Constant Current Step-Up/ Step-Down/Inverting Switching Regulator for HB-LEDs with Enable
 1.5 A

NCP3066, NCV3066

The NCP3066 is a monolithic switching regulator designed to deliver constant current for powering high brightness LEDs. The device has a very low feedback voltage of 235 mV (nominal) which is used to regulate the average current of the LED string. In addition, the NCP3066 has a wide input voltage up to 40 V to allow it to operate from a 12 Vac or a $12-36 \mathrm{Vdc}$ supply, commonly used for lighting applications as well as unregulated supplies such as rechargeable batteries. The NCP3066 switching regulator can be configured in Step-Down (Buck), Step-Up (Boost) and Voltage-Inverting topologies with a minimum number of external components. The ON/ $\overline{\text { OFF }}$ pin provides PWM dimming capability or a low power shutdown mode.

Features

- Integrated 1.5 A Switch
- Input Voltage Range from 3.0 V to 40 V
- Logic Level Shutdown Capability
- Low Feedback Voltage of 235 mV
- Cycle-by-Cycle Current Limit
- No Control Loop Compensation Required
- Frequency of Operation Adjustable up to 250 kHz
- Analog and Digital PWM Dimming Capability
- Internal Thermal Shutdown with Hysteresis
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- These are $\mathrm{Pb}-$ Free Devices

Applications

- Automotive and Marine Lighting
- Constant Current Source, High Brightness LED Driver
- Low Voltage and Landscape Lighting

MARKING DIAGRAMS

SOIC-8
D SUFFIX CASE 751

PDIP-8
P, P1 SUFFIX CASE 626

DFN8
MN SUFFIX
CASE 488AF

NCP3066	$=$ Specific Device Code
A	$=$ Assembly Location
L, WL	$=$ Wafer Lot
Y, YY	$=$ Year
W, WW	$=$ Work Week
G or :	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet.

Figure 2. Pin Connections

NOTE: EP Flag must be tied to GND Pin 4 on PCB
Figure 3. Pin Connections

Figure 4. Block Diagram

PIN DESCRIPTION

Pin No.		Description	
PDIP8	DFN8		
1	1	Switch Collector	Internal Darlington switch collector.
2	2	Switch Emitter	Internal Darlington switch emitter.
3	3	Timing Capacitor	Timing Capacitor to control the switching frequency.
4	4, EP Flag	GND	Ground pin for all internal circuits.
5	5	Comparator Inverting Input	Inverting input pin of internal comparator.
6	6	$V_{\text {CC }}$	Voltage Supply
7	7	I_{pk} Sense	Peak Current Sense Input to monitor the voltage drop across an external resistor to limit the peak current through the circuit.
8	8	ON/OFF	ON/OFF Pin. To disable the device, this input should be pulled below 0.8 V . If the pin is left floating, it will be disabled.

MAXIMUM RATINGS (measured vs. Pin 4, unless otherwise noted)

Rating	Symbol	Value	Unit
VCC Pin 6	V_{CC}	0 to +42	V
Comparator Inverting Input Pin 5	$\mathrm{V}_{\mathrm{CII}}$	-0.3 to $+\mathrm{V}_{\mathrm{CC}}$	V
Darlington Switch Collector Pin 1	$\mathrm{V}_{\text {SWC }}$	-0.3 to +42	V
Darlington Switch Emitter Pin 2 (Transistor OFF)	$\mathrm{V}_{\text {SWE }}$	-0.6 to $+\mathrm{V}_{\mathrm{CC}}$	V
Darlington Switch Collector to Emitter Pins 1-2	$\mathrm{V}_{\text {SWCE }}$	-0.3 to +42	V
Darlington Switch Current	I_{SW}	1.5	A
$\mathrm{I}_{\text {pk }}$ Sense Pin 7	$\mathrm{V}_{\text {IPK }}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Timing Capacitor Pin Voltage (Pin 3)	$\mathrm{V}_{\text {TC }}$	-0.2 to +1.4	V
Moisture Sensitivity Level	MSL	1	-
Lead Temperature Soldering	$\mathrm{T}_{\text {SLD }}$	260	${ }^{\circ} \mathrm{C}$
ON/OFF Pin voltage	$\mathrm{V}_{\text {ON/OFF }}$	$(-0.3$ to +25$)<\mathrm{V}_{\mathrm{CC}}$	V

