onsemi

TinyLogic UHS Triple Buffer with Schmitt Trigger Inputs

NC7NZ17

Description

The NC7NZ17 is a triple buffer with Schmitt trigger inputs from **onsemi**'s Ultra High Speed Series of TinyLogic in the US8 package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65 V to 5.5 V V_{CC} range. The inputs and outputs are high impedance when V_{CC} is 0 V. Inputs tolerate voltages up to 5.5 V independent of V_{CC} operating voltage. Schmitt trigger inputs typically achieve 1 V hysteresis between the positive going and negative going input threshold voltage at 5 V V_{CC} .

Features

- Space Saving US8 Surface Mount Package
- MicroPakTM Pb–Free Leadless Package
- Ultra High Speed: tPD 3.6 ns Typ into 50 pF at 5 V VCC
- High Output Drive: ±24 mA at 3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Power Down High Impedance Inputs / Outputs
- Overvoltage Tolerant Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry Implemented
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

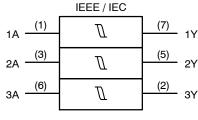
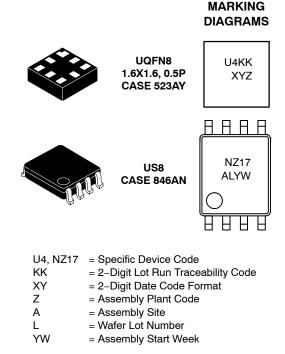



Figure 1. Logic Symbol

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

Connection Diagrams

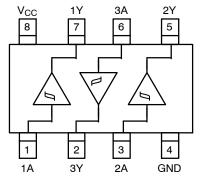



Figure 2. Connection Diagram (Top View)

AAA represents Product Code Top Mark - see ordering code

NOTE: Orientation of Top Mark determines Pin One location. Read the Top Product Code Mark left to right, Pin One is the lower left pin (see diagram).

Figure 3. Pin One Orientation Diagram

PIN DESCRIPTIONS

Name	Description
A ₁ , A ₂ , A ₃	Data Inputs
Y ₁ , Y ₂ , Y ₃	Output

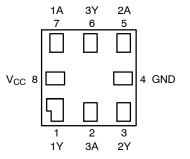


Figure 4. Pad Assignments for MicroPak (Top Thru View)

FUNCTION	TABLE (Y = A)

Input	Output
А	Y
L	L
Н	Н

H = HIGH Logic Level L = LOW Logic Level

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Parameter			Unit
V _{CC}	Supply Voltage	-0.5	6.5	V	
V _{IN}	DC Input Voltage		-0.5	6.5	V
V _{OUT}	DC Output Voltage	-0.5	6.5	V	
Ι _{ΙΚ}	DC Input Diode Current V _{IN} < 0 V		-	-50	mA
I _{OK}	DC Output Diode Current V _{OUT} < 0 V		-	-50	mA
I _{OUT}	DC Output Current		-	±50	mA
I_{CC} / I_{GND}	DC V _{CC} / GND Current		-	±100	mA
T _{STG}	Storage Temperature		-65	+150	°C
TJ	Junction Temperature under Bias	-	+150	°C	
ΤL	Junction Lead Temperature (Soldering, 10 Seco	-	+260	°C	
PD	Power Dissipation in Still Air	US8 MicroPak-8		500 539	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Мах	Unit
V _{CC}	Supply Voltage Operating	1.65	5.5	V
	Supply Voltage Data Retention	1.5	5.5	1
V _{IN}	Input Voltage	0	5.5	V
V _{OUT}	Output Voltage	0	V _{CC}	V
T _A	Operating Temperature	-40	+85	°C
θ_{JA}	Thermal Resistance US8 MicroPak-8		250 232	°C/W

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. Unused inputs must be held HIGH or LOW. They may not float.

