

N-channel 600 V, 0.95 Ω typ., 5 A MDmesh™ DM2 Power MOSFET in an IPAK package

IPAK

Features

Order code	V _{DS}	R _{DS(on)} max.	l _D	P _{TOT}
STU6N60DM2	600 V	1.10 Ω	5 A	60 W

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- · Low on-resistance
- 100% avalanche tested
- · Extremely high dv/dt ruggedness
- · Zener-protected

Applications

· Switching applications

Description

lectronics sales office

This high-voltage N-channel Power MOSFET is part of the MDmesh $^{\text{TM}}$ DM2 fast-recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low $R_{DS(on)}$, rendering it suitable for the most demanding high-efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Product status link				
STU6N60DM2				
Product summary				
Order code	STU6N60DM2			
Marking	6N60DM2			
Package	IPAK			
Packing	Tube			

page 2/14

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±25	V
I_	Drain current (continuous) at T _{case} = 25 °C	5	^
I _D	Drain current (continuous) at T _{case} = 100 °C	3.2	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	20	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	60	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/IIS
T _{stg}	Storage temperature range	-55 to 150	°C
T _j	Operating junction temperature range	-55 to 150	

- 1. Pulse width is limited by safe operating area.
- 2. $I_{SD} \le 5$ A, di/dt = 900 A/ μs ; V_{DS} peak $< V_{(BR)DSS}$, $V_{DD} = 480$ V.
- 3. $V_{DS} \le 480 \text{ V}.$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.08	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	100	C/VV

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} (1)	Avalanche current, repetitive or not repetitive	1.7	Α
E _{AS} (2)	Single pulse avalanche energy	132	mJ

- 1. Pulse width limited by T_{jmax} .
- 2. Starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.

DS12223 - Rev 2

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V
	Zana mata waltana duain	V _{GS} = 0 V, V _{DS} = 600 V			1	
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{case} = 125 ^{\circ}\text{C}^{(1)}$			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±5	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3.25	4	4.75	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 2.5 A		0.95	1.10	Ω

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	274	-	
C _{oss}	Output capacitance	V_{DS} = 100 V, f = 1 MHz, V_{GS} = 0 V	-	15	-	pF
C _{rss}	Reverse transfer capacitance		-	2	-	
C _{oss eq.} (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	25	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	6.5	-	Ω
Qg	Total gate charge	V_{DD} = 480 V, I_D = 5 A, V_{GS} = 0 to 10 V (see Figure 14. Test circuit for	-	6.2	-	
Q _{gs}	Gate-source charge		-	1.8	-	nC
Q _{gd}	Gate-drain charge	gate charge behavior)	-	2.7	-	

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

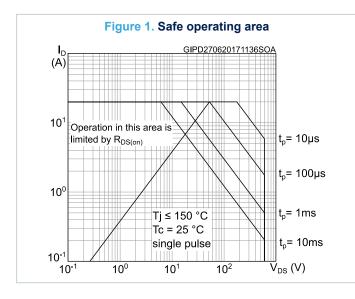
Table 6. Switching times

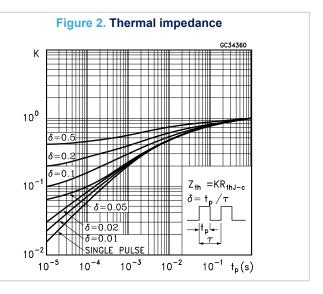
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 300 V, I_{D} = 2.5 A R_{G} = 4.7 Ω , V_{GS} = 10 V (see Figure 13. Test	-	9.2	-	
t _r	Rise time		-	5.6	-	no
t _{d(off)}	Turn-off delay time	circuit for resistive load switching times and Figure 18. Switching time	-	12	-	ns
t _f	Fall time	waveform)	-	19.6	-	

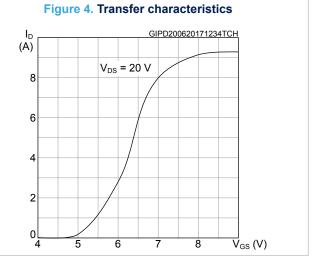
DS12223 - Rev 2 page 3/14

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		5	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		20	Α
V _{SD} (2)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 5 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/μs, V _{DD} = 60 V (see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	60		ns
Q _{rr}	Reverse recovery charge		-	135		nC
I _{RRM}	Reverse recovery current		-	4.5		Α
t _{rr}	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/μs, V _{DD} = 60 V, T _j = 150 °C (see Figure 15. Test circuit for inductive load	-	132		ns
Q _{rr}	Reverse recovery charge		-	429		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times)	-	6.5		Α


^{1.} Pulse width is limited by safe operating area.


DS12223 - Rev 2 page 4/14


^{2.} Pulse test: pulse duration = $300 \mu s$, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