POWER DISSIPATION AND THERMAL CHARACTERISTICS

PDIP-8 (Note 5) Thermal Resistance Junction-to-Air	$\mathrm{R}_{\theta \mathrm{JA}}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SOIC-8 (Note 5) Thermal Resistance Junction-to-Air	$\mathrm{R}_{\theta \mathrm{JA}}$	180	${ }^{\circ} \mathrm{C} / \mathrm{W}$
DFN-8 (Note 5) Thermal Resistance Junction-to-Air Thermal Resistance Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JA}}$ $\mathrm{R}_{\theta \mathrm{JC}}$	$\begin{aligned} & 78 \\ & 14 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	TSTG	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	TJMAX	+150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range (Note 3) NCP3066 NCV3066	TJ	$\begin{gathered} 0 \text { to }+85 \\ -40 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device series contains ESD protection and exceeds the following tests:

Pin 1-8: Human Body Model 2000 V per AEC Q100-002; 003 or JESD22/A114; A115 Machine Model Method 200 V
2. This device contains latch-up protection and exceeds 100 mA per JEDEC Standard JESD78.
3. The relation between junction temperature, ambient temperature and Total Power dissipated in IC is $T_{J}=T_{A}+R_{\theta} \bullet P_{D}$.
4. The pins which are not defined may not be loaded by external signals.
5. $35 \mu \mathrm{~m}$ copper, $10 \mathrm{~cm}^{2}$ copper area.

NCP3066, NCV3066

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.$ for NCV3066, $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+85^{\circ} \mathrm{C}$ for NCP3066 unless otherwise specified)

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit

OSCILLATOR

$\mathrm{f}_{\text {OSC }}$	Frequency	$\begin{gathered} \left(\mathrm{V}_{\text {Pin5 }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=2.2 \mathrm{nF},\right. \\ \left.\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right) \end{gathered}$	110	150	190	kHz
$\mathrm{I}_{\text {DISCHG }} / \mathrm{l}_{\mathrm{CHG}}$	Discharge to Charge Current Ratio	(Pin 7 to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	5.5	6.0	6.5	-
I DISCHG	Capacitor Discharging Current	(Pin 7 to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)		1650		$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CHG}}$	Capacitor Charging Current	(Pin 7 to $\mathrm{V}_{\mathrm{Cc}}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}$)		275		$\mu \mathrm{A}$
VIPK(Sense)	Current Limit Sense Voltage	$\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)($ Note 7)	165	200	235	mV

OUTPUT SWITCH (Note 6)

$\mathrm{V}_{\text {SWCE(DROP) }}$	Darlington Switch Collector to Emitter Voltage Drop	$\left(\mathrm{ISW}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)$ $($ Note 6)	1.0	1.3	V	
$\mathrm{I}_{\mathrm{C}(\mathrm{OFF})}$	Collector Off-State Current	$\left(\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}\right)$		1.0	10	$\mu \mathrm{~A}$

COMPARATOR

V_{TH}	Threshold Voltage	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		235		mV
		$\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-5%	235	$+5 \%$	
		$\mathrm{~T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-10%	235	$+10 \%$	
REG LINE	Threshold Voltage Line Regulation	$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to 40 V$)$	-6.0	2.0	6.0	mV
$\mathrm{I}_{\mathrm{CII}}$ in	Input Bias Current	$\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {th }}\right)$	-1000	-100	1000	nA

ON/OFF FEATURE

V_{IH}	ON/OFF Pin Logic Input Level High $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	$\begin{gathered} \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{J}=0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 2.2 \\ & 2.4 \end{aligned}$	-	-	V
V_{IL}	ON/OFF Pin Logic Input Level Low $\mathrm{V}_{\text {OUT }}=$ Nominal Output Voltage	$\begin{gathered} J=25^{\circ} \mathrm{C} \\ T_{J}=0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	-	-	$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$	V
$\mathrm{IIH}^{\text {H }}$	ON/OFF Pin Input Current ON/OFF Pin $=5 \mathrm{~V}(\mathrm{ON})$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		15		$\mu \mathrm{A}$
IIL	ON/OFF Pin Input Current ON/OFF Pin $=0 \mathrm{~V}$ (OFF)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1.0		$\mu \mathrm{A}$
TON_MIN	ON/OFF Pin Minimum Width	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		50		$\mu \mathrm{s}$

