DATA SHEET
www.onsemi.com

MOSFET - Power, N-Channel, Logic Level, UltraFET

60 V, 20 A, 27 ms

HUFA76429D3

Features

- Ultra Low On-Resistance
- $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}=0.023 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
- $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}=0.027 \Omega, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}$
- Simulation Models
- Temperature Compensated PSPICE ${ }^{T M}$ and Saber ${ }^{\circledR}$ Electriecal Models
- Spice and SABER Thermal Impedance Models
- www.onsemi.com
- Peak Current vs. Pulse Width Curve
- UIS Rating Curve
- Switching Time vs. R_{GS} Curves

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating		Symbol	HUFA76429D3	Unit
Drain to Source Voltage (Note 1)		$\mathrm{V}_{\text {DSS }}$	60	V
Drain to Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$) (Note 1)		V ${ }_{\text {DGR }}$	60	V
Gate to Source Voltage		V_{GS}	± 16	V
Drain Current	$\begin{aligned} & \text { Continuous }\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C},\right. \\ & \left.\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}\right) \end{aligned}$	ID	20	A
	Continuous $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$) (Figure 2)	I_{D}	20	A
	$\begin{aligned} & \text { Continuous }\left(\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C},\right. \\ & \left.\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}\right) \end{aligned}$	ID	20	A
	Continuous ($\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$) (Figure 2)	ID	20	A
	Pulsed Drain Current	IDM	Figure 4	
Pulsed Avalanche Rating		UIS	Figures 6, 17, 18	
Power Dissipation		P_{D}	110	W
	Derate Above $25^{\circ} \mathrm{C}$		0.74	W/ ${ }^{\circ} \mathrm{C}$
Operating and Storage Temperature		$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	-55 to 175	${ }^{\circ} \mathrm{C}$
Maximum Temperature for Soldering	Leads at 0.063 in (1.6 mm) from Case for 10 s	TL	300	${ }^{\circ} \mathrm{C}$
	Package Body for 10 s , See Techbrief TB334	$\mathrm{T}_{\mathrm{pkg}}$	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

$\mathbf{V}_{\text {DSS }}$	$\mathbf{r}_{\mathbf{D S}(\mathbf{O N})}$ MAX	$\mathbf{I}_{\mathbf{D}}$ MAX
60 V	$23 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	20 A
	$27 \mathrm{~m} \Omega @ 4.5 \mathrm{~V}$	
	$29 \mathrm{~m} \Omega @ 4.5 \mathrm{~V}$	

\qquad

DPAK3 (IPAK)
JEDEC (TO-251AA)
CASE 369AR

MARKING DIAGRAM

N -Channel

ORDERING INFORMATION

Part Number	Package	Marking	Shipping
HUFA76429D3	DPAK3 (IPAK) (TO-251AA)	76429D	1800 Units / Tube

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
OFF STATE SPECIFICATIONS						
Drain to Source Breakdown Voltage	BV ${ }_{\text {DSS }}$	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ (Figure 12)	60	-	-	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \\ & \text { (Figure 12) } \end{aligned}$	55	-	-	V
Zero Gate Voltage Drain Current	IDSS	$\mathrm{V}_{\mathrm{DS}}=55 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	250	$\mu \mathrm{A}$
Gate to Source Leakage Current	IGSS	$\mathrm{V}_{\mathrm{GS}}= \pm 16 \mathrm{~V}$	-	-	± 100	nA

ON STATE SPECIFICATIONS

Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ (Figure 11)	1	-	3	V
Drain to Source On Resistance	${ }^{\text {r }}$ DS(ON)	$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ (Figures 9, 10)	-	0.0205	0.023	Ω
		$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}$ (Figure 9)	-	0.024	0.027	Ω
		$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$ (Figure 9)	-	0.025	0.029	Ω

THERMAL SPECIFICATIONS

Thermal Resistance Junction to Case	$\mathrm{R}_{\text {өJC }}$	TO-251	-	-	1.36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\text {өJA }}$		-	-	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

SWITCHING SPECIFICATIONS ($\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$)

Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=7.5 \Omega \\ & \text { (Figures } 15,21,22 \text {) } \end{aligned}$	-	-	220	ns
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$		-	13	-	ns
Rise Time	t_{r}		-	134	-	ns
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		-	30	-	ns
Fall Time	t_{f}		-	55	-	ns
Turn-Off Time	toff		-	-	130	ns

SWITCHING SPECIFICATIONS ($\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$)

