<u>MOSFET</u> – Power, Dual N-Channel 40 V, 11.7 mΩ, 36 A

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFD5C470NWF Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

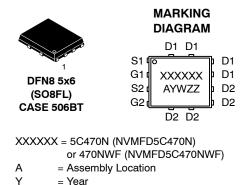
www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	11.7 m Ω @ 10 V	36 A

		/ise noted)	C unless otherw	(T _J = 25°0	MAXIMUM RATINGS		
Unit	Value	Symbol	Parameter				
V	40	V _{DSS}	Drain-to-Source Voltage				
V	±20	V _{GS}		9	Gate-to-Source Voltage		
А	36	Ι _D	$T_{C} = 25^{\circ}C$	Steady State	Continuous Drain Current $R_{\theta JC}$ (Notes 1, 2, 3)		
	25		$T_{C} = 100^{\circ}C$				
W	28	PD	T _C = 25°C		Power Dissipation		
	14		T _C = 100°C		$R_{\theta JC}$ (Notes 1, 2)		
А	11.7	I _D	T _A = 25°C	Steady State	Continuous Drain		
	8.3		$T_A = 100^{\circ}C$		Current R _{θJA} (Notes 1, 2, 3)		
W	3.1	PD	T _A = 25°C		Power Dissipation		
	1.5		T _A = 100°C		$R_{\theta JA}$ (Notes 1 & 2)		
А	108	I _{DM}	°C, t _p = 10 μs	T _A = 25	Pulsed Drain Current		
°C	–55 to + 175	T _J , T _{stg}	Operating Junction and Storage Temperature				
А	23	I _S	ource Current (Body Diode)				
mJ	49	E _{AS}	Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, $I_{L(pk)}$ = 2 A)				
°C	260	ΤL	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)				
	3.1 1.5 108 -55 to + 175 23 49	I _{DM} T _J , T _{stg} Is E _{AS}	$T_{A} = 25^{\circ}C$ $T_{A} = 100^{\circ}C$ $T_{A} = 10 \ \mu s$ The matrix is the matrix of the matrix of the matrix is the matrix of t	State $T_A = 25^{\circ}$ Storage T iode) Source Ava $j = 2 A^{\circ}$ oldering P	$\begin{array}{l} (\text{Notes 1, 2, 3}) \\ \text{Power Dissipation} \\ \text{R}_{\theta JA} \ (\text{Notes 1 \& 2}) \\ \\ \text{Pulsed Drain Current} \\ \text{Operating Junction and} \\ \\ \text{Source Current (Body D} \\ \\ \text{Single Pulse Drain-to-S} \\ \\ \text{Energy (T_J = 25^{\circ}\text{C}, I_{L(pk)} \\ \\ \\ \text{Lead Temperature for S} \end{array}$		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS


Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	5.3	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	49	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

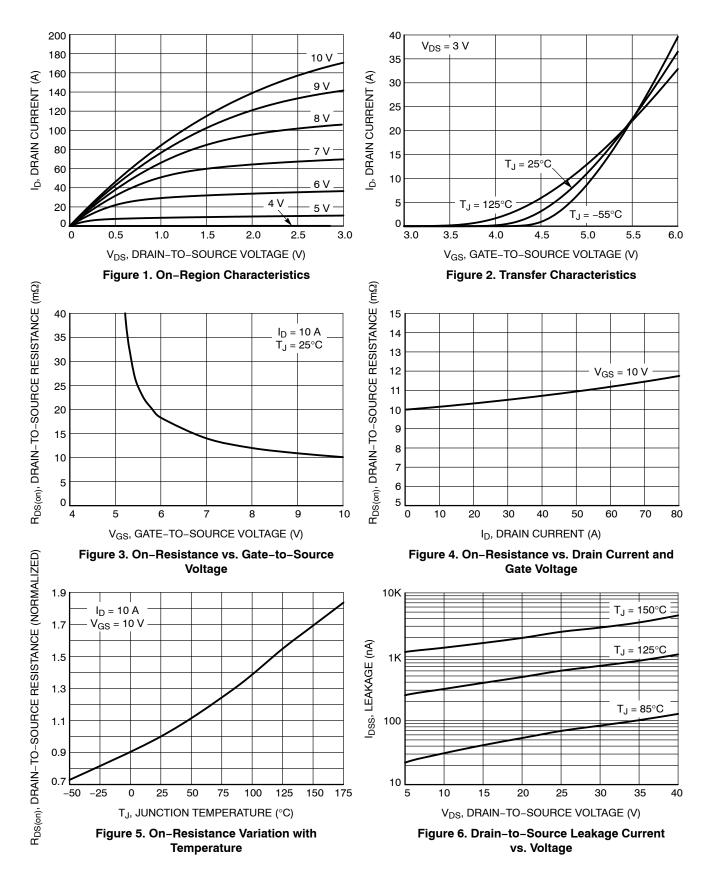
2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

