

STW26NM60N-H

N-channel 600 V, 0.135 Ω 20 A TO-247 MDmesh™ II Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STW26NM60N-H	600 V	< 0.165 Ω	20 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Application

Switching applications

Description

This series of devices implements second generation MDmesh[™] technology. This revolutionary Power MOSFET associates a new vertical structure to the company's strip layout to yield one of the world's lowest cn-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

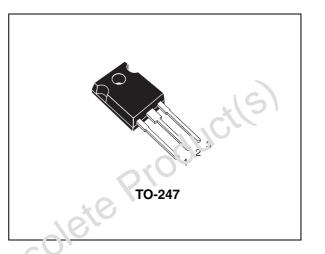
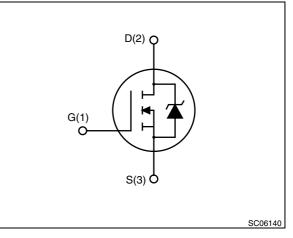



Figure 1. Internal schematic diagram

Table [·]	1.	Device	summary

Order codes	Order codes Marking		Packaging
STW26NM60N-H	STW26NM60N-H 26NM60N		Tube

Note: The device meets ECOPACK® standards, an environmentally-friendly grade of products commonly referred to as "halogen-free". See Section 4: Package mechanical data

October	2009
00.000	-000

www.st.com

Contents

1	Electrical ratings
2	Electrical characteristics4
	2.1 Electrical characteristics (curves) 6
3	Test circuits
4	Package mechanical data
5	Revision history
	obsolete t
	Electrical ratings 3 Electrical characteristics 4 2.1 Electrical characteristics (curves) 6 Test circuits 7 8 Package mechanical data 9 Revision history 11
	deter
0105	

2/12

1

Table 2.	Absolute	maximum	ratings
	Absolute	maximam	radings

Electrical ratings

Symbol	Parameter	Value	Unit			
V_{DS}	Drain-source voltage ($V_{GS} = 0$)	600	V			
V _{GS}	Gate-source voltage	± 25	V			
Ι _D	Drain current (continuous) at T_{C} = 25 °C	20	А			
Ι _D	Drain current (continuous) at $T_C = 100 \ ^{\circ}C$	12.6	А			
I _{DM} ⁽¹⁾	Drain current (pulsed)	80	Α			
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	140	N			
	Derating factor	1.12				
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns			
T _{stg}	Storage temperature	58 tc 1.50	°C			
Тj	Max. operating junction temperature	150	°C			
1. Pulse wi	dth limited by safe operating area					
2. I _{SD} ≤20	A, di/dt \leq 400 A/µs, V _{DD} \leq 80% V _{(BR)DSS}	10				
Table 3. Thermal data						

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance unction-case max	0.89	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	50	°C/W
TI	Maximum load temperature for soldering	300	°C

Та'э́ээ 4.

Avalanche characteristics

	Ta'bie 4.	Avalanche characteristics		
	Symbol	Parameter	Value	Unit
00501	I _{AS}	Avalanche current, repetitive or not- repetitive (pulse width limited by Tj max)	8.5	А
05	E _{AS}	Single pulse avalanche energy (starting T _J =25 °C, I _D =I _{AS} , V _{DD} =50 V)	610	mJ

2 **Electrical characteristics**

(T_{CASE} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	600			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max rating V _{DS} = Max rating, @125 °C			1 10	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20 V$, C	61	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A}$	0	0.135	0.165	Ω
Table 6.	Dynamic	olete				
Symbol	Parameter	Test conditions	Min	Typ	Max	Unit