DS12223 - Rev 2 page 5/14

Figure 5. Gate charge vs gate-source voltage

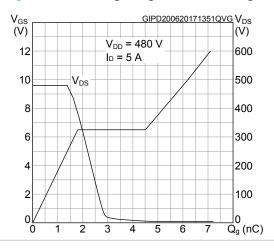


Figure 6. Static drain-source on-resistance

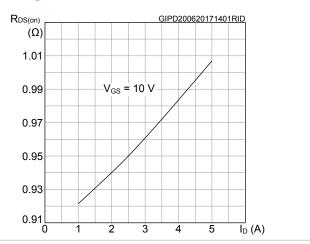


Figure 7. Capacitance variations

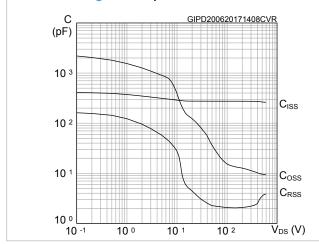


Figure 8. Output capacitance stored energy

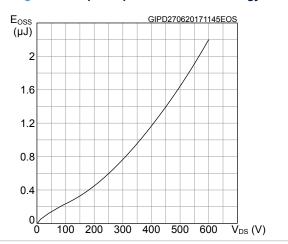


Figure 9. Normalized gate threshold voltage vs temperature

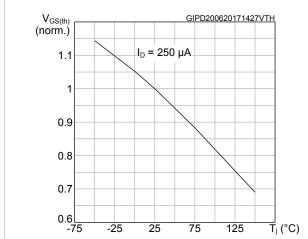
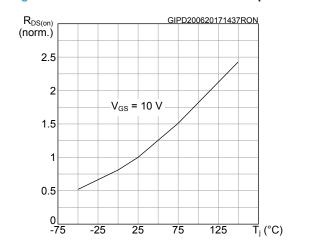



Figure 10. Normalized on-resistance vs temperature

DS12223 - Rev 2 page 6/14

Figure 11. Source-drain diode forward characteristics

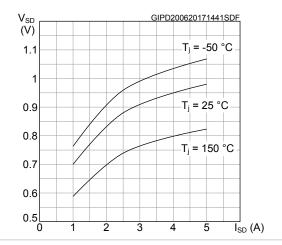
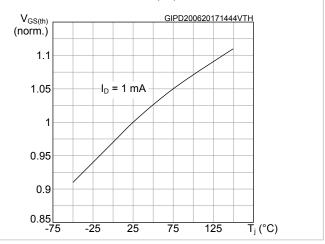



Figure 12. Normalized $V_{(BR)DSS}$ vs temperature

3 Test circuits

Figure 13. Test circuit for resistive load switching times

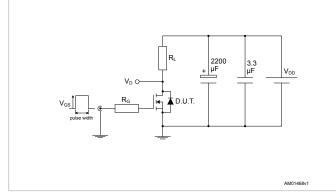


Figure 14. Test circuit for gate charge behavior

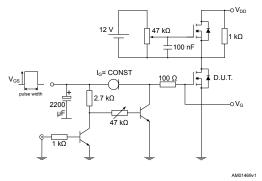


Figure 15. Test circuit for inductive load switching and diode recovery times

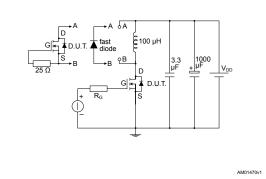


Figure 16. Unclamped inductive load test circuit

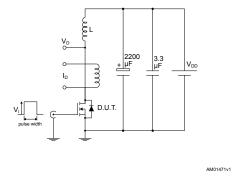


Figure 17. Unclamped inductive waveform

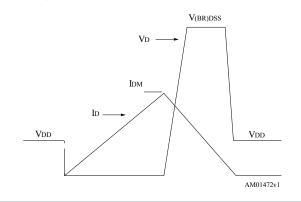
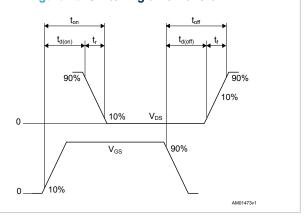
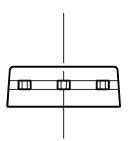
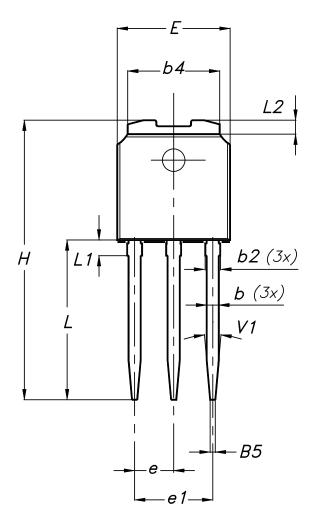



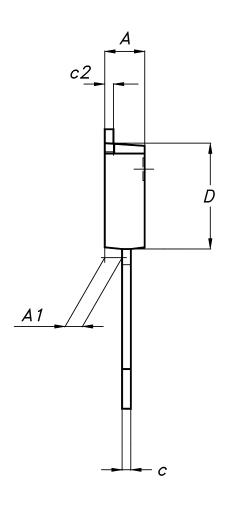
Figure 18. Switching time waveform

DS12223 - Rev 2 page 8/14

4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.


DS12223 - Rev 2 page 9/14



4.1 IPAK (TO-251) type A package information

Figure 19. IPAK (TO-251) type A package outline

0068771_IK_typeA_rev14

DS12223 - Rev 2 page 10/14

Table 8. IPAK (TO-251) type A package mechanical data

Dim.	mm				
Dim.	Min.	Тур.	Max.		
А	2.20		2.40		
A1	0.90		1.10		
b	0.64		0.90		
b2			0.95		
b4	5.20		5.40		
B5		0.30			
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
E	6.40		6.60		
е		2.28			
e1	4.40		4.60		
Н		16.10			
L	9.00		9.40		
L1	0.80		1.20		
L2		0.80	1.00		
V1		10°			

DS12223 - Rev 2 page 11/14

Revision history

Table 9. Document revision history

Date	Revision	Changes
03-Jul-2017	1	First release
14-Jun-2018	2	Updated Table 5. Dynamic.

DS12223 - Rev 2 page 12/14

Contents

1	Elec	trical ratings	2
2	Elec	etrical characteristics	3
	2.1	Electrical characteristics (curves)	5
3	Test	circuits	8
4	Pac	kage information	9
	4.1	IPAK (TO-251) type A package information	9
Rev	/ision	history	12

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12223 - Rev 2 page 14/14