MOSFET – Power, Single, P-Channel, Enhancement Mode, SOIC-8

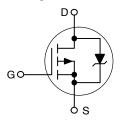
-5.4 A, -20 V

Features

- High Density Power MOSFET with Ultra Low R_{DS(on)} Providing Higher Efficiency
- Miniature SOIC-8 Surface Mount Package Saves Board Space
- Diode Exhibits High Speed with Soft Recovery
- I_{DSS} Specified at Elevated Temperature
- Drain-to-Source Avalanche Energy Specified
- Mounting Information for the SOIC-8 Package is Provided
- These Devices are Pb-Free and are RoHS Compliant
- NVMS Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

Applications

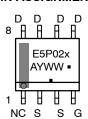
• Power Management in Portable and Battery-Powered Products, i.e.: Computers, Printers, PCMCIA Cards, Cellular & Cordless Telephones



ON Semiconductor®

http://onsemi.com

V _{DSS} R _{DS(ON)} TYP		I _D MAX	
-20 V	26 m Ω @ –4.5 V	-5.4 A	


Single P-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

Α

E5P02 = Specific Device Code

c = Blank or S

= Assembly Location

′ = Year

V = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

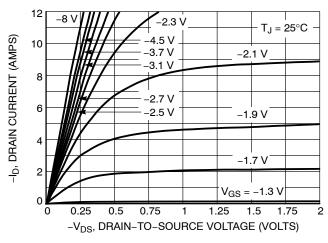
ORDERING INFORMATION

Device	Package	Shipping [†]
NTMS5P02R2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NVMS5P02R2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

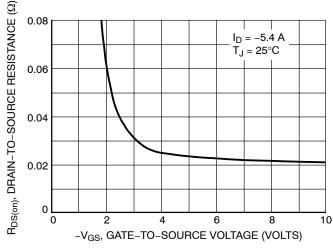
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	-20	V
Drain-to-Gate Voltage (R _{GS} = 1.0 mΩ)	V_{DGR}	-20	V
Gate-to-Source Voltage - Continuous	V _{GS}	±10	V
Thermal Resistance – Junction–to–Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ 25°C Continuous Drain Current @ 70°C Maximum Operating Power Dissipation Maximum Operating Drain Current Pulsed Drain Current (Note 4)	R _{θJA} PD ID PD ID ID	50 2.5 -7.05 -5.62 1.2 -4.85 -28	°C/W W A A W A
Thermal Resistance – Junction–to–Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ 25°C Continuous Drain Current @ 70°C Maximum Operating Power Dissipation Maximum Operating Drain Current Pulsed Drain Current (Note 4)	R _{θJA} PD ID PD ID ID	85 1.47 -5.40 -4.30 0.7 -3.72 -20	°C/W W A A W A
Thermal Resistance – Junction-to-Ambient (Note 3) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ 25°C Continuous Drain Current @ 70°C Maximum Operating Power Dissipation Maximum Operating Drain Current Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _D I _D I _D I _D I _D	159 0.79 -3.95 -3.15 0.38 -2.75 -12	°C/W W A A W A
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
Single Pulse Drain–to–Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = -20 Vdc, V_{GS} = -5.0 Vdc, Peak I_L = -8.5 Apk, L = 10 mH, R_G = 25 Ω)	E _{AS}	360	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T _L	260	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), t ≤ 10 seconds.
 Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), t = steady state.
 Minimum FR-4 or G-10 PCB, t = Steady State.
 Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.

ELECTRICAL CHARACTERISTICS ($T_C = 25$ °C unless otherwise noted) (Note 5)

Ch	aracteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Volta ($V_{GS} = 0$ Vdc, $I_D = -250$ μ Adc) Temperature Coefficient (Positive)	age	V _{(BR)DSS}	-20 -	_ _15	- -	Vdc mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = -16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T (V_{DS} = -16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T (V_{DS} = -20 \text{ Vdc}, V_{GS} = -20 \text{ Vdc}, T (V_{DS} = -20 \text{ Vdc}, V_{GS} = -20 \text{ Vdc}, T (V_{DS} = -20 \text{ Vdc}, V_{GS} = -20 \text{ Vdc}, T (V_{DS} = -20 \text{ Vdc}, V_{GS} = -20 \text{ Vdc}, T (V_{DS} = -20 \text{ Vdc}, V_{GS} = -20 \text{ Vdc}, T (V_{DS} = -20 \text{ Vdc}, V_{GS} = -20 \text{ Vdc}, T (V_{DS} = -20 \text{ Vdc}, V_{GS} = -20 \text{ Vdc}, T (V_{DS} = -20 \text{ Vdc}, V_{GS} = -20 \text{ Vdc}, T (V_{DS} = -20 \text{ Vdc}, V_{GS} = -20 \text{ Vdc}, T$	_J = 125°C)	I _{DSS}	- - -	- - -0.2	-1.0 -10 -	μAdc
Gate-Body Leakage Current (V _{GS} = -10 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	-	-100	nAdc
Gate-Body Leakage Current (V _{GS} = +10 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	_	_	100	nAdc
ON CHARACTERISTICS			•	•	•	*
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = -250 \mu Adc)$ Temperature Coefficient (Negative)	V _{GS(th)}	-0.65 -	-0.9 2.9	-1.25 -	Vdc mV/°C
Static Drain-to-Source On-State $(V_{GS} = -4.5 \text{ Vdc}, I_D = -5.4 \text{ Adc})$ $(V_{GS} = -2.5 \text{ Vdc}, I_D = -2.7 \text{ Adc})$		R _{DS(on)}	-	0.026 0.037	0.033 0.048	Ω
Forward Transconductance (V _{DS} =	= -9.0 Vdc, I _D = -5.4 Adc)	9FS	-	15	-	Mhos
YNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	1375	1900	pF
Output Capacitance	$(V_{DS} = -16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, $ f = 1.0 MHz)	C _{oss}	-	510	900	
Reverse Transfer Capacitance		C _{rss}	_	200	380	
WITCHING CHARACTERISTICS	(Notes 6 & 7)					
Turn-On Delay Time		t _{d(on)}	-	18	35	ns
Rise Time	$(V_{DD} = -16 \text{ Vdc}, I_D = -1.0 \text{ Adc},$	t _r	-	25	50	
Turn-Off Delay Time	$V_{GS} = -4.5 \text{ Vdc},$ $R_G = 6.0 \Omega)$	t _{d(off)}	-	70	125	
Fall Time		t _f	_	55	100	
Turn-On Delay Time		t _{d(on)}	_	22	-	ns
Rise Time	$(V_{DD} = -16 \text{ Vdc}, I_D = -5.4 \text{ Adc},$	t _r	_	70	-]
Turn-Off Delay Time	$V_{GS} = -4.5 \text{ Vdc},$ $R_G = 6.0 \Omega)$	t _{d(off)}	ı	65	-	
Fall Time		t _f	-	90	-	
Total Gate Charge	(V _{DS} = -16 Vdc,	Q _{tot}	-	20	35	nC
Gate-Source Charge	$V_{GS} = -10 \text{ Vdc},$ $V_{GS} = -4.5 \text{ Vdc},$	Q _{gs}	-	4.0	-	
Gate-Drain Charge	$I_D = -5.4 \text{ Adc}$	Q _{gd}	-	7.0	-	
SODY-DRAIN DIODE RATINGS (N	lote 6)			•	I.	1
Diode Forward On-Voltage	$(I_S = -5.4 \text{ Adc}, V_{GS} = 0 \text{ V})$ $(I_S = -5.4 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V_{SD}	-	-0.95 -0.72	-1.25 -	Vdc
Reverse Recovery Time		t _{rr}	ı	40	75	ns
	$(I_S = -5.4 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$ $dI_S/dt = 100 \text{ A}/\mu\text{s})$	ta	-	20	-	
	J 4,77	t _b	-	20	-	
Reverse Recovery Stored Charge		Q _{RR}	-	0.03	-	μС


- 5. Handling precautions to protect against electrostatic discharge is mandatory. 6. Indicates Pulse Test: Pulse Width = 300 μ s max, Duty Cycle = 2%. 7. Switching characteristics are independent of operating junction temperature.

 $V_{DS} \ge -10 \text{ V}$ -I_D, DRAIN CURRENT (AMPS) 8 6 100°C 25°C $T_J = -55^{\circ}C$ 0 -V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

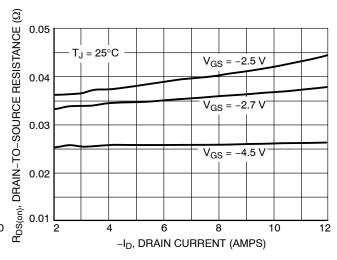
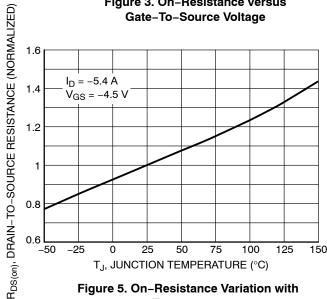



