

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, subsidiaries, and filiates, and distributors harmless against all claims, costs, damages,

74ABT541 Octal Buffer/Line Driver with 3-STATE Outputs

Features

- Non-inverting buffers
- Output sink capability of 64mA, source capability of 32mA
- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50pF and 250pF loads
- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection

Ordering Information

- High-impedance, glitch-free bus loading during entire power up and power down cycle
- Nondestructive, hot-insertion capability
- Flow-through pinout for ease of PC board layout
- Disable time less than enable time to avoid bus contention

General Description

The ABT541 is an octal buffer and line driver with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus-oriented transmitter/receiver. The ABT541 is similar to the ABT244 with broadside pinout.

Order Number	Package Number	Package Description			
74ABT541CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide			
74ABT541CSJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74ABT541CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide			
74ABT541CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			

Devices also available in Tape and Reel. Specify by appending suffix "X" to the ordering number. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	Output Enable Input (Active LOW)
I ₀ —I ₇	Inputs
O ₀ –O ₇	Outputs

March 2007

©1992 Fairchild Semiconductor Corporation 74ABT541 Rev. 1.4

Truth Table

OE ₁	OE ₂	I	Outputs
L	L	Н	Н
Н	Х	Х	Z
Х	Н	Х	Z
L	L	L	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
T _{STG}	Storage Temperature	–65°C to +150°C
T _A	Ambient Temperature Under Bias	–55°C to +125°C
TJ	Junction Temperature Under Bias	–55°C to +150°C
V _{CC}	V _{CC} Pin Potential to Ground Pin	–0.5V to +7.0V
V _{IN}	Input Voltage ⁽¹⁾	-0.5V to +7.0V
I _{IN}	Input Current ⁽¹⁾	-30mA to +5.0mA
Vo	Voltage Applied to Any Output	
	Disabled or Power-Off State	–0.5V to 5.5V
	HIGH State	–0.5V to V _{CC}
	Current Applied to Output in LOW State (Max.)	twice the rated I _{OL} (mA)
	DC Latchup Source Current	–500mA
	Over Voltage Latchup (I/O)	10V

Note:

1. Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
T _A	Free Air Ambient Temperature	–40°C to +85°C
V _{CC}	Supply Voltage	+4.5V to +5.5V
$\Delta V / \Delta t$	Minimum Input Edge Rate	
	Data Input	50mV/ns
	Enable Input	20mV/ns

Symbol	P	arameter	V _{CC}	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input HIGH	H Voltage		Recognized HIGH Signal	2.0			V
V _{IL}	Input LOW	Voltage		Recognized LOW Signal			0.8	V
V _{CD}	Input Clam	ip Diode Voltage	Min.	$I_{IN} = -18 \text{mA}$			-1.2	V
V _{OH}	Output HIC	GH Voltage	Min.	I _{OH} = -3mA	2.5			V
				$I_{OH} = -32mA$	2.0			V
V _{OL}	Output LO	W Voltage	Min.	$I_{OL} = 64 \text{mA}$			0.55	V
I _{IH}	Input HIGH	l Current	Max.	$V_{IN} = 2.7V^{(3)}$			1	μA
				$V_{IN} = V_{CC}$			1	
I _{BVI}	Input HIGH Breakdowr	l Current n Test	Max.	V _{IN} = 7.0V			7	μA
IIL	Input LOW	Current	Max.	$V_{IN} = 0.5V^{(3)}$			-1	μA
				V _{IN} = 0.0V			-1	
V _{ID}	Input Leakage Test		0.0	$I_{ID} = 1.9 \mu A$, All Other Pins Grounded	4.75			V
I _{OZH}	Output Lea	akage Current	0-5.5V	$V_{OUT} = 2.7V, \overline{OE}_n = 2.0V$			10	μA
I _{OZL}	Output Lea	akage Current	0–5.5V	$V_{OUT} = 0.5V, \overline{OE}_n = 2.0V$			-10	μA
I _{OS}	Output Sho	ort-Circuit Current	Max.	$V_{OUT} = 0.0V$	-100		-275	mA
I _{CEX}	Output HIC Current	GH Leakage	Max.	V _{OUT} = V _{CC}			50	μA
I _{ZZ}	Bus Draina	age Test	0.0	$V_{OUT} = 5.5V$, All Others GND			100	μA
I _{CCH}	Power Sup	oply Current	Max.	All Outputs HIGH			50	μA
I _{CCL}	Power Sup	oply Current	Max.	All Outputs LOW			30	mA
I _{CCZ}	Power Sup	oply Current	Max.	$\overline{OE}_n = V_{CC}$, All Others at V_{CC} or Ground			50	μA
I _{CCT}	Additional	Outputs Enabled		$V_{I} = V_{CC} - 2.1V$			2.5	mA
	I _{CC} /Input	Outputs 3-STATE	Max.	Enable Input $V_I = V_{CC} - 2.1V$			2.5	mA
		Outputs 3-STATE		Data Input $V_I = V_{CC} - 2.1V$, All Others at V_{CC} or Ground			50	μA
I _{CCD}	Dynamic I ₍	_{CC} No Load ⁽³⁾	Max	Outputs Open, $\overline{OE}_n = GND$, One-Bit Toggling ⁽²⁾ , 50% Duty Cycle			0.1	mA/ MHz

