

Datasheet

N-channel 300 V, 72 m Ω typ., 23 A MDmesh M8 Power MOSFET in a PowerFLAT 5x6 package

PowerFLAT™ 5x6

Features

Order code	V _{DS}	R _{DS(on)} max.	Ι _D	
STL26N30M8	300 V	89 mΩ	23 A	

- Very low R_{DS(on)} x area
- Extremely low gate charge and input capacitance
- Low gate resistance (R_G)
- 100% avalanche tested
- High dv/dt ruggedness

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET belongs to the MDmeshTM M8 series, based on the new ST trench super-junction technology. The resulting Power MOSFET exhibits very low $R_{DS(on)}$ x area, low gate charge (Q_g) and low gate resistance (R_G) , making it suitable for the most demanding high efficiency converters.

Product status			
STL26N30M8			
Device summary			
Order code	STL26N30M8		
Marking	26N30M8		
Package	PawerFLAT™ 5x6		
Packing	Tape and reel		

1 Electrical ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	300	V
V_{GS}	Gate-source voltage	±25	V
I _D ⁽¹⁾	Drain current (continuous) at T_c = 25 °C	23	А
I _D ⁽¹⁾	Drain current (continuous) at T _c = 100 °C	14.7	А
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	69	А
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 25 °C	4.4	А
I _D ⁽³⁾	Drain Current (continuous) at T _{pcb} = 100 °C	2.8	А
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	17.6	А
P _{TOT} ⁽¹⁾	Total dissipation at $T_C = 25 \ ^{\circ}C$		W
P _{TOT} ⁽³⁾	Total dissipation at T _{pcb} = 25 °C	4	W
dv/dt (4)	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁵⁾	MOSFET dv/dt ruggedness		V/ns
T _{stg}	Storage temperature range	55 to 150	°C
TJ	Operating junction temperature range	-55 to 150	C

Table 1. Absolute maximum ratings

1. This value is rated according to R_{thj-c} .

2. Pulse width is limited by safe operating area.

3. This value is rated accordinf to Rthj-pcb.

4. $I_{SD} \leq 23 \text{ A}, \text{ di/dt} \leq 400 \text{ A/}\mu\text{s}; V_{DS(peak)} < V_{(BR)DSS}, V_{DD} = 240 \text{ V}.$

5. $V_{DS} \leq 240 V.$

Table 2. Thermal data

Symbol	Parameter		Unit
R _{THJ-C}	Thermal resistance junction-case	1.1	°C/W
R _{THJ-pcb} ⁽¹⁾	Thermal resistance junction-pcb	31.3	°C/W

1. When mounted on FR-4 board of 1 inch², 2 oz Cu, t < 10 s.

Table 3. Avalanche data

Symbol	Parameter		Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{jmax})$	5	А
E _{AS}	Single pulse avalanche energy (starting T _j = 25 °C, $I_D = I_{AR}$; $V_{DD} = 50 V$)	580	mJ

2 Electrical characteristics

(T_C = 25 °C)

57

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	300			V
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 300 V			1	μA
I _{GSS}	Gate-source leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			±100	nA
V _{GS(TH)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 11.5 A		72	89	mΩ

Table 4. On/off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ISS}	Input capacitance	V 0.V.V 400.V		1430		pF
C _{OSS}	Output capacitance	V _{GS} = 0 V, V _{DS} = 100 V, f = 1 MHz		78		pF
C _{RSS}	Reverse transfer capacitance			10		pF
Co(tr) ⁽¹⁾	Equivalent capacitance time related	$V_{GS} = 0 V. V_{DS} = 0 \text{ to } 240 V$		167		pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	VGS - 0 V, VDS - 0 10 240 V		83		pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain		1.1		Ω
Qg	Total gate charge	V _{DS} = 240 V, I _D = 11.5 A,		30.8		nC
Q _{gs}	Gate-source charge	V_{GS} = 0 to 10 V (see Figure 16. Test		7.8		nC
Q _{gd}	Gate-drain charge	circuit for gate charge behavior)		14.8		nC

1. Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

 Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _d (v)	Voltage delay time	V_{DD} = 240 V, I _D = 23 A, R _G = 4.7 Ω ,		36		ns
t _r (v)	Voltage rise time	V _{GS} = 10 V(see Figure 17. Test		11		ns
t _f (i)	Current fall time	circuit for inductive load switching and diode recovery times and		36		ns
t _c (off)	Crossing time	Figure 20. Switching time waveform)		38		ns

Table 6. Inductive load switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current				23	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				69	А
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 23 A			1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 23 A, di/dt = 100 A/μs		201		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V (see Figure 17. Test		2.06		μC
I _{RRM}	Reverse recovery current	circuit for inductive load switching and diode recovery times)		20.5		А
t _{rr}	Reverse recovery time	I _{SD} = 23 A, di/dt = 100 A/μs		256		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V, T _j = 150°C		3.1		μC
I _{RRM}	Reverse recovery current	(see Figure 17. Test circuit for inductive load switching and diode recovery times)		24		A