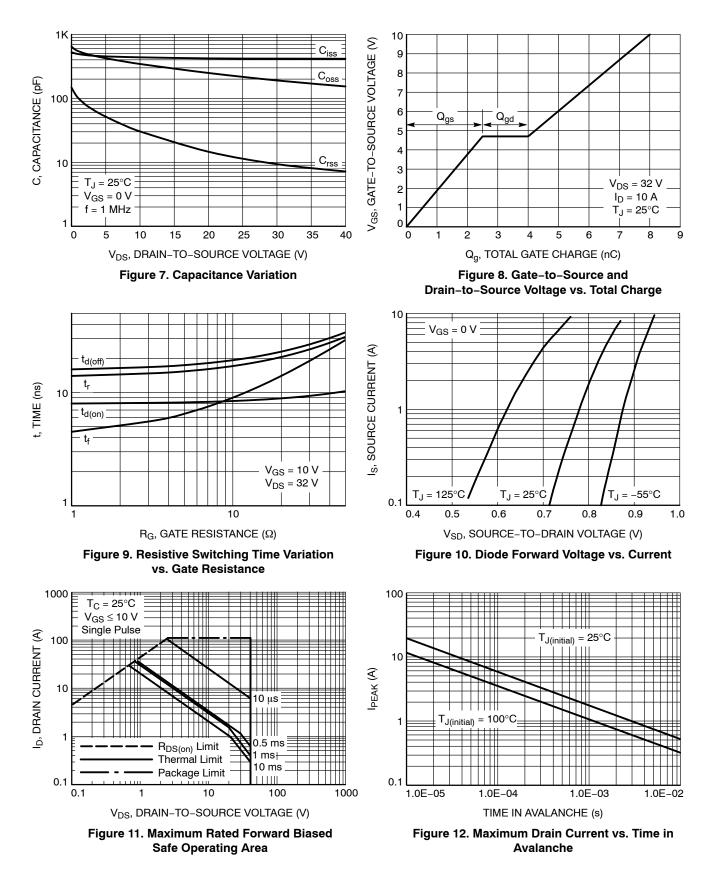
- = Year
- W = Work Week
- ΖZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.


