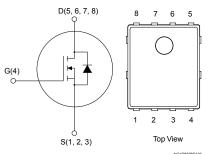


N-channel 30 V, 0.0016 Ω typ., 33 A, STripFET™ H6 Power MOSFET in a PowerFLAT 5x6 package



Features

Order code	V _{DS}	R _{DS(on)} max.	Ι _D	Package
STL150N3LLH6	30 V	0.002 Ω	33 A	PowerFLAT™ 5x6

- Very low on-resistance
- · Very low gate charge
- High avalanche ruggedness
- · Low gate drive power loss

PowerFLAT™ 5x6

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using the STripFETTM H6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{DS(on)}$ in all packages.

Product status link

STL150N3LLH6

Product summary			
Order code	STL150N3LLH6		
Marking	150N3LH6		
Package	PowerFLAT™ 5x6		
Packing	Tape and reel		

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	30	V
V _{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	150	
ID (1)	Drain current (continuous) at T _C = 100 °C	93	Α
1 (2)	Drain current (continuous) at T _{pcb} = 25 °C	33	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 100 °C	20.8	Α
P _{TOT} (1)	Total power dissipation at T _C = 25 °C	80	W
P _{TOT} (2)	Total power dissipation at T _{pcb} = 25 °C	4	W
E _{AS}	Single pulse avalanche energy (starting T_J = 25 °C, I_D = I_{AV})	200	mJ
I _{AV}	Not-repetitive avalanche current, (pulse width limited by T _{jmax})	20	Α
T _{stg} T _j	Storage temperature range Operating junction temperature range	-55 to 150	°C

^{1.} The value is rated according to R_{thj-c} .

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.56	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	31.3	C/VV

1. When mounted on an 1-inch² FR-4, 2 Oz copper board, t < 10 s.

^{2.} The value is rated according to $R_{thj-pcb}$.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 3. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V
		V _{GS} = 0 V, V _{DS} = 30 V			1	μA
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 30 \text{ V},$ $T_{C} = 125 ^{\circ}\text{C} ^{(1)}$			10	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1			V
D	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 16.5 A		0.0016	0.002	0
R _{DS(on)}		V _{GS} = 4.5 V, I _D = 16.5 A		0.0025	0.0034	Ω

^{1.} Defined by design, not subject to production test.

Table 4. Dynamic

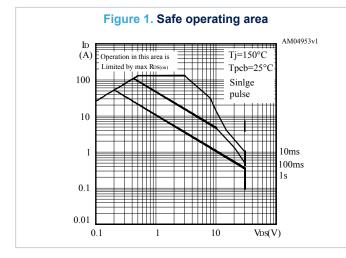
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V _{DS} = 25 V, f = 1 MHz,	-	4040	-	
C _{oss}	Output capacitance	$V_{GS} = 0 \text{ V}$	-	740	-	pF
C _{rss}	Reverse transfer capacitance	VGS - 0 V	-	425	-	
Qg	Total gate charge	V _{DD} = 15 V, I _D = 33 A,	-	40	-	
Q _{gs}	Gate-source charge	V _{GS} = 0 to 4.5 V	-	16.3	-	nC
Q _{gd}	Gate-drain charge	(see Figure 13. Test circuit for gate charge behavior)	-	15.8	-	
Rg	Gate input resistance	f = 1 MHz, I _D = 0 A	-	1.4	-	Ω

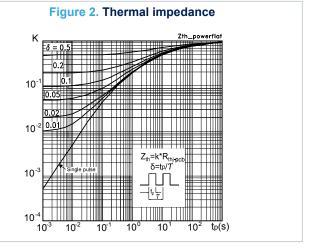
Table 5. Switching times

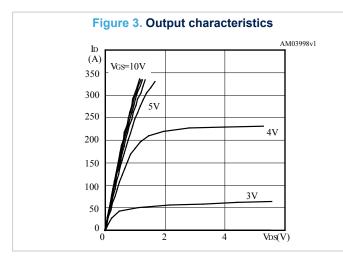
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 15 V, I _D = 16.5 A,	-	17	-	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	18	-	
t _{d(off)}	Turn-off delay time	(see Figure 12. Test circuit for resistive load switching times and	-	75	-	ns
t _f	Fall time	resistive load switching times and Figure 17. Switching time waveform)	-	46	-	

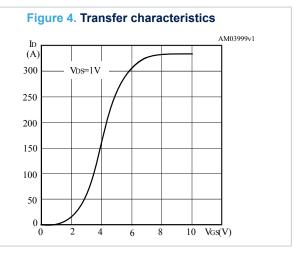
DS6078 - Rev 4 page 3/16

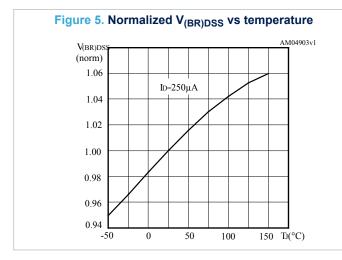
Table 6. Source-drain diode

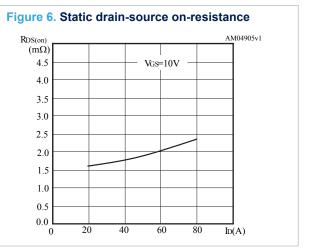

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		33	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		132	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 33 A	-		1.1	V
t _{rr}	Reverse recovery time	$I_{SD} = 33 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	34		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 25 V	_	35		nC
I _{RRM}	Reverse recovery current	(see Figure 14. Test circuit for inductive load switching and diode recovery times)	-	2.1		A


- 1. Pulse width is limited by safe operating area.
- 2. Pulse test: pulse duration = $300 \mu s$, duty cycle 1.5%.


DS6078 - Rev 4 page 4/16




2.1 Electrical characteristics (curves)



DS6078 - Rev 4 page 5/16

Figure 7. Gate charge vs gate-source voltage

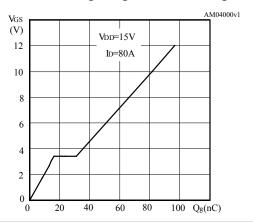


Figure 8. Capacitance variations

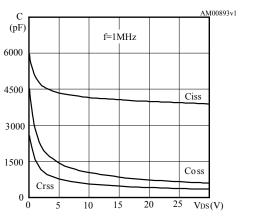


Figure 9. Normalized gate threshold voltage vs temperature

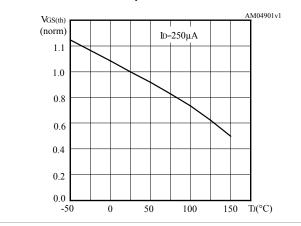


Figure 10. Normalized on-resistance vs temperature

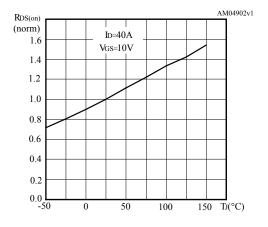
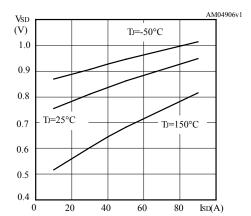



Figure 11. Source-drain diode forward characteristics

DS6078 - Rev 4 page 6/16

3 Test circuits

Figure 12. Test circuit for resistive load switching times

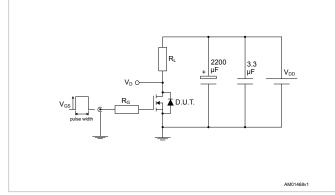


Figure 13. Test circuit for gate charge behavior

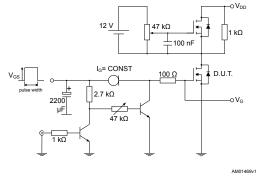


Figure 14. Test circuit for inductive load switching and diode recovery times

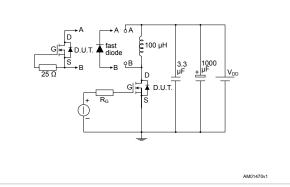


Figure 15. Unclamped inductive load test circuit

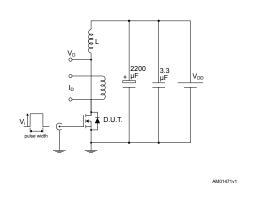


Figure 16. Unclamped inductive waveform

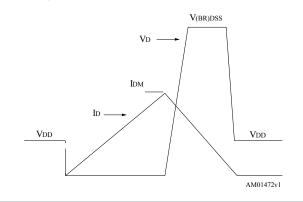
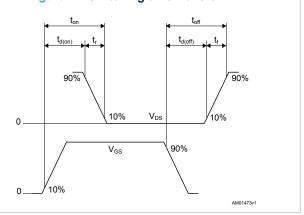
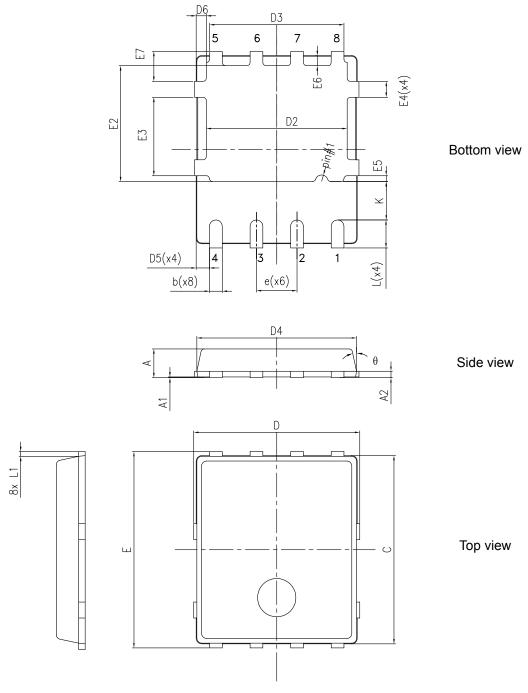



Figure 17. Switching time waveform

DS6078 - Rev 4 page 7/16

4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS6078 - Rev 4 page 8/16

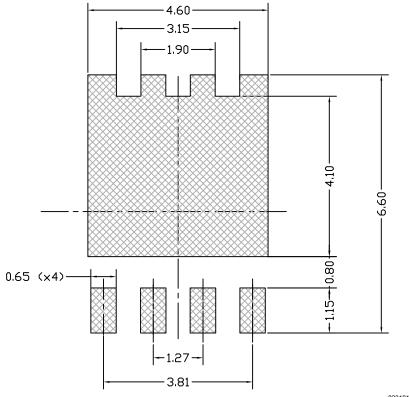
4.1 PowerFLAT™ 5x6 type C package information

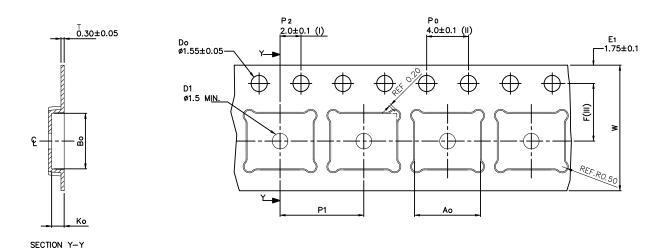
Figure 18. PowerFLAT™ 5x6 type C package outline

8231817_typeC_Rev18

Table 7. PowerFLAT™ 5x6 type C package mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.20
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.20
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
е		1.27	
Е	5.95	6.15	6.35
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.75	0.90	1.05
К	1.05		1.35
L	0.725		1.025
L1	0.05	0.15	0.25
θ	0°		12°

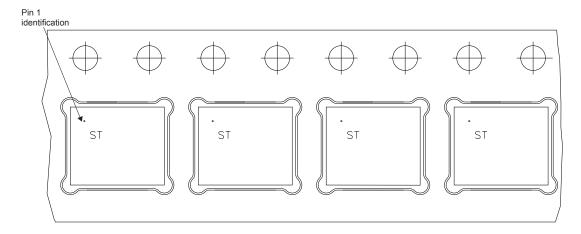



Figure 19. PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

8231817_FOOTPRINT_simp_Rev_18

4.2 PowerFLAT™ 5x6 packing information

Figure 20. PowerFLAT™ 5x6 tape (dimensions are in mm)


Ao	6.30 +/- 0.1
Во	5.30 +/- 0.1
Ko	1.20 +/- 0.1
F	5.50 +/- 0.1
P1	8.00 +/- 0.1
l w	12.00 +/- 0.3

- (I) Measured from centreline of sprocket hole to centreline of pocket.
- (II) Cumulative tolerance of 10 sprocket holes is ±0.20.
- (III) Measured from centreline of sprocket hole to centreline of pocket

Base and bulk quantity 3000 pcs All dimensions are in millimeters

8234350_Tape_rev_C

Figure 21. PowerFLAT™ 5x6 package orientation in carrier tape

DS6078 - Rev 4 page 12/16

PART NO.

R25.00

R330 (+0/-4.0)

R330 (+0/-4.0)

R330 (+0/-4.0)

R1.10

R25.00

R330 (+0/-4.0)

Figure 22. PowerFLAT™ 5x6 reel

8234350_Reel_rev_C

Revision history

Table 8. Document revision history

Date	Version	Changes
21-Jan-2009	1	First release.
08-Sep-2009	2	Document status promoted from preliminary data to datasheet
11-Nov-2010	3	Corrected title in first page R _{DS(on)} max value has been corrected.
03-Apr-2019	4	Modified marking on cover page. Minor text changes.

Contents

1	Elec	trical ratings	2
2		trical characteristics	
		Electrical characteristics (curves)	
3	Test	circuits	7
4	Pack	kage information	8
	4.1	PowerFLAT™ 5x6 type C package information	8
	4.2	PowerFLAT™ 5x6 packing information	11
Rev	ision	history	14

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS6078 - Rev 4 page 16/16