

March 1994 Revised March 2005

74ABT240 Octal Buffer/Line Driver with 3-STATE Outputs

General Description

The ABT240 is an inverting octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density.

Features

- Output sink capability of 64 mA, source capability of 32 mA
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability

Ordering Code:

	Order Number	Package Number	Package Description					
	74ABT240CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide					
		M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
		MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide					
	74ABT240CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

. . .

Connection Diagram

Pin Descriptions

Pin Names	Description				
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output				
	Enable Inputs				
I ₀ -I ₇	Inputs				
$\overline{O}_0 - \overline{O}_7$	Outputs				

Truth Tables

Inp	uts	Outputs				
OE ₁	l _n	(Pins 12, 14, 16, 18)				
L	L	Н				
L	Н	L				
н	Х	Z				

Inp	uts	Outputs			
OE ₂ I _n		(Pins 3, 5, 7, 9)			
L	L	Н			
L	Н	L			
Н	Х	Z			

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = High Impedance

© 2005 Fairchild Semiconductor Corporation

DS011664

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

Free Air Ambient Temperature

Minimum Input Edge Rate ($\Delta V/\Delta t$)

Supply Voltage

Data Input

Enable Input

-65°C to +150°C Storage Temperature

Junction Temperature under Bias -55°C to +150°C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0V

Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disabled or

Power-Off State -0.5V to 5.5V in the HIGH State -0.5V to V_{CC}

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

DC Latchup Source Current

(Across Comm Operating Range)

Over Voltage Latchup (I/O)

-150 mA Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

-40°C to +85°C

+4.5V to +5.5V

50 mV/ns

20 mV/ns

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

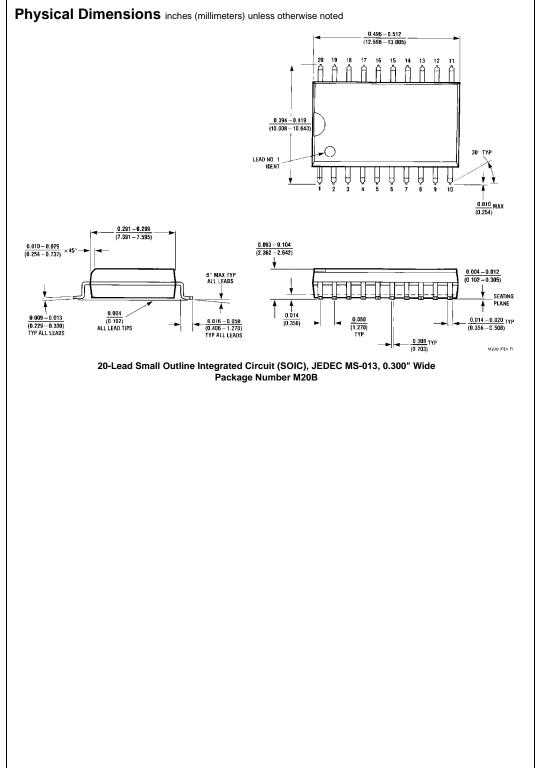
Symbol	Param	eter	Min	Тур	Max	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vo	Itage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5			V	Min	I _{OH} = -3 mA
						V	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage				0.55	V	Min	I _{OL} = 64 mA
I _{IH}	Input HIGH Current				1	μА	Max	V _{IN} = 2.7V (Note 3)
				1	μА	IVIAX	$V_{IN} = V_{CC}$	
I _{BVI}	Input HIGH Current B	reakdown Test			7	μА	Max	V _{IN} = 7.0V
I _{IL}	Input LOW Current				-1	μА	Max	V _{IN} = 0.5V (Note 3)
				-1	μА	IVIAX	V _{IN} = 0.0V	
V _{ID}	Input Leakage Test	4.75			V	0.0	I _{ID} = 1.9 μA	
								All Other Pins Grounded
I _{OZH}	Output Leakage Curre	ent			10	μА	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
l _{OZL}	Output Leakage Current				-10	μА	0 - 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
los	Output Short-Circuit Current		-100		-275	mA	Max	V _{OUT} = 0.0V
I _{CEX}	Output HIGH Leakage	Current			50	μΑ	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test				100	μА	0.0	V _{OUT} = 5.5V; All Others GND
Іссн	Power Supply Current				50	μΑ	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				50	μА	Max	OE _n = V _{CC} ;
							All Others at V _{CC} or Ground	
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			1.5	mA		V _I = V _{CC} - 2.1V
		Outputs 3-STATE			1.5	mA		Enable Input V _I = V _{CC} - 2.1V
		Outputs 3-STATE			50	μA Max	Data Input V _I = V _{CC} - 2.1V	
								All Others at V _{CC} or Ground
I _{CCD}	Dynamic I _{CC} No Load (Note 3)					mA/ MHz	Max	Outputs Open
			Ì		0.1			OE _n = GND, (Note 4)
								One Bit Toggling, 50% Duty Cycle

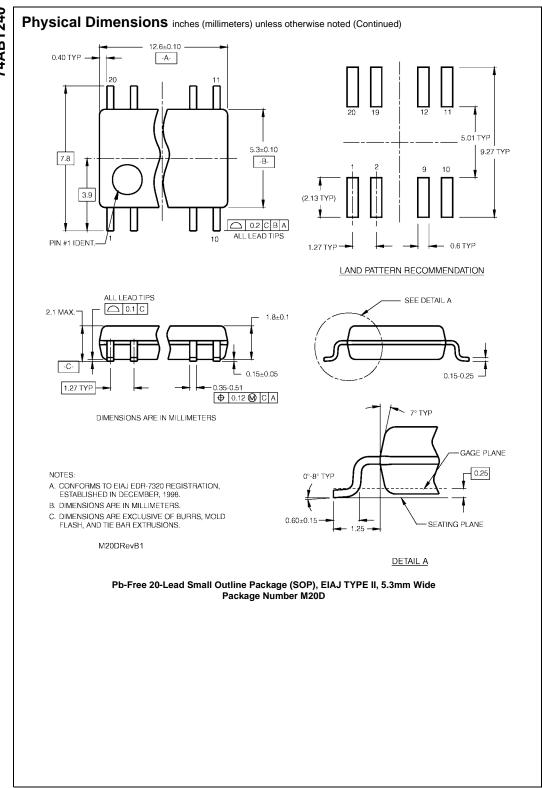
Note 3: Guaranteed, but not tested.

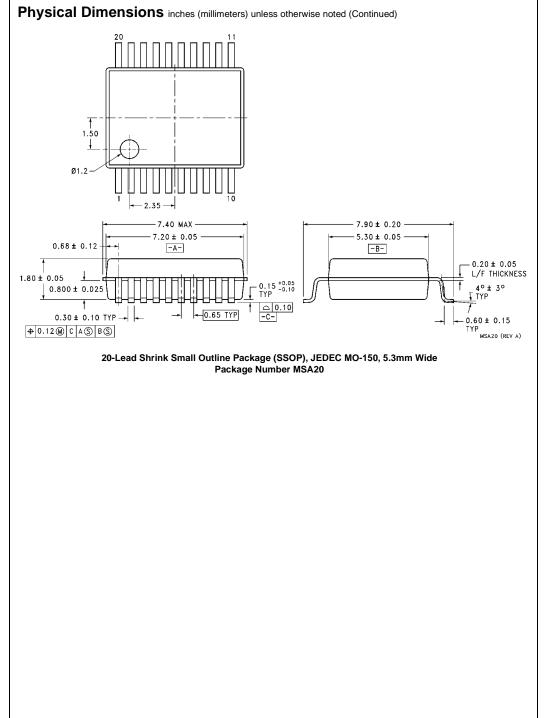
Note 4: For 8 bits toggling, $I_{CCD} < 0.8 \ mA/MHz.$

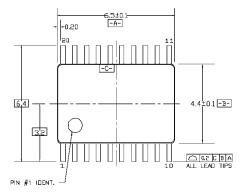
AC Electrical Characteristics

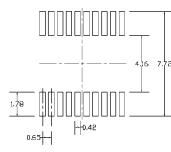
Symbol	Parameter		$T_A = +25$ °C $V_{CC} = +5V$ $C_L = 50 \text{ pF}$			$T_A = -55 ^{\circ} C \text{ to } +125 ^{\circ} C$ $V_{CC} = 4.5 V -5.5 V$ $C_L = 50 \text{ pF}$		$T_A = -40$ °C to $+85$ °C $V_{CC} = 4.5V - 5.5V$ $C_L = 50$ pF	
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	1.0		4.8	0.8	5.5	1.0	4.8	20
t _{PHL}	Data to Outputs	1.6		4.8	1.0	5.5	1.6	4.8	ns
t _{PZH}	Output Enable	1.1		6.2	0.8	7.5	1.1	6.2	ns
t_{PZL}	Time	1.1		6.2	0.8	7.7	1.1	6.2	115
t _{PHZ}	Output Disable	1.8		6.4	1.0	7.5	1.8	6.4	
t _{PLZ}	Time	1.6		5.8	1.0	7.2	1.6	5.8	ns

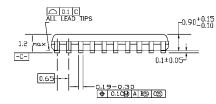

Capacitance


Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	V _{CC} = 0V
C _{OUT} (Note 5)	Output Capacitance	9.0	pF	V _{CC} = 5.0V


 $\textbf{Note 5: } C_{OUT} \text{ is measured at frequency } f = 1 \text{ MHz, per MIL-STD-883, Method 3012.}$


AC Loading 90% NEGATIVE PULSE ALL OTHER 500 N POSITIVE 500Ω PULSE 10% $V_{M} = 1.5V$ *Includes jig and probe capacitance Standard AC Test Load Test Input Signal Levels Amplitude Rep. Rate tw t_r t_f 3.0V 1 MHz 500 ns 2.5 ns 2.5 ns Test Input Signal Requirements **AC Waveforms** CLOCK OR CONTROL Vm = 1.5V INPUT DATA Vm = 1.5V DATA OUT DATA Propagation Delay, **Propagation Delay Waveforms for Pulse Width Waveforms Inverting and Non-Inverting Functions** Vm = 1.5V DATA IN $^{t}h(L)$ t_{s(L)} OUTPUT Vm = 1.5V CONTROL $t_{h(H)}$ Vm = 1.5V t_{PHZ} $^{t}s(H)$ DATA CLOCK OR CONTROL INPUT Vm = 1.5V t_{PZL} DATA $\overline{\text{MR}}, \overline{\text{CLR}}$ OUT Vm = 1.5V PRE 3-STATE Output HIGH Setup Time, Hold Time and LOW Enable and Disable Times and Recovery Time Waveforms




Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION


0.09-0.20

DIMENSIONS ARE IN MILLIMETERS

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

SEE DETAIL A

DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com