Downloaded from Arrow.com.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				24		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$ \begin{array}{c} V_{GS} = 0 \ V, \\ V_{DS} = 40 \ V \end{array} \qquad \begin{array}{c} T_{J} = 25 \ ^{\circ}C \\ \hline T_{J} = 125 \ ^{\circ}C \end{array} $				10	
						100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{E}$	_D = 250 μA	2.5		3.5	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-6.0		mV/°
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		9.75	11.7	mΩ
CHARGES, CAPACITANCES & GATE	RESISTANCE			-	-		
Input Capacitance	C _{ISS}				420		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 M	Hz, V _{DS} = 25 V		210		pF
Reverse Transfer Capacitance	C _{RSS}				11		1
Total Gate Charge	Q _{G(TOT)}				8.0		1
Threshold Gate Charge	Q _{G(TH)}				1.6		1
Gate-to-Source Charge	Q _{GS}	V_{GS} = 10 V, V_{DS} = 32 V; I_{D} = 10 A			2.5		nC
Gate-to-Drain Charge	Q _{GD}				1.5		
Plateau Voltage	V _{GP}				4.7		V
SWITCHING CHARACTERISTICS (Note	e 5)						
Turn-On Delay Time	t _{d(ON)}				8.0		<u> </u>
Rise Time	tr	Vcs = 10 V. V	ne = 32 V.		14		1
Turn-Off Delay Time	t _{d(OFF)}	$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \; V, \; V_{DS} = 32 \; V, \\ I_{D} = 10 \; A, \; R_{G} = 1.0 \; \Omega \end{array}$			16		ns
Fall Time	t _f				4.5		
DRAIN-SOURCE DIODE CHARACTER	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.9	1.2	
		$I_{\rm S} = 10 \rm{A}$	T _J = 125°C		0.8		- V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 10 A			20		1
Charge Time	t _a				9.0		ns
Discharge Time	t _b				10		1
Reverse Recovery Charge	Q _{RR}				7.5		nC

4. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

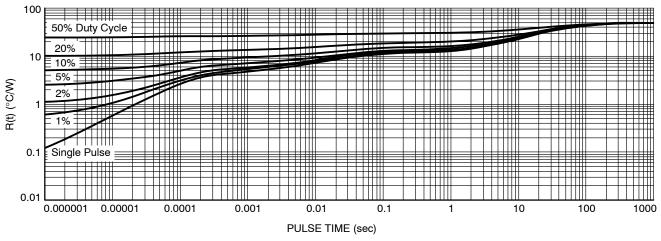
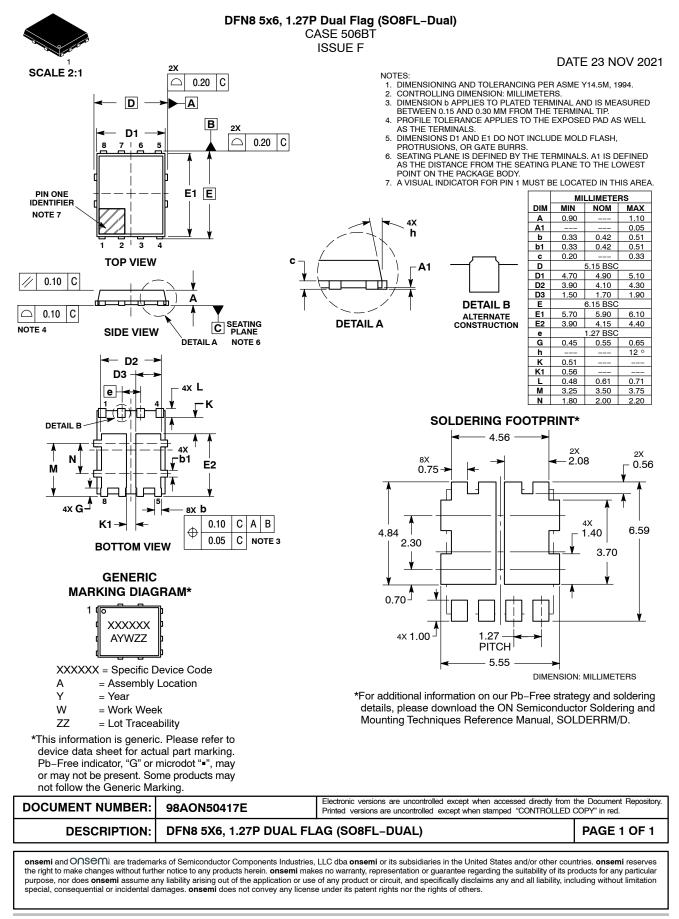


Figure 13. Thermal Response


DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFD5C470NT1G	5C470N	DFN8 (Pb–Free)	1500 / Tape & Reel
NVMFD5C470NWFT1G	470NWF	DFN8 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcula performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

 \Diamond