

STP11NM50N

N-channel 500 V, 0.40 Ω typ., 8.5 A MDmesh[™] II Power MOSFET in a TO-220 package

Figure 1. Internal schematic diagram

Datasheet - obsolete product

Features

Order code	$V_{DS} @ T_J max$	R _{DS(on)} max	I _D
STP11NM50N	550 V	0.47 Ω	8.5 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using the second generation of MDmesh[™] technology. This revolutionary Power MOSFET associates a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

Table 1. Device summary

Order code	Marking	Package	Packaging
STP11NM50N	11NM50N	TO-220	Tube

This is information on a discontinued product.

Contents

1	Electrical ratings
2	Electrical characteristics4
	2.1 Electrical characteristics (curves) 6
3	Test circuits
4	Electrical ratings 3 Electrical characteristics 4 2.1 Electrical characteristics (curves) Test circuits 8 Package information 9 Revision history 12
5	Revision history
	Pro
	lete
	0501
	Ob
	4(5)
	dulor
	Proc
	ete
~~~~ ⁰	
0v	



1

# Electrical ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	500	V
$V_{GS}$	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at $T_C = 25 \text{ °C}$	8.5	А
۱ _D	Drain current (continuous) at T _C = 100 °C	6	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	34	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	70	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Тj	Max. operating junction temperature	150	°C

#### Table 2. Absolute maximum ratings

1. Pulse width limited by safe operating area .

2.  $I_{SD} \leq 8.5 \text{ A}, \text{ di/dt} \leq 400 \text{ A/}\mu\text{s}, \text{V}_{DSpeak} \leq \text{V}_{(BR)DSS}, \text{V}_{DD} = 80\% \text{ V}_{(BR)DSS}$ 

### Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1.79	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

### Table 4. Avalanche characteristics

	Symbol	Parameter	Value	Unit
	I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by $T_{j max}$ )	3	A