TOTAL DEVICE

Icc	Supply Current	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { to } 40 \mathrm{~V},\right. \\ \mathrm{CT}=2.2 \mathrm{nF}, \text { Pin } 7=\mathrm{V}_{\mathrm{CC}}, \\ \mathrm{~V}_{\text {Pin }} 5>\mathrm{V}_{\text {th }}, \text { Pin } 2=\mathrm{GND}, \\ \text { remaining pins open }) \end{gathered}$		7.0	mA
Istby	Standby Quiescent Current	$\begin{gathered} \text { ON/OFF Pin }=5.0 \mathrm{~V}(\mathrm{OFF}) \\ \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{J}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	85	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{T}_{\text {SHD }}$	Thermal Shutdown Threshold		160		${ }^{\circ} \mathrm{C}$
T ${ }_{\text {SHDHYS }}$	Hysteresis		10		${ }^{\circ} \mathrm{C}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
6. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
7. The $\mathrm{V}_{\text {IPK }}$ (Sense) Current Limit Sense Voltage is specified at static conditions. In dynamic operation the sensed current turn-off value depends on comparator response time and di/dt current slope. See the Operating Description section for details.
8. NCV prefix is for automotive and other applications requiring site and change control and extended operating temperature conditions.

Figure 5. Oscillator Frequency vs. Timing Capacitor

Figure 7. Voltage Drop in Emitter Follower Configuration

Figure 6. Oscillator Frequency vs. Supply Voltage

Figure 8. Common Emitter Configuration Output Darlington Switch Voltage Drop vs. Temperature

Figure 9. $\mathrm{V}_{\text {th }}$ vs. Temperature

Figure 10. Current Limit Sense Voltage vs. Temperature

NCP3066, NCV3066

Figure 11. Standby Supply Current vs. Supply Voltage

NCP3066, NCV3066

INTRODUCTION

The NCP3066 is a monolithic power switching regulator optimized for LED Driver applications. Its flexible architecture enables the system designer to directly implement step-up, step-down, and voltage-inverting converters with a minimum number of external components for driving LEDs. A representative block diagram is shown in Figure 3.

Operating Description

The NCP3066 operates as a fixed oscillator frequency output voltage ripple gated regulator. In general, this mode of operation is somewhat analogous to a capacitor charge pump and does not require dominant pole loop compensation for converter stability. The typical operating waveforms are shown in Figure 12. The output voltage waveform is shown for a step-down converter with the ripple and phasing exaggerated for clarity. During initial converter startup, the feedback comparator senses that the output voltage level is below nominal. This causes the output switch to turn on and off at a frequency and duty cycle controlled by the oscillator, thus pumping up the output filter capacitor. When the output voltage level reaches nominal
comparator value, the output switch cycle is inhibited. When the load current causes the output voltage to fall below the nominal value feedback comparator enables switching immediately. Under these conditions, the output switch conduction can be enabled for a partial oscillator cycle, a partial cycle plus a complete cycle, multiple cycles, or a partial cycle plus multiple cycles.

Oscillator

The oscillator frequency and off-time of the output switch are programmed by the value of the timing capacitor C_{T}. The capacitor C_{T} is charged and discharged by a 1 to 6 ratio internal current source and sink, generating a positive going sawtooth waveform at Pin 3. This ratio sets the maximum $\mathrm{t}_{\mathrm{ON}} /\left(\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}\right)$ of the switching converter as $6 /(6+1)$ or 85.7% (typical). The oscillator peak and valley voltage difference is 500 mV typically. To calculate the C_{T} capacitor value for required oscillator frequency, use the equations found in Figure 15. An online NCP3066 design tool can be found at www.onsemi.com, which aids in selecting component values.

