

60 V, 60 m Ω single high-side switches

Features

- 8 V to 60 V operating voltage range
- Minimum output current limitation: 0.7 A (IPS161H) or 2.6 A (IPS160H)
- · Fast demagnetization of inductive load
- Non-dissipative short-circuit protection (cut-off)
- Programmable cut-off delay time using external capacitor
- · Ground disconnection protection
- · V_{CC} disconnection protection
- Thermal shutdown protection
- · Undervoltage lock-out
- Diagnostic signalization for: open load in off-state, cut-off and junction thermal shutdown
- · Designed to meet IEC 61131-2
- PowerSSO12 package

Applications

- · Programmable logic control
- · Industrial PC peripheral input/output
- · Numerical control machines
- Domotics
- · Generic power supply switch

Product status IPS160H IPS161H

SUSTAINABLE TECHNOLOGY

Product summary					
Order code	IPS160H	IPS160HTR			
Order code	IPS161H	IPS161HTR			
Package	PowerSSO12				
Packing	Tube	Tape and reel			

Description

The IPS160H (I_{OUT} = 2.5 A) and IPS161H (I_{OUT} = 0.6 A) are monolithic devices which can drive capacitive, resistive or inductive loads with one side connected to ground.

The 60 V operating range and Ron = 60 m Ω , combined with the extended diagnostic (Open Load, Over Load, Overtemperature) make the IC suitable for applications implementing the proper architectures to address higher SIL levels. The built-in overload and thermal shutdown protections guarantee the ICs, the application and the load against electrical and thermal overstress. Furthermore, in order to minimize the power dissipation when the output is shorted, a low-dissipative short-circuit protection (cut-off) is implemented to limit the output average current value and consequent device overheating.

Cut-off delay time can be set by soldering an external capacitor or disabled by a resistor on pin 4 (CoD). The DIAG common diagnostic open drain pin reports the open load in off-state, cutoff (overload) and thermal shutdown.

GIPG1702151307LM

1 Block diagram

Undervoltage detection

Vcc clamp

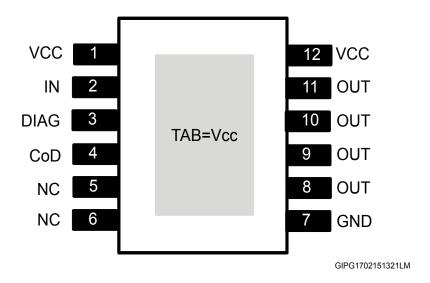
Output clamp

Output clamp

Open load in off-state

Junction
Overtemperature

GND


Figure 1. Block diagram

DS10907 - Rev 10 page 2/26

2 Pin description

Figure 2. Pin connection (top view)

Table 1. Pin configuration

Number	Name	Function	Туре
1, 12, TAB	VCC	Device supply voltage	Supply
2	IN	Channel input	Input
3	DIAG	Common diagnostic pin both for thermal shutdown, cut-off and open load	Output open drain
4	CoD	Cut-off delay pin, cannot be left floating. Connected to GND by 1 k Ω resistor to disable the cut-off function. Connect to a C _{CoD} capacitor to set the cut-off delay see Table 8. Protection and diagnostic	Input
5, 6	NC	Not connected	
7	GND	Device ground	Ground
8, 9, 10, 11	OUT	Channel power stage output	Output

2.1 IN

This pin drives the output stage to pin OUT. IN pin has internal weak pull-down resistors, see Table 7. Logic inputs.

2.2 OUT

Output power transistor is in high-side configuration, with active clamp for fast demagnetization.

2.3 DIAG

This pin is used for diagnostic purpose and it is internally wired to an open drain transistor. The open drain transistor is turned on in case of junction thermal shutdown, cut-off, or open load in off-state.

DS10907 - Rev 10 page 3/26

2.4 CoD

This pin cannot be left floating and can be used to program the cut-off delay time t_{coff} , see Table 8. Protection and diagnostic through an external capacitor (C_{CoD}). The cut-off function can be completely disabled connecting the CoD pin to GND through 1 k Ω resistor: in this condition the output channel remains in limitation condition, supplying the current to the load until the input is forced LOW or the thermal shutdown threshold is triggered.