cole	E _{AS}	Single pulse avalanche energy (starting T _J =25 °C, I _D =I _{AR} , V _{DD} =50 V)	150	mJ
0,02				



#### 2 **Electrical characteristics**

(T_{CASE} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0$	500			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 500 V V _{DS} = 500 V, T _C = 125 °C			1 100	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V		, C	±100	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 4.5 A	0	0.40	0.47	Ω

Table 5. On/off states

Table 6. Dynamic

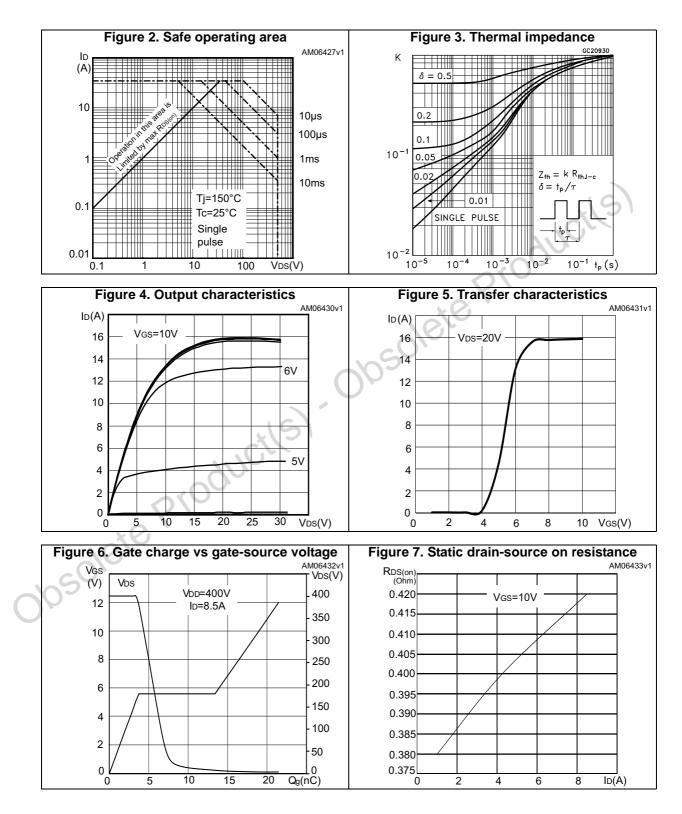
	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	C _{iss}	Input capacitance	0	-	547	-	pF
	C _{oss}	Output capacitance	V _{DS} = 50 V, f = 1 MHz,	-	42	-	pF
	C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	2	-	pF
	C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	$V_{GS} = 0, V_{DS} = 0 \text{ to } 400 \text{ V}$	-	210	-	pF
	Qg	Total gate charge	V _{DD} = 400 V, I _D = 8.5 A, V _{GS} = 10 V (see <i>Figure 14</i> )	-	19	-	nC
	Q _{gs}	Gate-source charge		-	3.7	-	nC
sole	Q _{gd}	Gate-drain charge		-	10	-	nC
	R _G	Gate input resistance	f=1 MHz, I _D =0	-	5.8	-	Ω
JA.	1. C _{oss eq.} is increases	defined as a constant equivalent from 0 to 80% V _{DS}	capacitance giving the same chargi	ng time	as C _{oss}	when V _I	DS



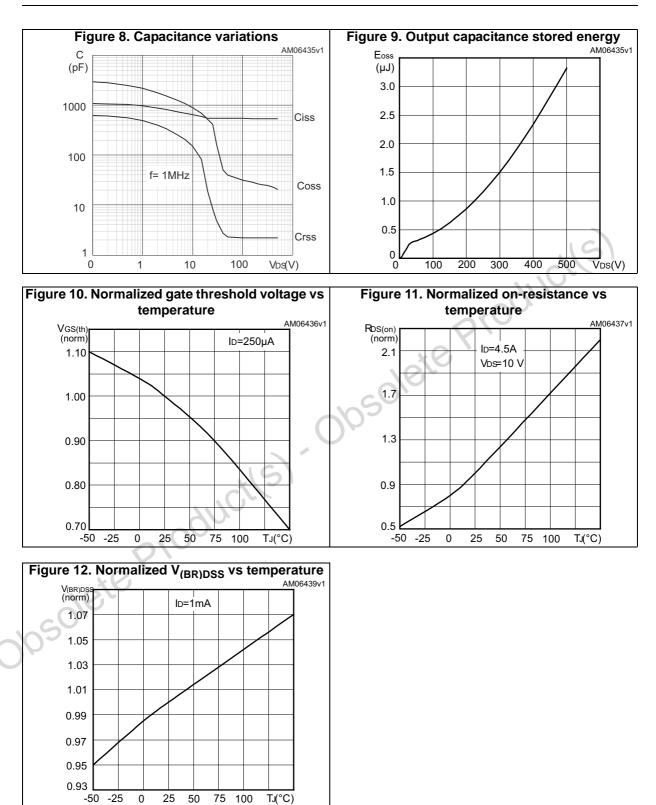
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)}	Turn-on delay time		-	8	-	ns		
t _r	Rise time	$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 4.25 \text{ A}$ R _G = 4.7 $\Omega$ V _{GS} = 10 V	-	10	-	ns		
t _{d(off)}	Turn-off delay time	(see <i>Figure 15</i> and <i>Figure 18</i> )	-	33	-	ns		
t _f	Fall time	rigure roj	-	10	-	ns		

Table 7. Switching times

#### Table 8. Source drain diode

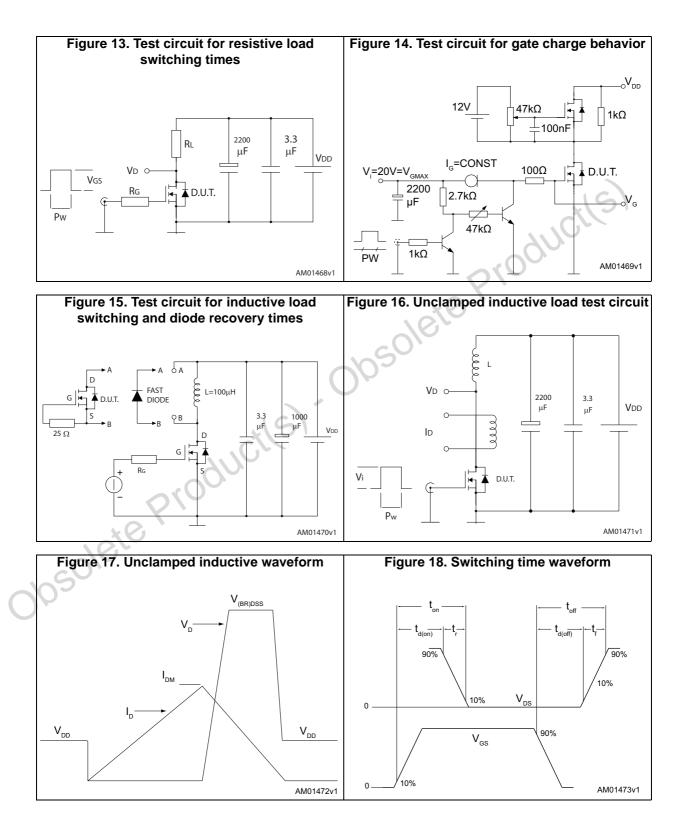

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current			.C	8.5	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		2	$\mathcal{N}$	34	А
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 8.5 A, V _{GS} = 0	0		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 8.5 A, di/dt = 100	-	230		ns
Q _{rr}	Reverse recovery charge	A/µs	-	2.1		μC
I _{RRM}	Reverse recovery current	$V_{DD} = 60 V$ (see <i>Figure 15</i> )	-	18		А
t _{rr}	Reverse recovery time	I _{SD} = 8.5 A, di/dt = 100	-	275		ns
Q _{rr}	Reverse recovery charge	Α/μs V _{DD} = 60 V, T _i = 150 °C	-	2.5		μC
I _{RRM}	Reverse recovery current	(see <i>Figure 15</i> )	-	18		А

1. Pulse width limited by safe operating area.


2. Pulsed: pulse duration = 300 µs, duty cycle 1.5%



### 2.1 Electrical characteristics (curves)







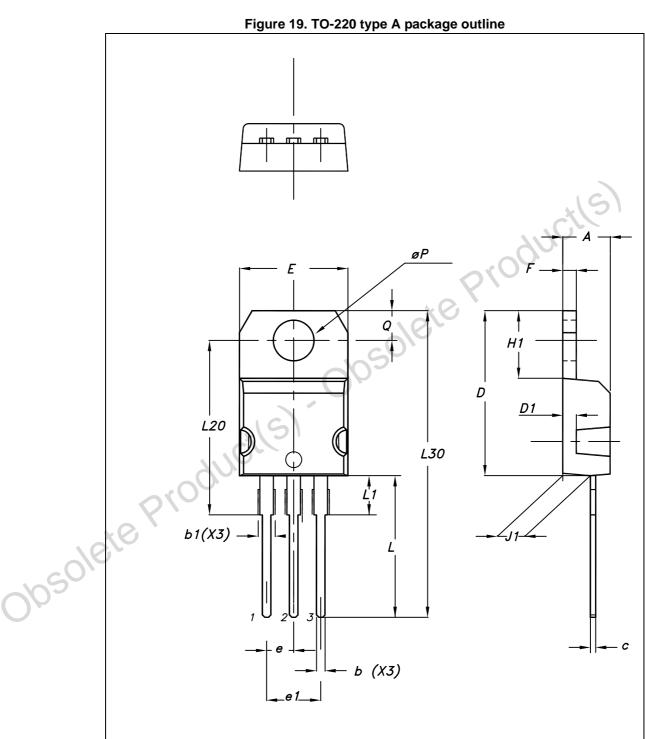



## 3 Test circuits



5

## 4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.



DocID17156 Rev 4

obsolete Product(s). Obsolete Product(s)

## 4.1 TO-220 type A package information



0015988_typeA_Rev_T

10/13



Dim	mm		
Dim.	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
e	2.40		2.70
e1	4.95		5.15
F	1.23	<b>O</b>	1.32
H1	6.20	× 0,	6.60
J1	2.40	101	2.72
L	13	cOV	14
L1	3.50	03	3.93
L20	Ċ	16.40	
L30	16	28.90	
øP	3.75		3.85
Q	2.65		2.95
solete Pro			

Table 9. TO-220 type A mechanical data



## 5 Revision history

	Date	Revision	Changes
			-
	22-Feb-2010	1	First release.
	26-Apr-2010	2	Updated Table 8: Source drain diode.
	24-Nov-2010	3	New value inserted in Table 6: Dynamic.
	24-Nov-2015	4	The part numbers STD11NM50N and STF11NM50N have been moved to separate datasheets
005018	steprod	uctls	The part numbers STD11NM50N and STF11NM50N have been moved to separate datasheets

Table 10. Document revision history



#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

obsolete Product(s)

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