Turn-On Time	t_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=8.2 \Omega \\ & \text { (Figures } 16,21,22 \text {) } \end{aligned}$	-	-	65	ns
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$		-	7.7	-	ns
Rise Time	t_{r}		-	36	-	ns
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		-	60	-	ns
Fall Time	t_{f}		-	56	-	ns
Turn-Off Time	toff		-	-	175	ns

GATE CHARGE SPECIFICATIONS

Total Gate Charge	$Q_{\text {g(TOT) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 10 V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{g}(\mathrm{REF})}=1.0 \mathrm{~mA} \\ & \text { (Figures 14, 19, 20) } \end{aligned}$	-	38	46	nC
Gate Charge at 5 V	$\mathrm{Q}_{\mathrm{g}(5)}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 5 V		-	21	25	nC
Threshold Gate Charge	$\mathrm{Q}_{\mathrm{g}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 1 V		-	1.3	1.6	nC
Gate to Source Gate Charge	Q_{gs}			-	3.8	-	nC
Gate to Drain "Miller" Charge	Q_{gd}			-	9.7	-	nC

CAPACITANCE SPECIFICATIONS

Input Capacitance	$\mathrm{C}_{\text {ISS }}$	$\begin{aligned} & \begin{array}{l} \mathrm{VSS}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ \text { (Figure 13) } \end{array} \end{aligned}$	-	1480	-	pF
Output Capacitance	Coss		-	440	-	pF
Reverse Transfer Capacitance	$\mathrm{C}_{\mathrm{RSS}}$		-	90	-	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

HUFA76429D3

SOURCE TO DRAIN DIODE SPECIFICATIONS

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Source to Drain Diode Voltage	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\text {SD }}=20 \mathrm{~A}$	-	-	1.25	V
		$\mathrm{I}_{\text {SD }}=10 \mathrm{~A}$	-	-	1.00	V
Reverse Recovery Time	t_{rr}	$\mathrm{I}_{\mathrm{SD}}=20 \mathrm{~A}, \mathrm{dl} \mathrm{SD} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{\mu s}$	-	-	80	ns
Reverse Recovered Charge	Q_{RR}	$\mathrm{I}_{\mathrm{SD}}=20 \mathrm{~A}, \mathrm{dl} \mathrm{SD} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{us}$	-	-	230	nC

TYPICAL PERFORMANCE CURVES

Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current
vs. Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

TYPICAL PERFORMANCE CURVES (Continued)

Figure 5. Forward Bias Safe Operating Area

Figure 7. Transfer Characteristics

Figure 9. Drain to Source On Resistance vs. Gate Voltage and Drain Current

t_{AV}, Time in Avalanche (ms)
NOTE: Refer to onsemi Application Notes AN9321 and AN9322.
Figure 6. Unclamped Inductive Switching Capability

Figure 8. Saturation Characteristics

Figure 10. Normalized Drain to Source On Resistance vs. Junction Temperature

TYPICAL PERFORMANCE CURVES (Continued)

Figure 11. Normalized Gate Threshold Voltage vs. Junction Temperature

Figure 13. Capacitance vs. Drain to Source Voltage

Figure 15. Switching Time vs. Gate Resistance

Figure 12. Normalized Darin to Source Breakdown Voltage vs. Junction Temperature

NOTE: Refer to onsemi Application Notes AN7254 and AN7260.
Figure 14. Gate Charge Waveforms for Constant Gate Current

Figure 16. Switching Time vs. Gate Resistance

HUFA76429D3

TEST CIRCUITS AND WAVEFORMS

Figure 17. Unclamped Energy Test Circuit

Figure 19. Gate Charge Test Circuit

Figure 21. Switching Time Test Circuit

Figure 18. Unclamped Energy Waveforms

Figure 20. Gate Charge Waveforms

Figure 22. Switching Time Waveforms

PSPICE ELECTRICAL MODEL

.SUBCKT HUFA76429D3 213 ; rev 5 July 1999

CA $1282.03 \mathrm{e}-9$
CB $15142.03 \mathrm{e}-9$
CIN $681.39 \mathrm{e}-9$

DBODY 75 DBODYMOD
DBREAK 511 DBREAKMOD
DPLCAP 105 DPLCAPMOD

EBREAK 117171868.10
EDS 148581
EGS 138681
ESG 610681
EVTHRES 6211981
EVTEMP 20618221

IT 8171

```
LDRAIN 25 1e-9
LGATE 195.42e-9
LSOURCE 3 7 4.16e-9
MMED 16688 MMEDMOD
MSTRO 16688 MSTROMOD
MWEAK 162188 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 9.1e-3
RGATE 9 20 2.80
RLDRAIN 2510
RLGATE 1954.2
RLSOURCE 3 741.6
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 550 1e3
RSOURCE }87\mathrm{ RSOURCEMOD 6.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP }1819\mathrm{ RVTEMPMOD 1
```

S1A 612138 S1AMOD
S1B 1312138 S1BMOD
S2A 6151413 S2AMOD
S2B 13151413 S2BMOD

VBAT 2219 DC 1
$\operatorname{ESLC} 5150$ VALUE $=\left\{(\mathrm{V}(5,51) / \operatorname{ABS}(\mathrm{V}(5,51))) *\left(\operatorname{PWR}\left(\mathrm{~V}(5,51) /\left(1 \mathrm{e}-6^{*} 117\right), 3\right)\right)\right\}$
.MODEL DBODYMOD D (IS = 1.25e-12 IKF = $10 \mathrm{RS}=8.40 \mathrm{e}-3 \mathrm{TRS} 1=2.05 \mathrm{e}-3 \mathrm{TRS} 2=3.85 \mathrm{e}-6 \mathrm{CJO}=1.68 \mathrm{e}-9 \mathrm{TT}=$ $4.90 \mathrm{e}-8 \mathrm{M}=0.48 \mathrm{XTI}=4.35$)
.MODEL DBREAKMOD D (RS = 1.68e-1 TRS1 $=1 \mathrm{e}-3$ TRS2 $=-1 \mathrm{e}-6)$
.MODEL DPLCAPMOD D (CJO $=1.28 \mathrm{e}-9 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{M}=0.8$)
.MODEL MMEDMOD NMOS ($\mathrm{VTO}=1.98 \mathrm{KP}=3.2 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u} \mathrm{RG}=2.80$)
. MODEL MSTROMOD NMOS $(\mathrm{VTO}=2.30 \mathrm{KP}=52 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u})$
. MODEL MWEAKMOD NMOS $(\mathrm{VTO}=1.72 \mathrm{KP}=0.08 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u} \mathrm{RG}=28.0 \mathrm{RS}=0.1)$
.MODEL RBREAKMOD RES (TC1 $=1.15 \mathrm{e}-3 \mathrm{TC} 2=-5.40 \mathrm{e}-7)$

HUFA76429D3

.MODEL RDRAINMOD RES (TC1 $=7.85 \mathrm{e}-3 \mathrm{TC} 2=1.95 \mathrm{e}-5)$
.MODEL RSLCMOD RES (TC1 $=4.97 \mathrm{e}-3 \mathrm{TC} 2=5.05 \mathrm{e}-6$)
.MODEL RSOURCEMOD RES (TC1 $=1.5 \mathrm{e}-3 \mathrm{TC} 2=1 \mathrm{e}-6$)
.MODEL RVTHRESMOD RES (TC1 $=-1.85 \mathrm{e}-3 \mathrm{TC} 2=-4.48 \mathrm{e}-6$)
.MODEL RVTEMPMOD RES (TC1 $=-1.92 \mathrm{e}-3 \mathrm{TC} 2=9.50 \mathrm{e}-7)$
.MODEL S1AMOD VSWITCH $($ RON $=1 \mathrm{e}-5$ ROFF $=0.1 \mathrm{VON}=-6.2 \mathrm{VOFF}=-2.4)$
.MODEL S1BMOD VSWITCH (RON $=1 \mathrm{e}-5 \mathrm{ROFF}=0.1 \mathrm{VON}=-2.4 \mathrm{VOFF}=-6.2)$
.MODEL S2AMOD VSWITCH (RON $=1 \mathrm{e}-5 \mathrm{ROFF}=0.1 \mathrm{VON}=-1.1 \mathrm{VOFF}=0.5)$
.MODEL S2BMOD VSWITCH (RON $=1 \mathrm{e}-5 \mathrm{ROFF}=0.1 \mathrm{VON}=0.5 \mathrm{VOFF}=-1.1)$
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET
Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

Figure 23.

SABER ELECTRICAL MODEL

REV 5 July 1999

```
template HUFA76429d3 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 1.25e-12, cjo = 1.68e-9, tt = 4.90e-8, xti = 4.35, m=0.48)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 1.28e-9, is =1e-30, n=10,m=0.8)
m..model mmedmod = (type=_n, vto = 1.98, kp = 3.2, is =1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto =2.30, kp = 52, is = 1e-30, tox =1)
m..model mweakmod = (type=_n, vto =1.72, kp = 0.08, is = 1e-30, tox =1)
sw_vcsp..model slamod = (ron = 1e-5, roff = 0.1, von = -6.2, voff = -2.4)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.4, voff = -6.2)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.1, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = - 1.1)
c.ca n12 n8 = 2.03e-9
c.cb n15 n14 = 2.03e-9
c.cin n6 n8 = 1.39e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
1.ldrain n2 n5 = 1e-9
1.lgate n1 n9 = 5.42e-9
1.1source n3 n7 = 4.16e-9
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u,w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u,w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u,w=1u
res.rbreak n17 n18 = , tc1 = 1.15e-3, tc2 = -5.40e-7
res.rdbody n71 n5 = 8.40e-3, tc1 = 2.05e-3, tc2 = 3.85e-6
res.rdbreak n72 n5 = 1.68e-1, tc 1 = 1.00e-3, tc2 = -1.00e-6
res.rdrain n50 n16 =9.10e-3, tc 1 = 7.85e-3, tc2 = 1.95e-5
res.rgate n9 n20 = 2.80
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 54.2
res.rlsource n3 n7 = 41.6
res.rslc1 n5 n51 = 1e-6, tc1 = 4.97e-3, tc2 = 5.05e-6
res.rslc2 n5 n50=1e3
res.rsource n8 n7 = 6.5e-3, tc1 = 1.5e-3, tc2 = 1e-6
res.rvtemp n18 n19 = , tc1 = -1.92e-3, tc2 = 9.50e-7
res.rvthres n22 n8 = 1, tc1 = -1.85e-3, tc2 =-4.48e-6
spe.ebreak n11 n7 n17 n18 = 68.10
spe.eds n14 n8 n5 n8=1
spe.egs n13 n8 n6 n8=1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8=1
```

sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 $=\mathrm{dc}=1$
equations \{
i (n51->n50) +=iscl
iscl: $\mathrm{v}(\mathrm{n} 51, \mathrm{n} 50)=\left((\mathrm{v}(\mathrm{n} 5, \mathrm{n} 51) /(1 \mathrm{e}-9+\mathrm{abs}(\mathrm{v}(\mathrm{n} 5, \mathrm{n} 51)))) *\left((\operatorname{abs}(\mathrm{v}(\mathrm{n} 5, \mathrm{n} 51) * 1 \mathrm{e} 6 / 117))^{* *} 3\right)\right)$
\}
\}

Figure 24.

SPICE THERMAL MODEL

REV 26 July 1999

HUFA76429D3

CTHERM1 th $62.45 \mathrm{e}-3$
CTHERM2 65 8.15e-3
CTHERM3 54 7.40e-3
CTHERM4 $437.45 \mathrm{e}-3$
CTHERM5 32 1.01e-2
CTHERM6 2 tl 7.49e-2

RTHERM1 th $69.00 \mathrm{e}-3$
RTHERM2 65 1.80e-2
RTHERM3 $549.15 \mathrm{e}-2$
RTHERM4 $432.43 \mathrm{e}-1$
RTHERM5 32 3.50e-1
RTHERM6 2 tl 3.62e-1

SABER THERMAL MODEL

SABER thermal model HUFA76429D3
template thermal_model th tl
thermal_c th, tl
\{
ctherm.ctherm1 th $6=2.45 \mathrm{e}-3$
ctherm.ctherm $265=8.15 \mathrm{e}-3$
ctherm.ctherm3 $54=7.40 \mathrm{e}-3$
ctherm.ctherm4 $43=7.45 \mathrm{e}-3$
ctherm.ctherm5 $32=1.01 \mathrm{e}-2$
ctherm.ctherm6 $2 \mathrm{tl}=7.49 \mathrm{e}-2$
rtherm.rtherm1 th $6=9.00 \mathrm{e}-3$
rtherm.rtherm2 $65=1.80 \mathrm{e}-2$
rtherm.rtherm $354=9.15 \mathrm{e}-2$
rtherm.rtherm4 $43=2.43 \mathrm{e}-1$
rtherm.rtherm5 $32=3.50 \mathrm{e}-1$
rtherm.rtherm6 $2 \mathrm{tl}=3.62 \mathrm{e}-1$
\}

Figure 25.

DATE 30 SEP 2016

NOTES: UNLESS OTHERWISE SPECIFIED

A) ALL DIMENSIONS ARE IN MILLIMETERS.
B) THIS PACKAGE CONFORMS TO JEDEC, TO-251, ISSUE C, VARIATION AA, DATED SEP 1988.
C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

| DOCUMENT NUMBER: | 98AON13815G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DPAK3 (IPAK) | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