Figure 3. On-Resistance versus Gate-To-Source Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

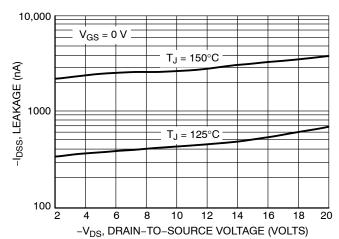
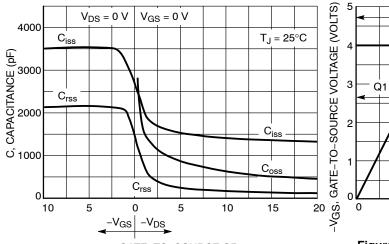



Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-To-Source Leakage Current versus Voltage

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

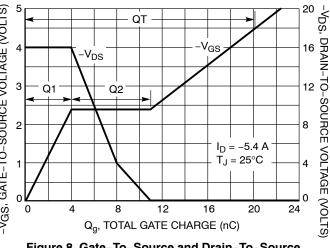
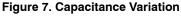



Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

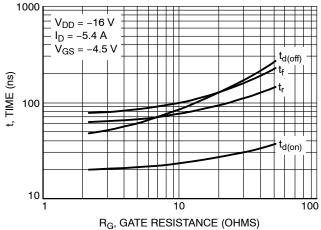


Figure 9. Resistive Switching Time Variation versus Gate Resistance

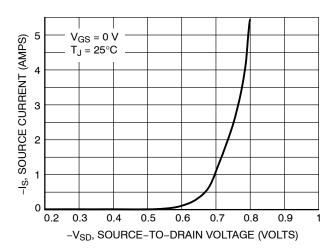


Figure 10. Diode Forward Voltage versus Current

DRAIN-TO-SOURCE DIODE CHARACTERISTICS

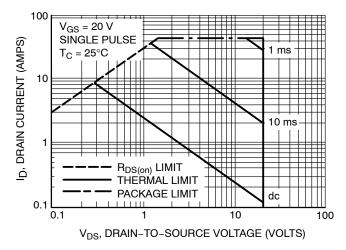


Figure 11. Maximum Rated Forward Biased Safe Operating Area

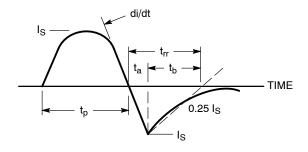
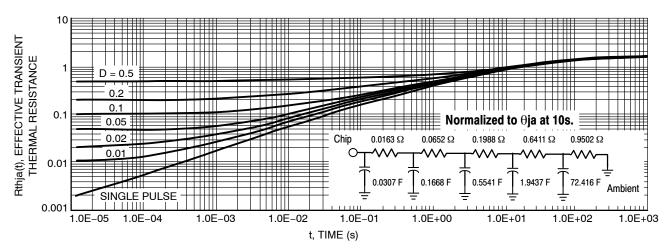
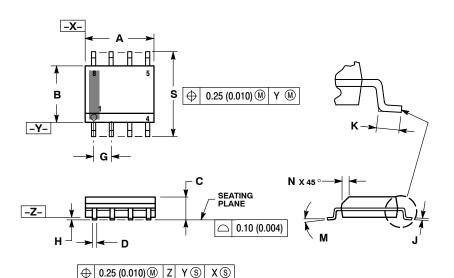


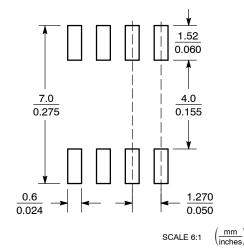
Figure 12. Diode Reverse Recovery Waveform

TYPICAL ELECTRICAL CHARACTERISTICS

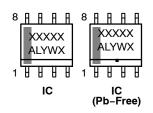



Figure 13. Thermal Response

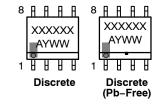
SOIC-8 NB CASE 751-07 **ISSUE AK**


DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INCHES	
DIM	MIN MAX		MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	3.80 4.00		0.157
С	1.35 1.75		0.053	0.069
D	0.33 0.51		0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10 0.25		0.004	0.010
7	0.19 0.25		0.007	0.010
K	0.40 1.27		0.016	0.050
M	0 ° 8 °		0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80 6.20		0.228	0.244

SOLDERING FOOTPRINT*


^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α = Year ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	7. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE. #2
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

DOCUMENT NUMBER:	Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		COPY" in red.
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative