns
TJOperating junction temperatureTstgStorage temperature		-55 to 150	°C

1. Pulse width limited by safe operating area

2. $I_{SD} \leq 10A$, di/dt $\leq 200A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{JMAX}$

Table	2.	Thermal	data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case Max	0.54	°C/W
R _{thj-a}	Thermal resistance junction-ambient Max	50	°C/W
Τ _Ι	Maximum lead temperature for soldering purpose	300	°C

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)	10	A
E _{AS}	Single pulse avalanche energy (starting Tj=25°C, Id=Iar, Vdd=50V)	500	mJ

Table 4.	Gate-source	zener	diode
	auto source	201101	aloue

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-source breakdown voltage	lgs=± 1mA (Open Drain)	30			V

1.1 Protection features of gate-to-source zener diodes

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1mA$, $V_{GS} = 0$	950			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max rating, V _{DS} = Max rating, Tc = 125°C			1 50	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{GS} = 0)	$V_{GS} = \pm 20V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 100 \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 5 A		0.69	0.9	Ω

Table 5. On/off states

Table 6. Dynamic

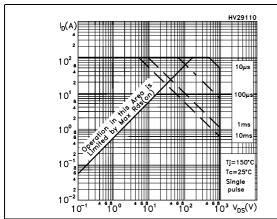
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} =15V, I _D = 5A		12		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25V, f=1 MHz, V _{GS} =0		3500 280 58		pF pF pF
C _{osseq} ⁽²⁾ .	Equivalent output capacitance	V_{GS} =0, V_{DS} =0V to 760V		117		pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =760V, I_D = 10A V_{GS} =10V (see <i>Figure 15</i>)		113 19 60	152	nC nC nC

1. Pulsed: pulse duration=300µs, duty cycle 1.5%

2. $C_{oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	V_{DD} =475V, I _D =5A, R _G =4.7 Ω , V _{GS} =10V (see Figure 14)		31 20		ns ns
t _{d(off)} t _f	Turn-off Delay Time Fall Time	V _{DD} =475V, I _D =5A, R _G =4.7Ω, V _{GS} =10V (see <i>Figure 14</i>)		88 55		ns ns

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current				10	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				40	А
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} =8.3A, V _{GS} =0			1.6	V
t _{rr}	Reverse recovery time	I _{SD} =10,		728		ns
Q _{rr}	Reverse recovery charge	di/dt = 100A/µs,		78		μC
I _{RRM}	Reverse recovery current	V _{DD} =50V, Tj=25°C		21.6		А
t _{rr}	Reverse recovery time	I _{SD} =10A,		964		ns
Q _{rr}	Reverse recovery charge	di/dt = 100A/µs,		11		μC
I _{RRM}	Reverse recovery current	V _{DD} =50V, Tj=150°C		23		А


 Table 8.
 Source drain diode

1. Pulse width limited by safe operating area

2. Pulsed: pulse duration=300µs, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

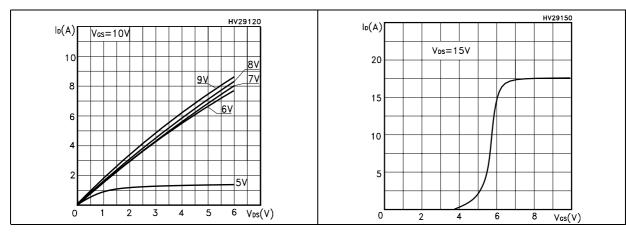
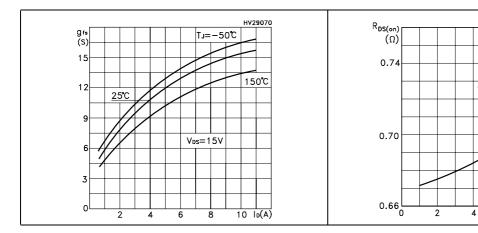
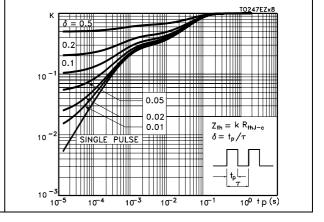


Figure 2.