Notes:

2. For 8-bit toggling, $I_{CCD} < 0.8 \text{mA/MHz}.$

3. Guaranteed, but not tested.

3

DC Electrical Characteristics

SOIC package.

			Conditions C ₁ = 50pF,				
Symbol	Parameter	V _{cc}	$R_L = 500\Omega$	Min.	Тур.	Max.	Units
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	$T_A = 25^{\circ}C^{(4)}$		0.7	1.0	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	$T_A = 25^{\circ}C^{(4)}$	-1.3	-0.8		V
V _{OHV}	Minimum HIGH Level Dynamic Output Voltage	5.0	$T_A = 25^{\circ}C^{(5)}$	2.7	3.1		V
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0	$T_A = 25^{\circ}C^{(6)}$	2.0	1.4		V
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	$T_A = 25^{\circ}C^{(6)}$		1.1	0.6	V

Notes:

4. Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

5. Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

6. Max number of data inputs (n) switching. n – 1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{ILD}). Guaranteed, but not tested.

AC Electrical Characteristics

SOIC and SSOP package.

		T _A = +25°C, V _{CC} = +5V, C _L = 50pF		$T_A = -40^{\circ}C$ $V_{CC} = 4.$ $C_L =$			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH}	Propagation Delay,	1.0	2.0	3.6	1.0	3.6	ns
t _{PHL}	Data to Outputs	1.0	2.4	3.6	1.0	3.6	
t _{PZH}	Output Enable Time	1.5	3.1	6.0	1.5	6.0	ns
t _{PZL}		1.5	3.7	6.0	1.5	6.0	
t _{PHZ}	Output Disable Time	1.7	3.5	6.1	1.7	6.1	ns
t _{PLZ}		1.7	3.1	5.6	1.7	5.6	

Extended AC Electrical Characteristics

SOIC package.

		$-40^{\circ}C \text{ to } +85^{\circ}C,$ $V_{CC} = 4.5V \text{ to } 5.5V,$ $C_{L} = 50\text{pF},$ 8 Outputs $\text{Switching}^{(7)}$		$\label{eq:T_A} \begin{split} T_A &= -40^\circ \text{C to } +85^\circ \text{C}, \\ V_{CC} &= 4.5 \text{V to } 5.5 \text{V}, \\ C_L &= 250 \text{pF}, \\ 1 \text{ Output} \\ \text{Switching}^{(8)} \end{split}$		$\label{eq:T_A} \begin{split} T_A &= -40^\circ \text{C to } +85^\circ \text{C}, \\ V_{CC} &= 4.5 \text{V to } 5.5 \text{V}, \\ C_L &= 250 \text{pF}, \\ 8 \text{ Outputs} \\ \text{Switching}^{(9)} \end{split}$			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Max.	Mi.n	Max.	Units
f _{TOGGLE}	Max Toggle Frequency		100						MHz
t _{PLH}	Propagation Delay,	1.5		5.0	1.5	6.0	2.5	8.5	ns
t _{PHL}	Data to Outputs	1.5		5.0	1.5	6.0	2.5	8.5	1
t _{PZH}	Output Enable Time	1.5		6.5	2.5	7.5	2.5	9.5	ns
t _{PZL}		1.5		6.5	2.5	7.5	2.5	10.5]
t _{PHZ}	Output Disable	1.0		6.1	(1	10)			ns
t _{PLZ}	Time	1.0		5.6					

Notes:

7. This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

- This specification is guaranteed but not tested. The limits represent propagation delay with 250pF load capacitors in place of the 50pF load capacitors in the standard AC load. This specification pertains to single output switching only.
- This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250pF load capacitors in place of the 50pF load capacitors in the standard AC load.
- 10. The 3-STATE delays are dominated by the RC network (500 Ω , 250pF) on the output and have been excluded from the datasheet.

Skew

SOIC package.