Table 7. Source drain diode

1. Pulse width limited by safe operating area.

2. Pulsed: pulse duration = 300 µs, duty cycle 1.5%.

2.1 Electrical characteristics curves Figure 3. Safe operating area

GIPD070220180952SOA

10²

t_p = 10µs

t_p = 100µs

t_p = 1ms

t_p = 10ms

 $\overline{V}_{DS}(V)$

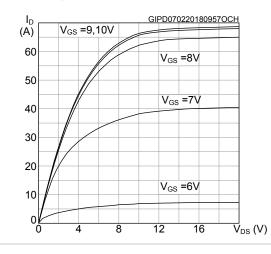
Ι_D (A)

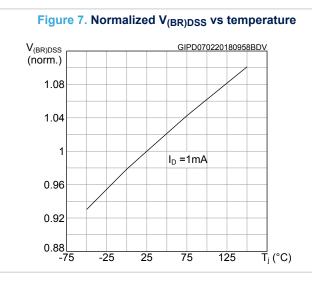
101

100

10-0

10-1


10 -1



10 1

Tj ≤150 °C

Tc = 25 °C single pulse

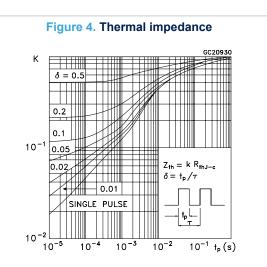


Figure 6. Transfer characteristics

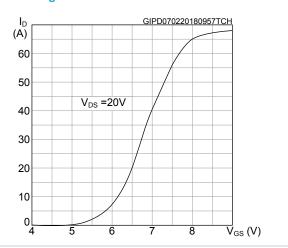
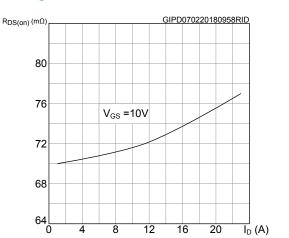
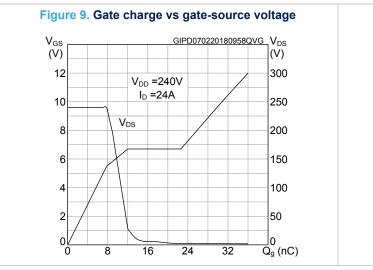
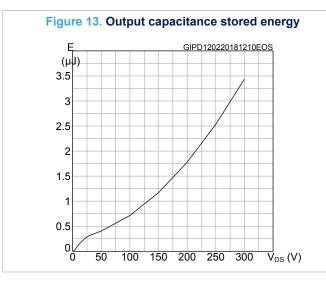





Figure 8. Static drain-source on-resistance

Figure 11. Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPD070220180959VTH 1.1 1 0.9 I_D =250μA 0.8 0.7 0.6 T_i (°C) -25 25 75 125

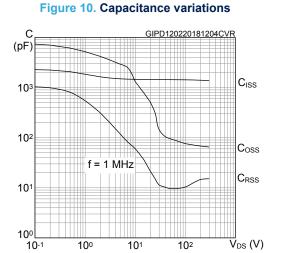
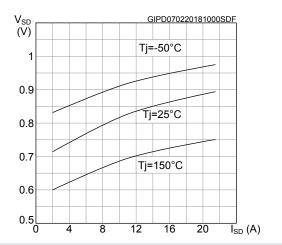
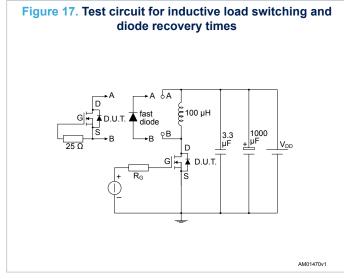
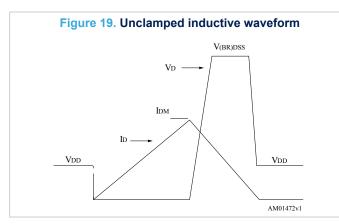
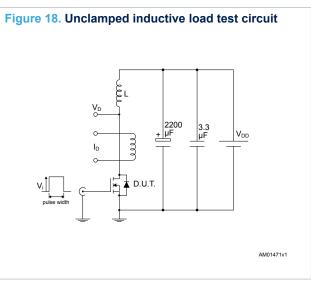