 $V_{GS} = 10V$

6

8


 $I_{D}(A)$

HV29130

57

Thermal impedance

57

Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

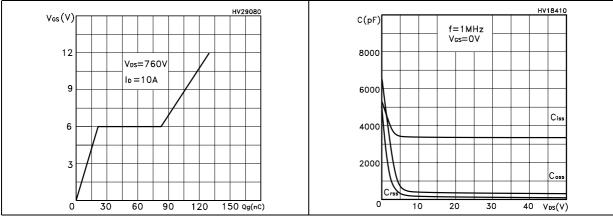


Figure 9. Normalized gate threshold voltage vs temperature

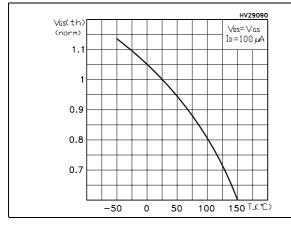
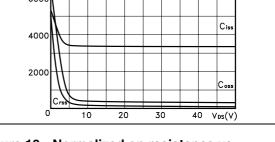
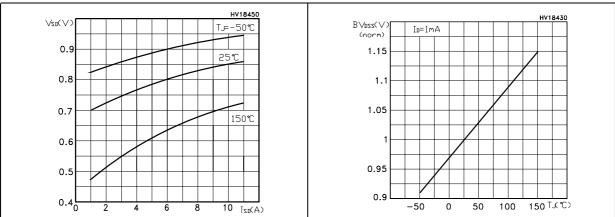


Figure 11. Source-drain diode forward characteristics

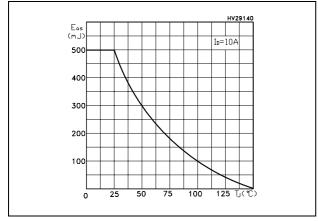

Figure 10. Normalized on resistance vs temperature

Figure 12. Normalized B_{VDSS} vs temperature

Figure 13. Maximum avalanche energy vs temperature

3 Test circuit

Figure 14. Switching times test circuit for resistive load

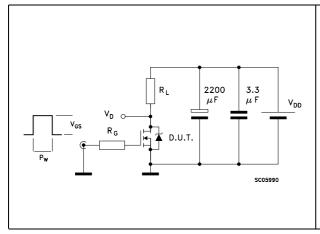


Figure 16. Test circuit for inductive load switching and diode recovery times

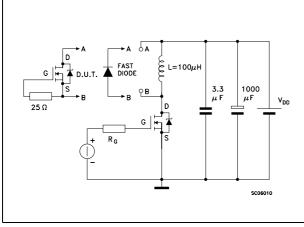


Figure 18. Unclamped inductive waveform

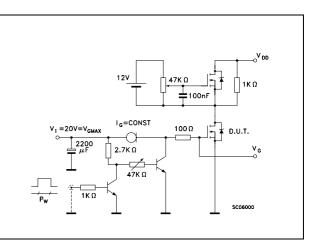


Figure 17. Unclamped Inductive load test circuit

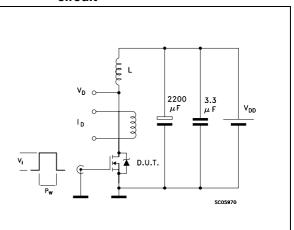
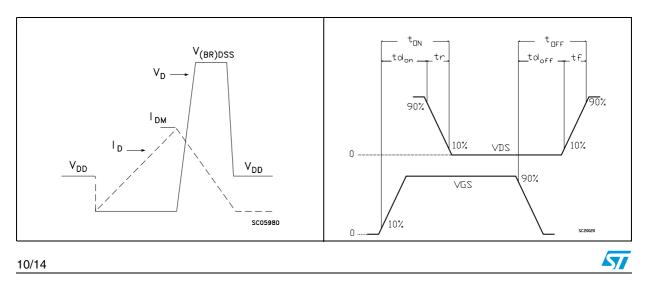
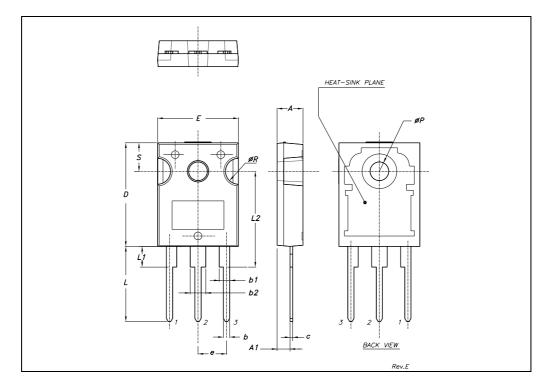



Figure 19. Switching time waveform


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

TO-247 MECHANICAL DA	ТΑ
----------------------	----

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	4.85		5.15	0.19		0.20	
A1	2.20		2.60	0.086		0.102	
b	1.0		1.40	0.039		0.055	
b1	2.0		2.40	0.079		0.094	
b2	3.0		3.40	0.118		0.134	
С	0.40		0.80	0.015		0.03	
D	19.85		20.15	0.781		0.793	
Е	15.45		15.75	0.608		0.620	
е		5.45			0.214		
L	14.20		14.80	0.560		0.582	
L1	3.70		4.30	0.14		0.17	
L2		18.50			0.728		
øP	3.55		3.65	0.140		0.143	
øR	4.50		5.50	0.177		0.216	
S		5.50			0.216		

5 Revision history

Table 9. Revision history

Date	Revision	Changes
16-Jan-2006	1	Initial release.
01-Aug-2006	2	New template, no content change

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14