		$\label{eq:TA} \begin{array}{l} \textbf{T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \\ \textbf{V}_{CC} = 4.5\text{V to } 5.5\text{V}, \\ \textbf{C}_{L} = 50\text{pF}, \\ 8 \text{ Outputs} \\ \text{Switching}^{(11)} \end{array}$	$\label{eq:TA} \begin{array}{l} T_A = -40^\circ C \ to \ +85^\circ C, \\ V_{CC} = 4.5 V \ to \ 5.5 V, \\ C_L = 250 p F, \\ 8 \ Outputs \\ Switching^{(12)} \end{array}$	
Symbol	Parameter	Max.	Max.	Units
t _{OSHL} ⁽¹³⁾	Pin to Pin Skew, HL Transitions	1.3	2.3	ns
t _{OSLH} ⁽¹³⁾	Pin to Pin Skew, LH Transitions	1.0	1.8	ns
t _{PS} ⁽¹⁴⁾	Duty Cycle, LH/HL Skew	2.0	3.5	ns
t _{OST} ⁽¹³⁾	Pin to Pin Skew, LH/HL Transitions	2.0	3.5	ns
t _{PV} ⁽¹⁵⁾	Device to Device Skew, LH/HL Transitions	2.0	3.5	ns

Notes:

11. This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

- 12. These specifications guaranteed but not tested. The limits represent propagation delays with 250pF load capacitors in place of the 50pF load capacitors in the standard AC load.
- 13. Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (t_{OSHL}), LOW-to-HIGH (t_{OSLH}), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (t_{OST}). The specification is guaranteed but not tested.
- 14. This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.
- 15. Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.

Capacitance

Symbol	Parameter	Conditions T _A = 25°C	Тур.	Units
C _{IN}	Input Capacitance	$V_{CC} = 0.0V$	5.0	pF
C _{OUT} ⁽¹⁶⁾	Output Capacitance	$V_{CC} = 5.0V$	9.0	pF

Note:

16. C_{OUT} is measured at frequency of f = 1 MHz, per MIL-STD-883, Method 3012.

AMP (V)

AMP (V)

٥v

٥٧

90%

10%

10%

90%

AC Loading +7V OPEN 90% NEGATIVE ALL OTHER PULSE t_{PZL}, t_{PLZ} 10% tf 500Ω D.U.T. 90% POSITIVE PULSE 500Ω 50 pF 10% = 1.5VVм

. .. .

*Includes jig and probe capacitance

Figure 1. Standard AC Test Load

Amplitude

Figure 3. Test Input Signal Requirements							
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns			

AC Waveforms

Figure 4. Propagation Delay Waveforms for **Inverting and Non-Inverting Functions**

Figure 2. Test Input Signal Levels

Figure 6. 3-STATE Output HIGH and LOW Enable and Disable Time

©1992 Fairchild Semiconductor Corporation 74ABT541 Rev. 1.4

Dimensions are in inches (millimeters) unless otherwise noted.

74ABT541 Rev. 1.4

74ABT541 Rev. 1.4

U

74ABT541 Octal Buffer/Line Driver with 3-STATE Outputs

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®	HiSeC™	Programmable Active Droop™	TinyLogic [®]
Across the board. Around the world.™	<i>i-Lo</i> ™	QFET [®]	TINYOPTO™
ActiveArray™	ImpliedDisconnect [™]	QS™	TinyPower™
Bottomless™	IntelliMAX™	QT Optoelectronics [™]	TinyWire™
Build it Now™	ISOPLANAR™	Quiet Series™	TruTranslation™
CoolFET™	MICROCOUPLER™	RapidConfigure™	μSerDes™
CROSSVOLT™	MicroPak™	RapidConnect™	UHC [®]
CTL™	MICROWIRE™	ScalarPump™	UniFET™
Current Transfer Logic™	MSX™	SMART START™	VCX™
DOME™	MSXPro™	SPM®	Wire™
E ² CMOS [™]	OCX™	STEALTH™	
EcoSPARK®	OCXPro™	SuperFET™	
EnSigna™	OPTOLOGIC [®]	SuperSOT™-3	
FACT Quiet Series™	OPTOPLANAR [®]	SuperSOT™-6	
FACT	PACMAN™	SuperSOT™-8	
FAST	POP™	SyncFET™	
FASTr™	Power220 [®]	TCM™	
FPS™	Power247 [®]	The Power Franchise [®]	
FRFET	PowerEdge™	U [™]	
GlobalOptoisolator™	PowerSaver™	TinyBoost™	
GTO™	PowerTrench [®]	TinyBuck™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Definition of Terms			
Datasheet Identification	Product Status	Definition	
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.	

Rev. 124

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.