2.5 GND

IC ground.

2.6 VCC

IC supply voltage.

3 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	-0.3 to 65	V
V _{OUT}	Output channel voltage	V _{cc} -V _{clamp} to V _{cc} +0.3	V
I _{IN}	Input current	-10 to +10	mA
V _{IN}	IN voltage	V _{CC}	V
V _{COD}	Output cut-off voltage pin	5.5	V
I _{COD}	Input current on cut-off pin	-1 to +10	mA
V_{DIAG}	Fault voltage	V _{CC}	V
I _{DIAG}	Fault current	-5 to +10	mA
I _{CC} (1)	Maximum DC reverse current flowing through the IC from GND to $\ensuremath{\text{V}_{\text{CC}}}$	-250	mA
I _{OUT}	Output stage current	Internally limited	
-l _{OUT} ⁽¹⁾	Maximum DC reverse current flowing through the IC from OUT to $\ensuremath{\text{V}_{\text{CC}}}$	5	Α
F (1)	Single pulse avalanche energy (T_{AMB} = 125 °C, V_{CC} = 24 V, I_{load} = 1 A)	1000	mJ
E _{AS} ⁽¹⁾	Single pulse avalanche energy (T_{AMB} = 125 °C, V_{CC} = 24 V, I_{load} = 0.5 A)	3000	mJ
P _{TOT}	Power dissipation at T _C = 25 °C ⁽²⁾	Internally limited	W
T _{STG}	Storage temperature range	-55 to 150	*0
TJ	Junction temperature	-40 to 150	°C

^{1.} Verified on STEVAL-IFP028V1 and STEVAL-IFP034V1 application board

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All voltages are referenced to GND.

Table 3. Thermal data

Symbol	Parameter	1s	2s2p	2s2p (with 4 thermal vias)	Unit
R _{th(JC)}	Thermal resistance junction-case	0.4	0.9	0.5	°C/W
R _{th(JA)}	Thermal resistance junction-ambient	117	57	29	C/VV

Note:

 $R_{th(JC)}$ is intended between the die and the bottom case surface measured by cold plate as per JESD51. $R_{th(JA)}$ according JESD51-3 (1s) JESD51-5 (2s2p) and JESD51-7 (2s2p and thermal vias).

DS10907 - Rev 10 page 5/26

^{2.} $(T_{JSD(MAX)}-T_C)/R_{th(JA)}$

4 Electrical characteristics

(8 V < V_{CC} < 60 V; -40 °C < T_J < 125 °C, unless otherwise specified)

Table 4. Supply

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{CC}	Supply voltage		V _{UVON}		60	V	
V _{UVON}	Undervoltage on threshold		6.9		8	V	
V _{UVOFF}	Undervoltage off threshold		6.5		7.8	V	
V _{UVH}	Undervoltage hysteresis		0.15	0.5		V	
	Supply current in off-state	V _{CC} = 24 V		300	500	μА	
L		V _{CC} = 60 V		350	600		
I _S	Owner to the second sec	V _{CC} = 24 V		1	1.4	A	
	Supply current in on-state	V _{CC} = 60 V		1.4	2.1	mA	
I_{LGND}	GND disconnection output current	$V_{GND} = V_{IN} = V_{CC} V_{OUT} = 0 V$ $T_J = 25^{\circ}C$			0.5		
		$V_{GND} = V_{IN} = V_{CC} V_{OUT} = 0 V$ $T_J = 125^{\circ}C$			0.55	- mA	

Table 5. Output stage

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
D	On atota anniataman	V _{CC} = 24 V I _{OUT} =0.5 A (IPS161H), 1 A (IPS160H) @ T _J = 25 °C	60		80	0
R _{DS(on)} Or	On-state resistance	V _{CC} = 24 V I _{OUT} =0.5 A (IPS161H), 1 A (IPS160H) @ T _J = 125 °C		120	mΩ	
V _{OUT(OFF)}	Off-state output voltage	V _{IN} = 0 V and I _{OUT} = 0 A			2	V
1	Off state output current	V _{CC} = 24 V, V _{IN} = 0 V, V _{OUT} = 0 V			3	
I _{OUT(OFF)}	Off-state output current	V _{CC} = 60 V, V _{IN} = 0 V, V _{OUT} = 0 V			10	μA
I _{OUT(OFF-min)}	Off-state output current	V _{IN} = 0 V, V _{OUT} = 4 V	-35		0	

Table 6. Switching (V_{CC} = 24 V; -40 °C < T_J < 125 °C, R_{LOAD} = 48 Ω)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _r	Rise time	I _{OUT} = 0.5 A, Figure 3. Timing in normal operation		10		
t _f	Fall time			10		
t _{PD(H-L)}	Propagation delay time off			20		μs
t _{PD(L-H)}	Propagation delay time on			30		

DS10907 - Rev 10 page 6/26

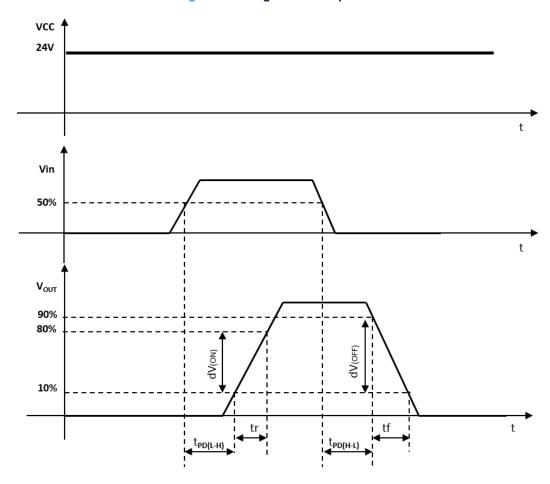


Figure 3. Timing in normal operation

Table 7. Logic inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level voltage				0.8	
V _{IH}	Input high level voltage		2.2			V
V _{I(HYST)}	Input hysteresis voltage			0.4		
	land to come at	V _{CC} = V _{IN} = 36 V			200	
IIN	Input current	V _{CC} = V _{IN} = 60 V			550	μA

Table 8. Protection and diagnostic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{clamp}	V _{CC} active clamp	I _{CC} = 10 mA	65.5	68.5	71.5	
V _{demag}	Demagnetization voltage	I _{OUT} = 0.5 A; load =1 mH	V _{CC} -71.5	V _{CC} -68.5	V _{CC} -65.5	V
V _{OLoff}	Open load (off-state) or short to V _{CC} detection threshold		2		4	
t _{BKT}	Open load blanking time				200	μs
V _{DIAG}	Voltage drop on DIAG	I _{DIAG} = 4 mA			1	V
I _{DIAG}	DIAG pin leakage current	V _{CC} ≤ 36 V			110	μA

DS10907 - Rev 10 page 7/26

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{DIAG}	DIAG pin leakage current	36 V < V _{CC} ≤ 60 V			180	μΑ
1	IPS160H Output current limitation	$V_{CC} \le 32 \text{ V}, R_{LOAD} \le 10 \text{ m}\Omega$	2.6		4.3	Α
I _{LIM}	IPS161H Output current limitation	$V_{CC} \le 32 \text{ V}, R_{LOAD} \le 10 \text{ m}\Omega$	0.7		1.7	
t _{coff}	Cut-off current delay time	Programmable by the external capacitor on CoD pin. Cut-off is disabled when CoD pin is connected to GND through 1 k Ω resistor. T _J < T _{JSD}	50xC _{COD} [nf] ± 35% ⁽¹⁾		μs	
t _{res}	Output stage restart delay time	T _J < T _{JSD}	32xt _{coff} [µs]± 40%			
T _{JSD}	Junction temperature shutdown		150	170	190	
T _{JHYST} Junction temperature thermal hysteresis				15		°C

^{1.} The formula is guaranteed in the range 10 nF \leq C_{COD} \leq 100 nF.

DS10907 - Rev 10 page 8/26

5 Output logic

Table 9. Output stage truth table

Operation	IN	OUT	DIAG
Normal	L	L	Н
Normal	Н	Н	Н
Cut-off	L	L	L
Cut-oii	Н	L	L
Overtenen eneture	L	L	L
Overtemperature	Н	L	L
Open load	L	H (external pull-up resistor is used)	L (external pull-up resistor is used)
	Н	Н	Н
UVLO	X	L	X
UVLO	X	L	X

6 Protection and diagnostic

The IC integrates several protections to ease the design of a robust application.

6.1 Undervoltage lock-out

The device turns off if the supply voltage falls below the turn-off threshold $(V_{UV(off)})$. Normal operation restarts after V_{CC} exceeds the turn-on threshold $(V_{UV(on)})$. Turn-on and turn-off thresholds are defined in Table 4. Supply.

6.2 Overtemperature

The output stage turns off when its internal junction temperature (T_J) exceeds the shutdown threshold T_{JSD} . Normal operation restarts when T_J comes back below the reset threshold $(T_{JSD} - T_{JHYST})$, see Table 8. Protection and diagnostic. The internal fault signal is set when the channel is off due to thermal protection and it is reset when the junction triggers the reset threshold. This same behavior is reported on DIAG pin.

6.3 Cut-off

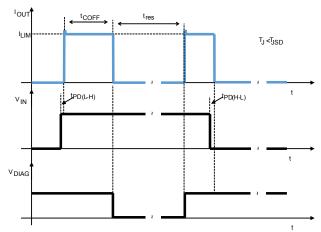
The IC can limit the output current at the power stage by its embedded output current limitation circuit.

This circuit continuously monitor the output current and, when load is increasing, at the triggering of its activation threshold (3.8A TYP) it starts limiting to I_{LIM} limitation level (See Protection and diagnostic): while current limitation is active the IC enters an high dissipation status.

The IC implements the cut-off feature which limits the duration of the current limitation condition.

The duration of the current limitation condition (T_{coff}) can be set by a capacitor (C_{CoD}) placed between CoD and GND pins. The design rule for C_{CoD} is:

$$t_{coff[us]}$$
 +/- 35% = 50 x $C_{cod[nF]}$


The drift of +/-35% is guaranteed in the range of 10 nF < C_{cod} < 100 nF; lower capacitance than 10 nF can be

If I_{LIM} threshold is triggered, the output stage remains in the current limitation condition ($I_{OUT} = I_{LIM}$) no longer than t_{coff} . If t_{coff} elapses, the output stage turns off and restarts after the t_{res} restart time.

Thermal shutdown protection has higher priority than cut-off:

- IC is forced off if T_{JSD} is triggered before t_{coff} elapses
- if T_{JSD} is triggered, IC is maintained off even after the t_{res} has elapsed and until the T_J decreases below T_{JSD}-T_{JHYST}

Figure 4. Current limitation and cut-off

DS10907 - Rev 10 page 10/26

The fault condition is reported on the DIAG pin. The internal cut-off flag signal is latched at output switch-off and released after the time t_{res}, the same behavior is reported on DIAG pin.

The status of the DIAG is independent on the IN pin status.

If CoD pin is connected to GND through 1 $k\Omega$ resistor (cut-off feature disabled), when the output channel triggers the limitation threshold, it remains on, in current limitation condition, until the input becomes LOW or the thermal protection threshold is triggered.

In case of low ambient temperature conditions ($T_{AMB} < -20$ °C) and high supply voltage ($V_{CC} > 36$ V) the cut-off function needs activating in order to avoid IC permanent damages. The following table reports the suggested cut-off delay for the different operating voltage.

 V_{CC} [V]
 Cut-off delay [μs]
 Cut-off capacitance [nF]

 36-48
 100
 2.2

 48-60
 50
 1

Table 10. Minimum cut-off delay for T_{AMB} less than -20 °C

6.4 Open load in off-state

The IC provides the open load detection feature which detects if the load is disconnected from the OUT pin. This feature can be activated by a resistor (R_{PU}) between OUT and VCC pins.

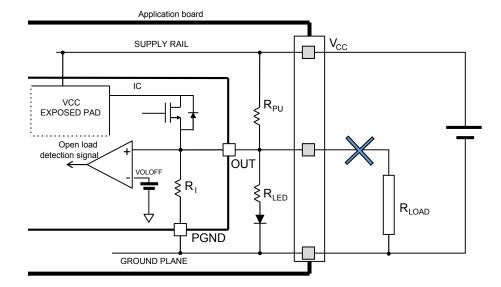


Figure 5. Open load off-state

In case of wire break and during the OFF state (IN = low), the output voltage V_{OUT} rises according to the the partitioning between the external pull-up resistor and the internal impedence of the IC (130 k Ω < RI < 360 k Ω).

The effect of the LED (if any) on the output pin has to be considered as well. In case of wire break and during the ON state (IN = high), the output voltage V_{OUT} is pulled up to V_{CC} by the low resistive integrated switch. If the load is not connected, in order to guarantee the correct open load signalization it must result:

 $V_{OUT} > V_{OLoff(max.)}$

Referring to the circuit in figure 6:

$$V_{OUT} = V_{CC} - R_{PU} \times I_{PU} = V_{CC} - R_{PU} \times (I_{RI} + I_{LED} + I_{RL})$$

$$\tag{1}$$

therefore:

DS10907 - Rev 10 page 11/26

$$R_{PU} < \frac{V_{CC(min)} - V_{OLoff(max)}}{\left(\frac{V_{OLoff(max)}}{RI(min)} + \frac{V_{OLoff(max)} - V_{LED}}{R_{LED}}\right)}$$
(2)

If the load is connected, in order to avoid any false signalization of the open load, it must result as follows:

 $V_{OUT} < V_{OLoff(min)}$

By taking into account the circuit in figure 6:

$$V_{OUT} = V_{CC} - R_{PU} \times I_{PU} = V_{CC} - R_{PU} \times \left(\frac{V_{OUT}}{R_I} + \frac{V_{OUT} - V_{LED}}{R_{LED}} + \frac{V_{OUT}}{R_L}\right) \tag{3}$$

so:

$$R_{PU} > \frac{VCC(max) - VOLoff(min)}{\left(\frac{VOLoff(min)}{RI(max)} + \frac{VOLoff(min) - VLED}{R_{LED}} + \frac{VOLoff(min)}{R_{L}}\right)}$$
(4)

The fault condition is reported on the DIAG pin and the fault reset occurs when load is reconnected.

If the channel is switched on by IN pin, the fault condition is no longer detected.

When inductive load is driven, some ringing of the output voltage may be observed at the end of the demagnetization. In fact, the load is completely demagnetized when I_{LOAD} = 0 A and the OUT pin remains floating until next turn-on. In order to avoid a fake signalization of the open load event driving inductive loads, the open load signal is masked for t_{BKT} . So, the open load is reported on the DIAG pin with a delay of t_{BKT} and if the open load event is triggered for more than t_{BKT} .

6.5 VCC disconnection protection

The IC is protected despite the V_{CC} disconnection event. This event is intended as the disconnection of the V_{CC} wire from the application board, see figure below. When this condition happens, the IC continues working normally until the voltage on the V_{CC} pin is $\geq V_{UVOFF}$. Once the V_{UVOFF} is triggered, the output channel is turned off independently on the input status. In case of inductive load, if the V_{CC} is disconnected while the output channel is still active, the IC allows the discharge of the energy still stored in the inductor through the integrated power switch.

DS10907 - Rev 10 page 12/26

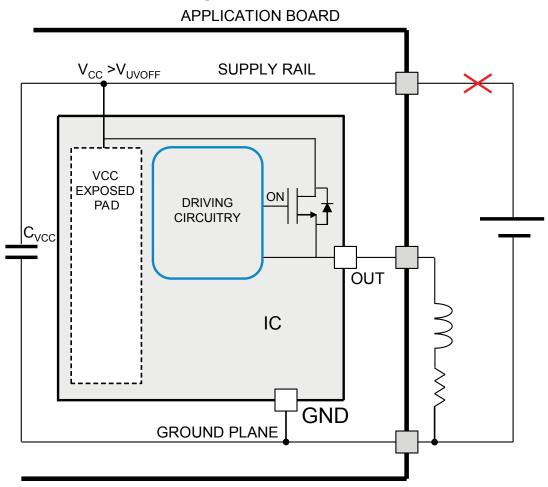


Figure 6. VCC disconnection

6.6 GND disconnection protection

GND disconnection is intended as the disconnection event of the application ground, see figure below. When this event happens, the IC continues working normally until the voltage between V_{CC} and GND pins of the IC results $\geq V_{UVOFF}$. The voltage on GND pin of the IC rises up to the supply rail voltage level. In case of GND disconnection event, a current (I_{LGND}) flows through OUT pin. Table 7. Logic inputs reports $I_{OUT} = I_{LGND}$ for the worst case of GND disconnection event in case of output shorted to ground.

DS10907 - Rev 10 page 13/26

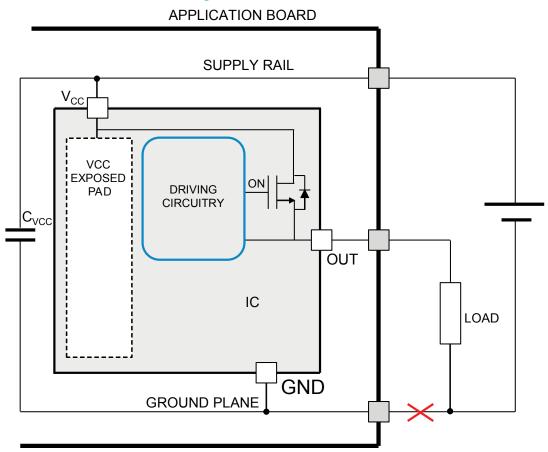


Figure 7. GND disconnection

DS10907 - Rev 10 page 14/26

Active VDS clamp

Active clamp is also known as fast demagnetization of inductive loads or fast current decay. When a high-side driver turns off an inductance, an undervoltage is detected on output.

The OUT pin is pulled down to V_{demag}. The conduction state is modulated by an internal circuitry in order to keep the OUT pin voltage at about V_{demag} until the load energy has been dissipated. The energy is dissipated both in IC internal switch and in load resistance.

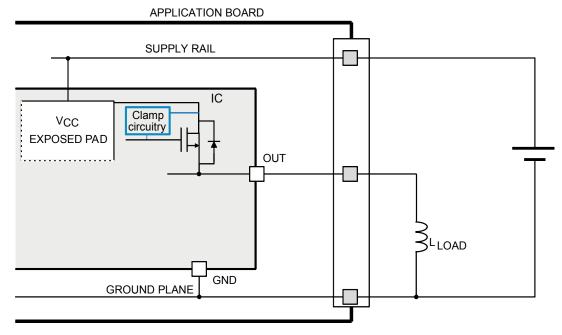


Figure 8. Active clamp equivalent principle schematic

page 15/26 Downloaded from Arrow.com.

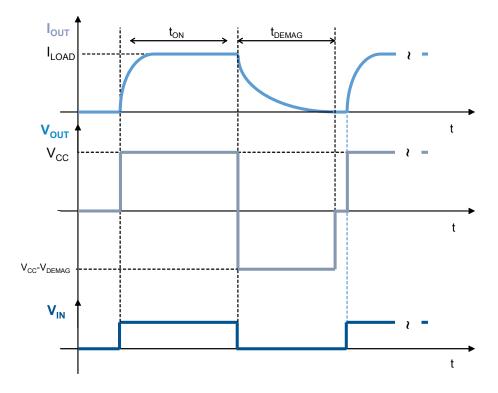
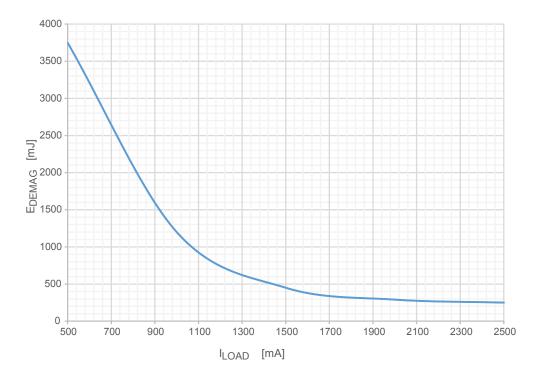



Figure 9. Fast demag waveforms

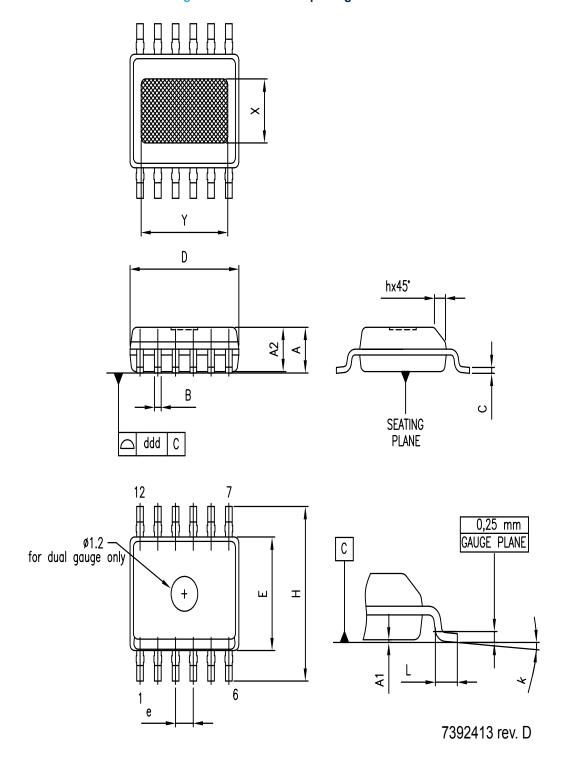
The demagnetization of inductive load causes a huge electrical and thermal stress to the IC. The curve plotted below shows the maximum demagnetization energy that the IC can support in a single demagnetization pulse with V_{CC} = 24 V and T_{AMB} = 125 °C. If higher demagnetization energy is required then an external free-wheeling Schottky diode has to be connected between OUT (cathode) and GND (anode) pins. Note that in this case the fast demagnetization is inhibited.

DS10907 - Rev 10 page 16/26

Figure 10. Typical demagnetization energy (single pulse) at V_{CC} = 24 V and T_{AMB} = 125 °C

DS10907 - Rev 10 page 17/26

8 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS10907 - Rev 10 page 18/26

8.1 PowerSSO12 package information

Figure 11. PowerSSO12 package outline

DS10907 - Rev 10 page 19/26

Table 11. PowerSSO12 package mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	1.250		1.700
A1	0.000		0.100
A2	1.100		1.600
В	0.230		0.410
С	0.190		0.250
D	4.800		5.000
E	3.800		4.000
е		0.800	
Н	5.800		6.200
h	0.250		0.55
L	0.400		1.270
k	0d		8d
X	1.900		2.500
Υ	3.600		4.200
ddd			0.100

Note: Dimension D doesn't include mold flash protrusions or gate burrs. Mold flash protrusions or gate burrs don't exceed 0.15 mm in total both side.

0.800 0.800 1.550 4.400 1.400 7.565

Figure 12. PowerSSO12 recommended footprint

DS10907 - Rev 10

Downloaded from Arrow.com.

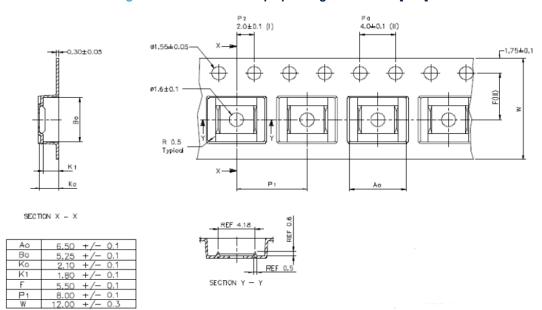
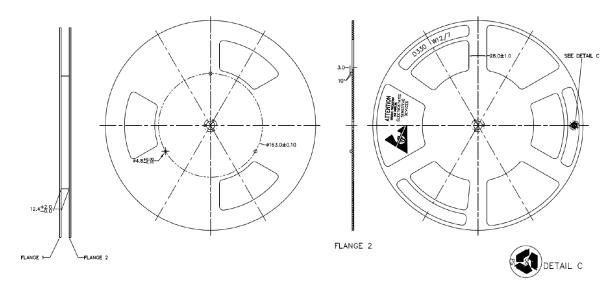



Figure 13. PowerSSO12 tape packing information [mm]

Figure 14. PowerSS012 reel packing information [mm]

DS10907 - Rev 10 page 21/26

NOTES:

1. MATERIAL: POLYSTYRENE (BLACK)

2. ANTISTATIC COATED

3. FLANGE WARPAGE: 3 MM MAXIMUM

4. ALL DIMENSIONS ARE IN MM

5. ESD — SURFAGE RESISTIVITY

10 \$ TO 10" OHMS/SC.

6. GENERAL TOLERANCE: ±0.25 MM

7. TOTAL THICKNESS OF REEL: 18.4 MAX.

8. MOLD NO: TX12-07-A3

Revision history

Table 12. Document revision history

Date	Revision	Changes
19-Mar-2015	1	Initial release.
		Minor text changes throughout the document.
04-Nov-2015	2	Added figure 7 titled " V_{CC} disconnection", figure 10 titled: "Fast demag waveforms" and figure 11 titled "Typical demagnetization energy (single pulse) at V_{CC} = 24 V and T_{AMB} = 125 °C.
11-May-2016	3	Updated tables titled: "Supply", "Switching (V _{CC} = 24 V; 125 °C > T _J > -40 °C, R _{LOAD} = 48 Ω)" and "Protection diagnostic".
11-May-2010		Changed figures titled: " $t_{\text{PD(L-H)}}$ and $t_{\text{PD(H-L)}}$ " and "Current limitation and cutoff".
20-May-2016	4	Document status promoted from preliminary to production data.
08-Mar-2018	5	Updated E _{AS} value in Table 2. Absolute maximum ratings
14-Dec-2018	6	Added reel packaging information in Section 8.1 PowerSSO12 package information
02-Dec-2019	7	Updated value in Table 4. Supply. Text change in Section 2.4 CoD. Change to Figure 14 title.
03-Mar-2021	8	Merged IPS160H and IPS161H datasheets. Updated Section Description and Section Applications target.
29-Mar-2021	9	Updated I _{LGND} max value in Table 4
30-Jul-2021	10	Reviewed the feature list order in front page. Updated thermal data in Table 3 according to Jedec conditions

Contents

1	Bloc	ck diagram	2			
2	Pin	Pin description				
	2.1	IN	3			
	2.2	OUT	3			
	2.3	DIAG	3			
	2.4	CoD	4			
	2.5	GND	4			
	2.6	VCC	4			
3	Abs	olute maximum ratings	5			
4	Elec	etrical characteristics	6			
5	Out	put logic	9			
		ection and diagnostic	10			
	6.1	Undervoltage lock-out	10			
	6.2	Overtemperature	10			
	6.3	Cut-off	10			
	6.4	Open load in off-state	11			
	6.5	VCC disconnection protection	12			
	6.6	GND disconnection protection	13			
7	Acti	ve clamp	15			
8	Pac	kage information	18			
	8.1	PowerSSO12 package information	19			
Dον	<i>i</i> icion	history	22			

List of tables

Table 1.	Pin configuration	. 3
Table 2.	Absolute maximum ratings	. 5
Table 3.	Thermal data	. 5
Table 4.	Supply	. 6
Table 5.	Output stage	. 6
Table 6.		
Table 7.	Logic inputs	
Table 8.	Protection and diagnostic	. 7
	Output stage truth table	
	Minimum cut-off delay for T _{AMB} less than -20 °C	
Table 11.	PowerSSO12 package mechanical data	20
	Document revision history	

List of figures

Figure 1.	Block diagram	. 2
Figure 2.	Pin connection (top view)	. 3
Figure 3.	Timing in normal operation	. 7
Figure 4.	Current limitation and cut-off	10
Figure 5.	Open load off-state	. 11
Figure 6.	VCC disconnection	13
Figure 7.	GND disconnection	14
Figure 8.	Active clamp equivalent principle schematic	15
Figure 9.	Fast demag waveforms	16
Figure 10.	Typical demagnetization energy (single pulse) at V _{CC} = 24 V and T _{AMB} = 125 °C	17
Figure 11.	PowerSSO12 package outline	19
Figure 12.	PowerSSO12 recommended footprint	20
Figure 13.	PowerSSO12 tape packing information [mm]	21
Figure 14.	PowerSS012 reel packing information [mm]	21

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS10907 - Rev 10 page 26/26