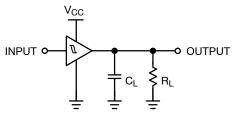
NC7NZ17

DC ELECTICAL CHARACTERISTICS

					T	A = +25°	С	T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	((Conditions	Min	Тур	Max	Min	Max	Unit
VP	Positive Threshold	1.65			-	1.07	1.5	-	1.5	V
	Voltage	2.3			-	1.38	1.8	-	1.8	
		3.0			-	1.74	2.2	-	2.2	
		4.5			-	2.43	3.1	-	3.1	
		5.5			-	2.88	3.6	-	3.6	
V_{N}	Negative Threshold	1.65			0.25	0.56	-	0.25	-	V
	Voltage	2.3	1		0.40	0.75	-	0.40	-	
		3.0	1		0.6	0.98	-	0.6	-	
		4.5	1		1.0	1.42	-	1.0	-	
		5.5	1		1.2	1.68	-	1.2	-	
V _H	Hysteresis Voltage	1.65			0.15	0.51	1.0	0.15	1.0	V
		2.3	1		0.25	0.62	1.1	0.25	1.1	
		3.0			0.4	0.76	1.2	0.4	1.2	
		4.5			0.6	1.01	1.5	0.6	1.5	
	5.5			0.7	1.20	1.7	0.7	1.7		
V _{OH} HIGH Level Output	1.65	$V_{IN} = V_{IH}$	I _{OH} = -100 μA	1.55	1.65	-	1.55	-	V	
	Voltage	2.3			2.2	2.3	-	2.2	-	
	3.0			2.9	3.0	-	2.9	-		
		4.5			4.4	4.5	-	4.4	-	
		1.65		I _{OH} = -4 mA	1.29	1.52	-	1.29	-	
		2.3		I _{OH} = -8 mA	1.9	2.14	-	1.9	-	
		3.0		I _{OH} = -16 mA	2.4	2.75	_	2.4	-	
		3.0		I _{OH} = -24 mA	2.3	2.62	_	2.3	-	
		4.5	1	I _{OH} = -32 mA	3.8	4.13	-	3.8	-	
V _{OL}	LOW Level Output	1.65	$V_{IN} = V_{IL}$	I _{OL} = 100 μA	-	0.0	0.1	-	0.1	V
	Voltage	2.3	1		-	0.0	0.1	-	0.1	
		3.0	1		-	0.0	0.1	-	0.1	
		4.5	1		-	0.0	0.1	-	0.1	
		1.65	1	I _{OL} = 4 mA	-	0.08	0.24	-	0.24	
		2.3	1	I _{OL} = 8 mA	-	0.10	0.3	-	0.3	
		3.0	1	I _{OL} = 16 mA	-	0.16	0.4	-	0.4	
		3.0	1	I _{OL} = 24 mA	_	0.24	0.55	-	0.55	1
		4.5	1	I _{OL} = 32 mA	-	0.25	0.55	-	0.55	1
I _{IN}	Input Leakage Current	1.65 to 5.5		V _{IN} = 5.5 V, GND	-	-	±0.1	-	±1.0	μA
I _{OFF}	Power Off Leakage Current	0.0		V_{IN} or V_{OUT} = 5.5 V	_	_	1	_	10	μA
I _{CC}	Quiescent Supply Current	1.65 to 5.5		V _{IN} = 5.5 V, GND	-	_	1.0	_	10	μA

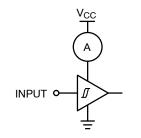
NC7NZ17

AC ELECTRICAL CHARACTERISTICS


				$T_A = +25^{\circ}C$ $T_A = -40 \text{ to } +85^{\circ}C$			to +85°C		
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
	Propagation Delay	1.8 ±0.15	$C_{L} = 15 \text{ pF},$	-	6.9	11.9	-	13.1	ns
	(Figure 5, 7)	2.5 ±0.2	· R _L = 1 MΩ,	-	4.8	8.2	-	9.0	
		3.3 ±0.3		-	3.7	5.6	-	6.2	
		5.0 ±0.5		-	3.0	4.7	-	5.2	
		3.3 ±0.3	$C_{L} = 50 \text{ pF},$	-	4.3	6.6	-	7.3	
		5.0 ±0.5	R _L = 500 Ω,	-	3.6	5.6	-	6.2	
C _{IN}	Input Capacitance	0		-	2.5	-	-	-	pF
C _{PD} Power Dissipation Capacitance (Figure 6)		3.3	(Note 2)	-	9	-	-	-	pF
	5.0		-	11	-	-	-		

 C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 6). C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + $(I_{CC}$ static).

AC ELECTRICAL CHARACTERISTICS


				T _A = +25°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Typical	Unit
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 50 \text{ pF}, \text{ V}_{IH} = 5.0 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	5.0	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V_{OL}	C_L = 50 pF, V_{IH} = 5.0 V, V_{IL} = 0 V	5.0	-0.8	V

AC Loading and Waveforms

C_L includes load and stray capacitance Input PRR = 1.0 MHz, $t_W = 500 \text{ ns}$.

Figure 5. AC Test Circuit

Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = variable; Duty Cycle = 50%.

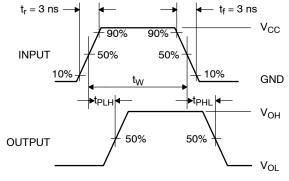
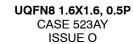
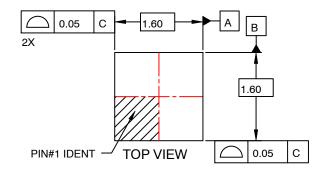


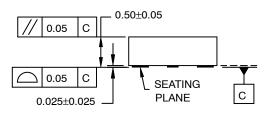
Figure 7. AC Waveforms

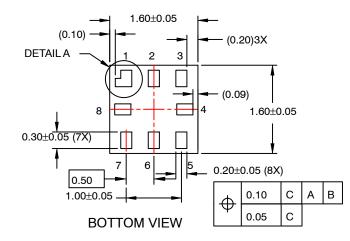
NC7NZ17

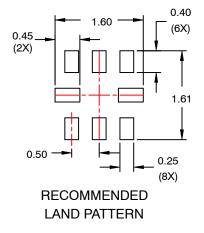

ORDERING INFORMATION

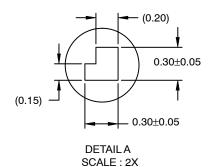
Part Number	Top Mark	Package	Shipping [†]
NC7NZ17K8X	NZ17	8-Lead US8, JEDEC MO-187, Variation CA 3.1 mm Wide	3000 / Tape & Reel
NC7NZ17L8X	U4	8-Lead MicroPak, 1.6 mm Wide (Pb-Free)	5000 / Tape & Reel
NC7NZ17L8X-L22185	U4	8-Lead MicroPak, 1.6 mm Wide (Pb-Free)	5000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
3. Pb-Free package per JEDEC J-STD-020B.


MicroPak is trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

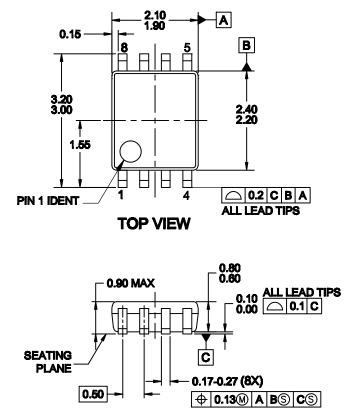



DATE 31 AUG 2016

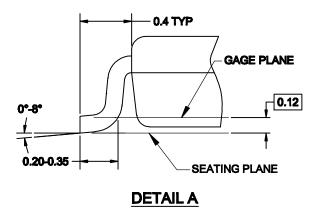

SIDE VIEW

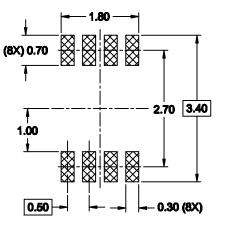
NOTES:

- A. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.


DOCUMENT NUMBER:	98AON13591G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	UQFN8 1.6X1.6, 0.5P		PAGE 1 OF 1		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or incidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

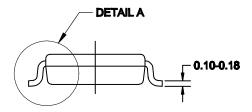
© Semiconductor Components Industries, LLC, 2019




US8 CASE 846AN ISSUE O

DATE 31 DEC 2016

SIDE VIEW



RECOMMENDED LAND PATTERN

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-187
- **B. DIMENSIONS ARE IN MILLIMETERS.**
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994.

DOCUMENT NUMBER:	98AON13778G	78G Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	US8		PAGE 1 OF 1			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or ncidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically			

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