Figure 12. Typical Operating Waveforms

Peak Current Sense Comparator

Under normal conditions, the output switch conduction is initiated by the Voltage Feedback comparator and terminated by the oscillator. Abnormal operating conditions occur when the converter output is overloaded or when feedback voltage sensing is lost. Under these conditions, the I_{pk} Current Sense comparator will protect the Darlington output Switch. The switch current is converted to a voltage by inserting a fractional ohm resistor, $\mathrm{R}_{\text {Sense }}$, in series with V_{CC} and Darlington output switch. The voltage drop across $\mathrm{R}_{\text {Sense }}$ is monitored by the Current Sense comparator. If the voltage drop exceeds 200 mV (nom) with respect to V_{CC}, the comparator will set the latch and terminate the output switch conduction on a cycle-by-cycle basis.

Figure 13. Current Sense Waveform
The $\mathrm{V}_{\text {IPK(Sense) }}$ Current Limit Sense Voltage threshold is specified at static conditions. In dynamic operation the sensed current turn-off value depends on comparator response time and di/dt current slope.
Real $\mathrm{V}_{\text {turn-off }}$ on R_{sc} resistor
$\mathrm{V}_{\text {turn_off }}=\mathrm{V}_{\text {ipk(sense }}+\mathrm{R}_{\text {Sense }} *\left(\mathrm{t}_{\text {delay }} * \mathrm{di} / \mathrm{dt}\right)$
Typical I_{pk} comparator response time $\mathrm{t}_{\text {delay }}$ is 350 ns . The $\mathrm{di} / \mathrm{dt}$ current slope is dependent on the voltage difference across the inductor and the value of the inductor. Increasing the value of the inductor will reduce the di/dt slope.

It is recommended to verify the actual peak current in the application at worst conditions to be sure that the max peak current will never get over the 1.5 A Darlington Switch Current max rating.

Thermal Shutdown

Internal thermal shutdown circuitry is provided to protect the IC in the event that the maximum junction temperature is exceeded. When activated, typically at $160^{\circ} \mathrm{C}$, the Darlington Output Switch is disabled. The temperature sensing circuit is designed with some hysteresis. The

Darlington Switch is enabled again when the chip temperature decreases under the low threshold. This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a replacement for proper heatsinking.

Output Switch

The output switch is designed in Darlington configuration. This allows the application designer to operate at all conditions at high switching speed and low voltage drop. The Darlington Output Switch is designed to switch a maximum of 40 V collector to emitter voltage and current up to 1.5 A .

ON/OFF Function

The ON/ $\overline{\text { OFF }}$ function provides interruption of switching and puts the circuitry into the low consumption mode. This feature is applicable for digital dimming of the LEDs as well. The ON/OFF signal inhibits switching of the regulator and reduces the average current through the LEDs. The frequency of this pulse width-modulated signal with the duty cycle can range from less than 1% to 100% is limited by the value of 1 kHz .
Pulling this pin below 0.8 V or leaving it opened turns the regulator off. In this state the consumption of the device is reduced below 100 uA . Pulling this pin above 2.4 V (up to max. 25 V) allows the regulator running in normal state. If the ON/ $\overline{\mathrm{OFF}}$ feature is not needed, the ON/ $\overline{\mathrm{OFF}}$ pin can be wired to V_{CC}, provided this voltage does not exceed 25 V .

No Output Capacitor Operation

A traditional buck topology includes an inductor followed by an output capacitor which filters the ripple. The capacitor is placed in parallel with the LED or array of LEDs to lower the ripple current. A constant current buck regulator such as the NCP3066 focuses on the control of the current through the load, not the voltage across it. The switching frequency of the NCP3066 is in the range of $100-250 \mathrm{kHz}$ which is much higher than the human eye can detect. By configuring the NCP3066 in a continuous conduction buck configuration with low peak to peak ripple the output filter capacitor can be eliminated. The important design parameter is to keep the peak current below the maximum current rating of the LED. Using 15-40\% peak to peak ripple results in a good compromise between achieving max average output current without exceeding the maximum limit. This saves space and reduces part count for applications.

NCP3066, NCV3066

APPLICATIONS

Figures 15 through 24 show the simplicity and flexibility of the NCP3066. Two main converter topologies are demonstrated with actual test data shown below each of the circuit diagrams. The demo boards have an input for a digital dimming signal. You can provide a PWM signal to change
the average output current and reduce the LED brightness. Figure 14 gives the relevant design equations for the key parameters. Additionally, a complete application design aid for the NCP3066 can be found at www.onsemi.com.

Parameter	Step-Down	Step-Up
$\left(\frac{t_{\text {on }}}{t_{\text {off }}}\right)$	$\frac{V_{\text {out }}+V_{F}}{V_{\text {in }}-V_{\text {SWCE }}-V_{\text {out }}}$	$\frac{V_{\text {out }}+V_{F}-V_{\text {in }}}{V_{\text {in }}-V_{\text {SWCE }}}$
$\mathrm{t}_{\text {on }}$	$\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{f \times\left(\frac{\text { ton }^{\prime}}{\mathrm{t}_{\text {off }}}+1\right)}$	$\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{}$
$\mathrm{C}_{\text {T }}$	$\mathrm{CT}=\frac{381.6 \cdot 10^{-6}}{f_{\mathrm{OSC}}}-343 \times 10^{-12}$	
$\mathrm{I}_{\text {L(avg) }}$	lout	$\mathrm{l}_{\text {out }} \times\left(\frac{\mathrm{t}_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)$
$\mathrm{I}_{\text {pk (Switch) }}$	$\mathrm{l}(\mathrm{avg})+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}$	$\mathrm{l}(\mathrm{avg})+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}$
R_{SC}	$\frac{0.20}{\operatorname{lpk}(\text { Switch })}$	$\frac{0.20}{\operatorname{lpk}(S w i t c h)}$
L	$\left(\frac{V_{\text {in }}-V_{\text {SWCE }}-V_{\text {out }}}{\Delta I_{\text {L }}}\right) \times \mathrm{t}_{\text {on }}$	$\left(\frac{\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {SWCE }}}{\Delta \mathrm{I}_{\mathrm{L}}}\right) \times \mathrm{ton}_{\text {on }}$
$\mathrm{V}_{\text {ripple(pp) }}$	$\Delta \mathrm{I}_{\mathrm{L}} \sqrt{\left(\frac{1}{8 f \mathrm{CO}}\right)^{2}+(\mathrm{ESR})^{2}}$	$\frac{\text { ton }_{\text {lout }}}{\mathrm{C}_{\mathrm{O}}}+\Delta \mathrm{IL} \times \mathrm{ESR}$
$\mathrm{I}_{\text {out }}$	$\frac{\mathrm{V}_{\text {ref }}}{\mathrm{R}_{\mathrm{s}}}$	$\frac{\mathrm{V}_{\mathrm{ref}}}{\mathrm{R}_{\mathrm{s}}}$

9. $\mathrm{V}_{\text {SWCE }}$ - Darlington Switch Collector to Emitter Voltage Drop, refer to Figures 7 and 8.
10. V_{F} - Output rectifier forward voltage drop. Typical value for 1 N 5819 Schottky barrier rectifier is 0.4 V .
11. The calculated $\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\text {off }}$ must not exceed the minimum guaranteed oscillator charge to discharge ratio.

Figure 14. Design Equations

The Following Converter Characteristics Must Be Chosen:

$V_{\text {in }}$ - Nominal operating input voltage.
$\mathrm{V}_{\text {out }}$ - Desired output voltage.
$\mathrm{I}_{\text {out }}$ - Desired output current.
$\Delta \mathrm{I}_{\mathrm{L}}$ - Desired peak-to-peak inductor ripple current. For maximum output current it is suggested that $\Delta \mathrm{I}_{\mathrm{L}}$ be chosen to be less than 10% of the average inductor current $\mathrm{I}_{\mathrm{L}(\mathrm{avg}) \text {. This will help prevent } \mathrm{I}_{\mathrm{pk}} \text { (Switch) from reaching the current limit threshold }}$ set by R_{SC}. If the design goal is to use a minimum inductance value, let $\Delta \mathrm{I}_{\mathrm{L}}=2\left(\mathrm{I}_{\mathrm{L}(\mathrm{avg})}\right)$. This will proportionally reduce converter output current capability.
f - Maximum output switch frequency.
$\mathrm{V}_{\text {ripple(pp) }}$ - Desired peak-to-peak output ripple voltage. For best performance the ripple voltage should be kept to a low value since it will directly affect line and load regulation. Capacitor C_{O} should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.

Figure 15. Buck Demoboard with External Switch Application Schematic
Table 1. BILL OF MATERIALS

Designator	Qty	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number
$\begin{aligned} & \hline \text { R1;R2; } \\ & \text { R3;R4 } \end{aligned}$	4	Resistor	0.15R	1\%	1206	Susumu	RL1632R-R150-F
R10	1	Resisitor	10k	1\%	1206	Rohm	MCR18EZHF1002
$\begin{aligned} & \hline \text { R11; } \\ & \text { R15 } \end{aligned}$	2	Resisitor	1k	1\%	1206	Rohm	MCR18EZPF1001
R12	NU	Resistor	12k	1\%	1206	Rohm	MCR18EZHF1202
R16	1	Resistor	0.68R	5\%	1210	Panasonic - ECG	ERJ-14RQJR68U
R17	OPTION	Resistor	0.33 R	5\%	1210	Panasonic - ECG	ERJ-14RQJR33U
R19	1	Resistor	1k	5\%	1210	Panasonic - ECG	ERJ-14YJ102U
C1	1	Capacitor	$220 \mu \mathrm{~F} / 35 \mathrm{~V}$	20\%	10x12.5	Panasonic	EEUFC1V221
C2;C7	2	Capacitor	100nF	10\%	1206	Kemet	C1206C104K5RACTU
C5	1	Capacitor	1.8nF	10\%	1206	Kemet	C1206C182K5RACTU
C8	1	Capacitor	150uF/16V	20\%	F8	SANYO	16SP150M
C9	1	Capacitor	100pF	10\%	1206	Vishay/Vitramon	VJ1206Y101KXEAT5Z
C10	1	Capacitor	2.2nF	10\%	1206	Kemet	C1206C222K5RACTU
Q1	1	Power MOSFET $-25 \mathrm{~A},-30 \mathrm{~V}$	NTD18P03L	-	DPAK	ON Semiconductor	NTD18P03L
Q2	1	Switching NPN Transistor	MMBT489LT1G	-	SOT-23	ON Semiconductor	MMBT489LT1G
D2	1	1A, 30V Schottky Rectifier	MBR130T1G	-	SOD123	ON Semiconductor	MBR130T1G
IC1	1	Switching Regulator	NCP3066DR2G	-	SOIC-8	ON Semiconductor	NCP3066DR2G
D1	1	3A, 30V Schottky Rectifier	MBRS330T3G	-	SMC	ON Semiconductor	MBRS330T3G
L1	1	Inductor	$47 \mu \mathrm{H}$	20\%	Wurth Elektronik	Wurth Elektronik	WE-PD4 74457147

Figure 16. Buck with External Switch Demoboard Layout

Figure 18. Efficiency of Buck LED Driver

Figure 19. Efficiency of Buck LED Driver at $\mathrm{I}_{\text {out }}=3 \mathrm{~A}$

Figure 17. Buck with External Switch Demoboard Photo

Figure 15, Buck Demoboard With External Switch Application Schematic illustrates the NCP3066 being used as a PFET controller. Table 1. Bill Of Materials shows the small number of additional parts which are necessary to assemble mentioned demoboard. The demoboard based on two layer PCB and the layout is mentioned in Figure 16. Buck Demoboard Layout. The Line regulation is mentioned in Figure 20, Line Regulation. The Figure 21, Dimming characteristic shows behavior of circuitry in case the square wave signal with 5 V amplitude and 300 Hz frequency was delivered into ON/OFF pin of device.

Figure 20. Line Regulation

Figure 21. Dimming Characteristic

Table 2. TEST RESULTS

Line Regulation	Vin $=12 \mathrm{~V}$ to 35 V , lout $=3000 \mathrm{~mA}$	250 mA
Output Ripple	Vin $=12 \mathrm{~V}$, lout $=3000 \mathrm{~mA}$	320 mA
Efficiency	Vin $=12 \mathrm{~V}$, lout $=3000 \mathrm{~mA}$	80%

NCP3066, NCV3066

Figure 22. Boost demoboard Application Schematic

Table 3. BILL OF MATERIALS

Designator	Qty	Description	Value	Toler- ance	Foot- print	Manufacturer	Manufacturer Part Number
R1	1	Resistor	$0.15 R$	1%	1206	Susumu	RL1632R-R150-F
R2;R4	NU	Resisitor	$100 R$	1%	1206	Vishay/Dale	CRCW1206100RFKEA
R3	1	Resisitor	1 k	1%	1206	Rohm	MCR18EZPF1001
R5	1	Resistor	$0.68 R$	5%	1210	Panasonic - ECG	ERJ-14RQJR68U
R6	1	Resistor	$10 k$	1%	1206	Rohm	MCR18EZHF1002
C1	1	Capacitor	$180 \mu F$	20%	F8	SANYO	16SVPS180M
C2	1	Capacitor	$100 n F$	10%	1206	Kemet	C1206C104K5RACTU
C3	1	Capacitor	$2.2 n F$	10%	1206	Kemet	C1206C222K5RACTU
C4,C5,C6	3	Capacitor	$100 \mu F$	20%	1210	TDK	C4532Y5V1A107Z
C10	1	Capacitor	$2.2 n F$	10%	1206	Kemet	C1206C222K5RACTU
IC1	1	Switching	NCP3066DR2G	-	SOIC-8	ON Semiconductor	NCP3066DR2G
D1	1	Diode	MBRS1540T3G	-	SMB	ON Semiconductor	MBRS1540T3G
D2	1	Zener Diode	BZX84B18VLT1G	-	SOT-23	ON Semiconductor	BZX84B18VLT1G
L2	1	Inductor	$100 \mu H$	20%	Coilcraft	Coilcraft	DO3316P-104MLB

Figure 23. Boost Demoboard Layout

Figure 25. Boost LED Driver Efficiency

Figure 24. Boost Demonstration Photo
Figure 22, Boost Demoboard Application Schematic, illustrates the basic circuitry in boost topology, which allows supplying string up to eight LEDs up to 150 mA consumption. Table 3, Bill of Materials shows the small number of additional parts which are necessary to assembly mentioned demoboard. The demoboard based on one layer PCB and the layout is shown in Figure 23, Buck Demoboard Layout. The photo of this demoboard is mentioned in Figure 24, Boost Demoboard Photo. Figure 26, Dimming Characteristic shows behavior of circuitry in case the square wave signal with 5 V amplitude and 300 Hz frequency was delivered into ON/OFF pin of device. There was tested eight LEDs string with 150 mA consumption and $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$ at room temperature.
The efficiency of this demoboard is mentioned in Figure 25. Efficiency of Boost LED Driver.

Figure 26. Dimming Characteristic

Table 4. TEST RESULTS

Line Regulation	Vin $=10 \mathrm{~V}$ to 20 V , Vout $=19.2 \mathrm{~V}$, lout $=350 \mathrm{~mA}$	25 mA
Output Ripple	Vin $=10 \mathrm{~V}$ to 20 V, Vout $=19.2 \mathrm{~V}$, lout $=350 \mathrm{~mA}$	55 mA
Efficiency	Vin $=12 \mathrm{~V}$, Vout $=19.2 \mathrm{~V}$, lout $=350 \mathrm{~mA}$	85%

NCP3066, NCV3066

Figure 27. Buck Demoboard Application Schematic

Table 5. BILL OF MATERIALS

Designator	Qty.	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number
R1	1	Resistor	$0.15 R$	1%	1206	Susumu	RL1632R-R150-F
R2; R5	NU	Resisitor	$100 R$	1%	1206	Vishay/Dale	CRCW1206100RFKEA
R3	1	Resisitor	1 k	1%	1206	Rohm	MCR18EZPF1001
R4	1	Resistor	$0.68 R$	5%	1210	Panasonic - ECG	ERJ-14RQJR68U
R6	1	Resisitor	10 k	1%	1206	Rohm	MCR18EZHF1002
R7	NU	Resisitor	12 k	1%	1206	Rohm	MCR18EZPF1202
C1	1	Capacitor	$330 \mu \mathrm{~F}$	20%	F8	PANASONIC	EEEFK1E331GP
C2	1	Capacitor	100 nF	10%	1206	Kemet	C1206C104K5RACTU
C3	1	Capacitor	2.2 nF	10%	1206	Kemet	C1206C222K5RACTU
C4, C5, C6	3	Capacitor	$100 \mu \mathrm{~F}$	20%	1210	TDK	C4532Y5V1A107Z
IC1	1	Switching	NCP3066	-	SOIC8	onsemi	NCP3066DR2G
D1	1	Diode	MBRS1504	-	SMB	onsemi	MBRS1504T3G
D2	1	Zener Diode	BZX84C8V2	-	SOT23	onsemi	BZX84C8V2LT1G
L1	1	Inductor	$47 \mu H$	20%	DO3316	CoilCraft	DO3316P-473MLB

Figure 28. Buck Demoboard Layout
The Figure 27 Buck demoboard Application schematic illustrates the basic circuitry in buck topology, which allows supplying one or two LEDs up to 350 mA consumption. The TABLE 5 BILL OF MATERIALS shows the small number of additional parts which are necessary to assembly

Figure 30. Line Regulation

Figure 29. Buck Demonstration Photo
mentioned demoboard. The demoboard based on one layer PCB and the layout is mentioned in Figure 28 Buck Demoboard Layout. The Line regulation is mentioned in Figure 30 Line Regulation. The Figure 31 shows efficiency of Buck LED Driver.

Figure 31. Efficiency of Buck LED Driver

Table 6. TEST RESULTS

Line Regulation	Vin $=8 \mathrm{~V}$ to 20 V , Vout $=3.2 \mathrm{~V}$, lout $=350 \mathrm{~mA}$	19 mA
Output Ripple	Vin $=8 \mathrm{~V}$ to 20 V , Vout $=3.2 \mathrm{~V}$, lout $=350 \mathrm{~mA}$	32 mA
Efficiency	Vin $=12 \mathrm{~V}$, Vout $=3.2 \mathrm{~V}$, lout $=350 \mathrm{~mA}$	62%

Figure 32. ONOFF Serial Resistor Connection

If the application allows ON/ $\overline{O F F}$ pin to be biased by voltage and the power supply is not connected to Vcc pin at the same time, then it is recommended to limit ON/OFF current by resistor with value $10 \mathrm{k} \Omega$ to protect the NCP3066 device. This situation is mentioned in Figure 32, ON/ $\overline{\mathrm{OFF}}$ Serial Resistor Connection.

This resistor shifts the ON/ $\overline{O F F}$ threshold by about 200 mV to higher value, but the TTL logic compatibility is kept in full range of input voltage and operating temperature range.

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NCP3066MNTXG	DFN-8 (Pb-Free)	$4000 /$ Tape \& Reel
NCP3066PG	PDIP-8 (Pb-Free)	50 Units / Rail
NCP3066DR2G	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel
NCV3066MNTXG	DFN-8 (Pb-Free)	$4000 /$ Tape \& Reel
NCV3066PG	PDIP-8 (Pb-Free)	50 Units / Rail
NCV3066DR2G	SOIC-8 (Pb-Free)	2500 / Tape \& Reel

[^0]

DFN8, 4x4
CASE 488AF-01
ISSUE C
DATE 15 JAN 2009
SCALE 2:1

1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994
CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.30MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
5. DETAILS A AND B SHOW OPTIONAL CONSTRUCTIONS FOR TERMINALS

	MILLIMETERS		
DIM	MIN	MAX	
A	0.80	1.00	
A1	0.00	0.05	
A3	0.20		
REF			
b	0.25		
D	0.35		
D2	1.00		
BSC			
E	4.00		
E2	2.21		
e	0.80		
K	0.20	BSC	
L	0.20	---	
L1	0.30	0.50	

GENERIC
MARKING DIAGRAM*

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	= Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON15232D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DFN8, 4X4, 0.8P | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SCALE 1:1

$$
\begin{aligned}
& \text { STYLE 1: } \\
& \text { PIN 1. AC IN } \\
& \text { 2. DC }+ \text { IN } \\
& \text { 3. DC }- \text { IN } \\
& \text { 4. AC IN } \\
& \text { 5. GROUND } \\
& \text { 6. OUTPUT } \\
& \text { 7. AUXILIARY } \\
& \text { 8. VCC }
\end{aligned}
$$

| DOCUMENT NUMBER: | 98ASB42420B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-8 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5-DRAIN
. P-DRAIN
7. N -DRAIN
8. N-DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
N 1. DRAIN, DIE
2. DRAIN, \#1
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24:

PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	- PAGE 2 OF2

onsemi and OnSeMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

[^1]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