Table 5. **On/off states**

Table 6. Dynamic

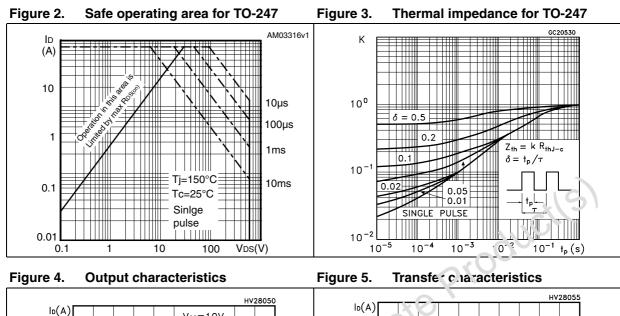
	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfe capacitance	V _{DS} = 50 V, f = 1 MHz, V _{GS} = 0	-	1800 115 1.1	-	pF pF pF
C	C _{oss eq.} ⁽¹⁾	Equivalent ouiput capabilit nce	$V_{GS} = 0, V_{DS} = 0 \text{ to } 480 \text{ V}$	-	310	-	pF
	Q Q _{gs} O _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 480 \text{ V}, I_D = 20 \text{ A},$ $V_{GS} = 10 \text{ V},$ <i>(see Figure 15)</i>	-	60 8.5 30	-	nC nC nC
5	R _g	Gate input resistance	f=1 MHz Gate DC Bias=0 Test signal level = 20 mV open drain	-	2.8	-	Ω
1.	. C _{oss eq.} is increases	defined as a constant equivalent	capacitance giving the same chargi	ng time	as C _{oss}	when V _l	DS

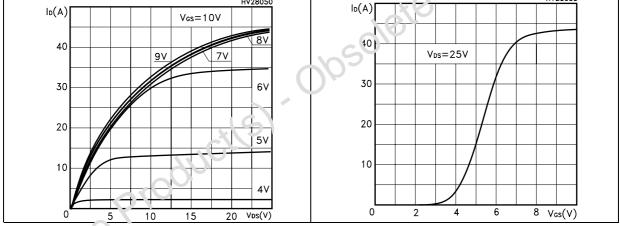
1. $C_{\rm oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as $C_{\rm oss}$ when $V_{\rm DS}$ increases from 0 to 80% $V_{\rm DS}$

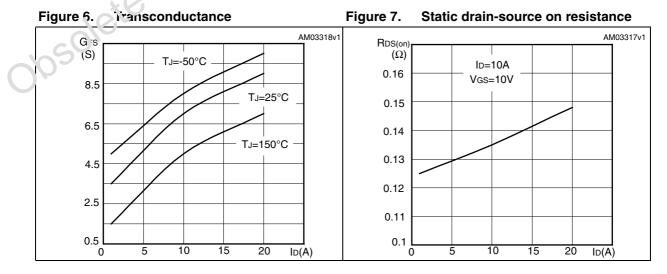
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	$V_{DD} = 300 \text{ V}, I_D = 10 \text{ A}$ $R_G = 4.7 \Omega V_{GS} = 10 \text{ V}$ (see Figure 14)	-	13 25 85 50	-	ns ns ns ns

Table 7.Switching times

Table 8.Source drain diode


Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)		-	2	20 30	A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 20 A, V _{GS} = 0	-	9	1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 ^/u:	0	370		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	5.8		μC
I _{RRM}	Reverse recovery current	(see Figure 16)		31.6		А
t _{rr}	Reverse recovery time	I _{SD} = 20 A, c ⁱ /d [*] = 100 A/μs		450		ns
Q _{rr}	Reverse recovery charge	V _{DD} = €0 \', T _j = 150 °C	-	7.5		μC
I _{RRM}	Reverse recovery current	(Gen Figure 16)		32.5		А


1. Pulse width limited by safe operating area


2. Pulsed: pulse duration = 300 µs, duty cycle 1.5%

2.1 Electrical characteristics (curves)

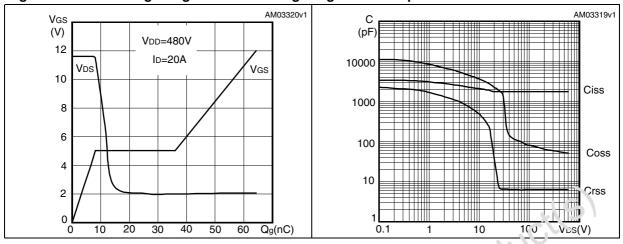


Figure 8. Gate charge vs gate-source voltage Figure 9. **Capacitance variations**

temperature

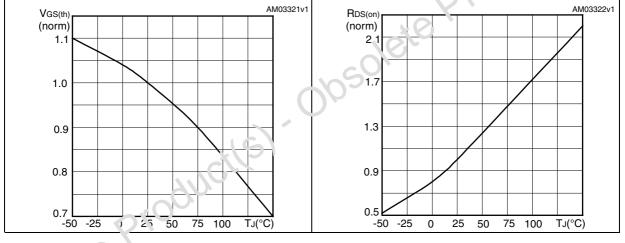


Figure 12. Source-drain diode forward characteristics

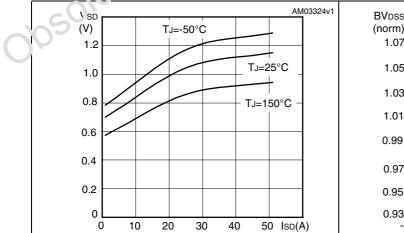
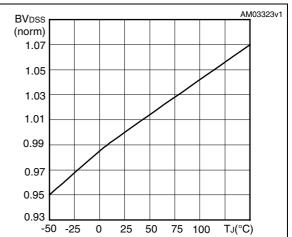
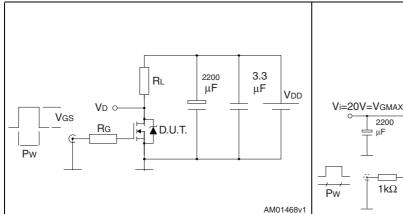
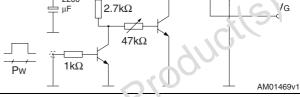



Figure 13. Normalized B_{VDSS} vs temperature



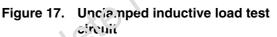

1kΩ

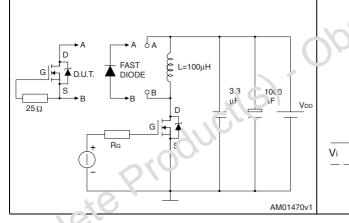
D.U.T.

3 Test circuits

Figure 14. Switching times test circuit for resistive load

 $47 k\Omega$


100Ω


Figure 15. Gate charge test circuit

12V

IG=CONST

Figure 16. Test circuit for inductive load switching and diode recovery times

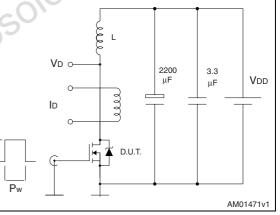
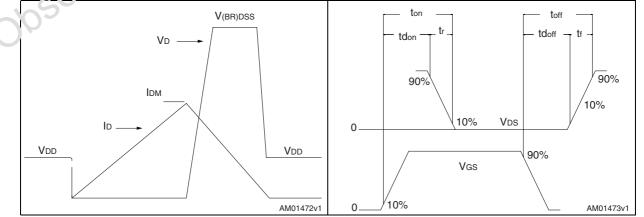
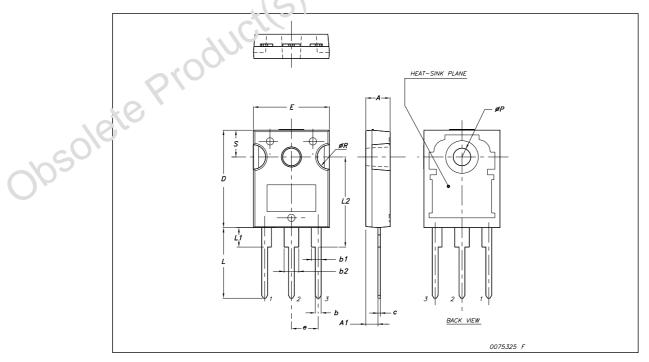



Figura 18 Unclamped inductive waveform

Figure 19. Switching time waveform


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

obsolete Product(s). Obsolete Product(s)

	TO-247 Mechanical data						
Dim.	mm.						
	Min.	Тур	Max.				
Α	4.85		5.15				
A1	2.20		2.60				
b	1.0		1.40				
b1	2.0		2.40				
b2	3.0		3.40 5				
С	0.40		080				
D	19.85		20.15				
E	15.45		15.75				
е		5.45					
L	14.20	× 0,	14.80				
L1	3.70	10	4.30				
L2		18.50					
øP	3.55	603	3.65				
øR	4.50		5.50				
S		5.50					

5 Revision history

Table 9.Document revision history

Date	Revision	Changes
06-Oct-2009	1	First release

obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (SI") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property ignts is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warponcy covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein or considered as a warponcy covering the use in any manner whatsoever of such third party products or services or any intellectual property contained the service of the service of services or any intellectual property contained the service of the service of services or any intellectual property contained the service of the service of service of the servi

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN VMMING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WANDANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCT? OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROFENTIOR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE "GED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warran v granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12