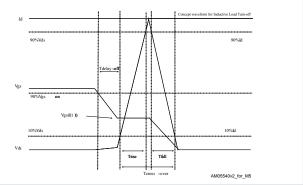

Figure 12. Normalized on-resistance vs temperature

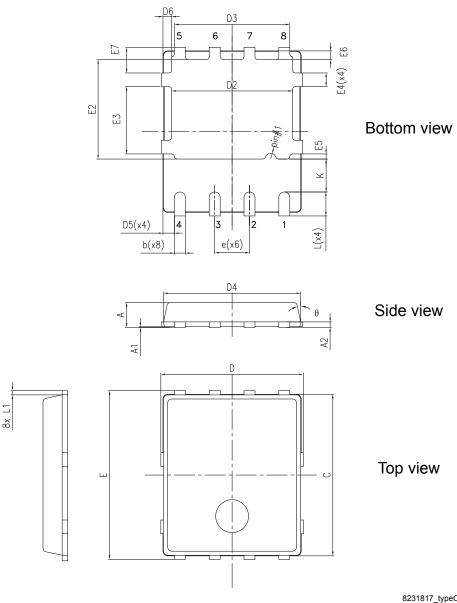



Figure 14. Source-drain diode forward characteristics



3 Test circuits

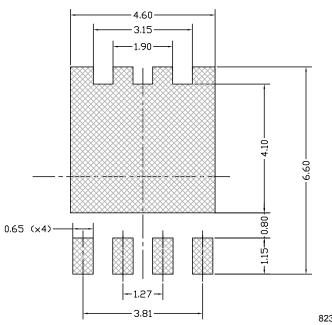




4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 PowerFLAT[™] 5x6 type C package information


Figure 21. PowerFLAT™ 5x6 type C package outline

8231817_typeC_A0ER_Rev15

Dim.		mm	
	Min.	Тур.	Max.
A	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.20
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.20
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
е		1.27	
E	5.95	6.15	6.35
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.75	0.90	1.05
К	1.05		1.35
L	0.725		1.025
L1	0.05	0.15	0.25
θ	0°		12°

Table 8. PowerFLAT™ 5x6 type C package mechanical data

Figure 22. PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

8231817_FOOTPRINT_simp_Rev_15

 \oplus

F(III)

REF.RO.50

 \oplus

Po 4.0±0.1 (∥)

 \oplus

 \bigoplus_{x}

PowerFLAT[™] 5x6 packing information 4.2

Do ø1.55±0.05-

D1 ø1.5 M<u>IN.</u>

Figure 23. PowerFLAT™ 5x6 tape (dimensions are in mm)

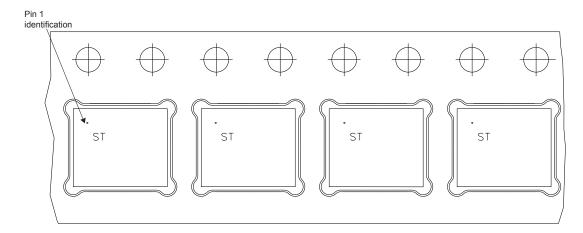
 \oplus

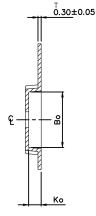
P2 2.0±0.1 (I)

 \oplus

 \ominus

P1 Ao (I) Measured from centreline of sprocket hole to centreline of pocket. Base and bulk quantity 3000 pcs All dimensions are in millimeters (II) Cumulative tolerance of 10 sprocket holes is ±0.20.

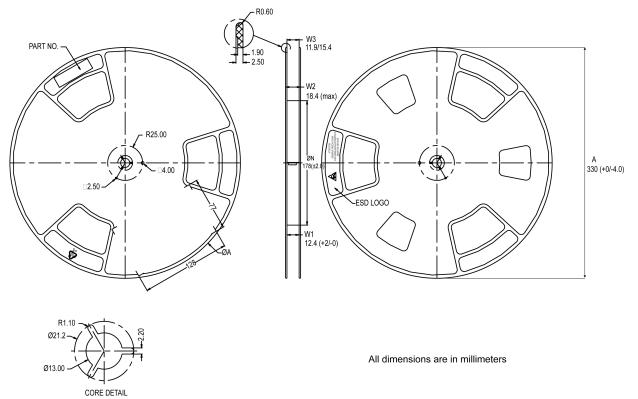

(III) Measured from centreline of sprocket hole to centreline of pocket


8234350_Tape_rev_C

E1 -1.75±0.1

≥

Figure 24. PowerFLAT™ 5x6 package orientation in carrier tape



SECTION Y-Y

Ao	6.30 +/- 0.1
Bo	5.30 +/- 0.1
Ko	1.20 +/- 0.1
F	5.50 +/- 0.1
P1	8.00 +/- 0.1
W	12.00 +/- 0.3

Figure 25. PowerFLAT™ 5x6 reel

8234350_Reel_rev_C

Revision history

Table 9. Document revision history

Date	Version	Changes
07-Feb-2018	1	Initial release.

Contents

1	Electrical ratings		.2
2	Electrical characteristics		.3
	2.1	Electrical characteristics curves	. 5
3	Test circuits		7
4	Package information		.8
	4.1	PowerFLAT™ 5x6 type C package information	. 8
	4.2	PowerFLAT™ 5x6 packing information	11
Revi	Revision history		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved