Document Title

256Kx16 bit Low Power and Low Voltage CMOS Static RAM

Revision History

<u>Revision No</u>	<u>History</u>	Draft Date	<u>Remark</u>
0.0	Initial draft	January 13, 1998	Advance
0.1	Revise - Speed bin change Commercial: 70/85ns to 70/85/100ns Industrial: 85/100ns to 70/85/100ns - DC Characteristics change Icc: 5mA at read/write to 4mA at read Icc1: 5mA to 6mA Icc2: 50mA to 45mA IsB: 0.5mA to 0.3mA IsB1: 10µA to 15µA for commercial parts	June 12, 1998	Preliminary
0.11	Errata correction	August 13, 1998	
1.0	Finalize	November 16, 1998	Final
2.0	Revise - Add K6T4016V3C-TB55 product	June 26, 2001	Final
2.01	Revise - Improved Voн(output high voltage) from 2.2V to 2.4V.	October 15, 2001	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

256Kx16 bit Low Power and Low Voltage CMOS Static RAM

FEATURES

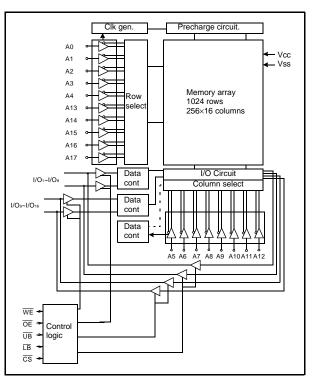
- Process Technology: TFT
- Organization: 256K x16
 Power Supply Voltage
 K6T4016V3C Family: 3.0~3.6V
- K6T4016U3C Family: 2.7~3.3V • Low Data Retention Voltage: 2V(Min)
- Three State Outputs
- Package Type: 44-TSOP2-400F/R

PRODUCT FAMILY

GENERAL DESCRIPTION

The K6T4016V3C and K6T4016U3C families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature ranges and have various package types for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

				Power Dissipation		
Product Family	Operating Temperature	Vcc Range Speed(ns)		Standby (Isв1, Max)	Operating (Icc2, Max)	PKG Type
K6T4016V3C-B	Commercial(0~70°C)	3.0~3.6V	551)/701)/85/100	15uA		
K6T4016U3C-B		2.7~3.3V		Торда	45mA	44-TSOP2-400F/R
K6T4016V3C-F	Industrial(-40~85°C)	3.0~3.6V	70 ¹⁾ /85/100	20µA	43117	
K6T4016U3C-F			Ζύμη			


1. The parameter is measured with 30pF test load.

PIN DESCRIPTION

A4 🗖 1 🔿	, U	44 A5	A5 44	U	1
A3 2	, <u> </u>	43 A6	A6 43	-	2 A3
A2 3		42 A7	A7 42		3 A2
A1 4		41 OE	OE 41	0	4 A1
A0 5		40 UB	UB 40		5 A0
CS 6		39 LB	LB 39		6 CS
I/OI 7		38 I/O16	I/O16 38		7 1/01
I/O2 8		37 I/O15	I/O15 37		8 I/O2
I/O3 9		36 I/O14	I/O14 36		9 1/03
I/O4 10		35 I/O13	I/O13 35		10 I/O4
Vcc 11	44-TSOP2	34 Vss	Vss 34	44-TSOP2	11 Vcc
Vss 12	Forward	33 Vcc	Vcc 33	Povoroo	12 Vss
I/O5 13	Forwaru	32 I/O12	I/O12 32	Reverse	13 I/O5
I/O6 🗌 14		31 //011	I/O11 31		14 I/O6
I/O7 15		30 I/O10	I/O10 🗌 30		15 1/07
I/O8 16		29 I/O9	I/O9 29		16 I/O8
WE 17		28 NC	NC 28		17 WE
A17 18		27 A8	A8 27	\cap	18 A17
A16 19		26 A9	A9 26	0	19 A16
A15 20		25 A10	A10 25		20 A15
A14 21		24 A11	A11 24		21 A14
A13 🗌 22		23 A12	A12 🔤 23		22 🗌 A13

Name	Function	Name	Function
CS	Chip Select Input	Vcc	Power
OE	Output Enable Input	Vss	Ground
WE	Write Enable Input	LB	Lower Byte (I/O1~8)
A0~A17	Address Inputs	UB	Upper Byte (I/O9~16)
I/O1~I/O16	Data Input/Output	NC	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial Tem	perature Product(0~70°C)	Industrial Temper	ature Products(-40~85°C)
Part Name	Function	Part Name	Function
K6T4016V3C-TB55	44-TSOP2-F, 55ns, 3.3V, LL	K6T4016V3C-TF70	44-TSOP2-F, 70ns, 3.3V, LL
K6T4016V3C-TB70	44-TSOP2-F, 70ns, 3.3V, LL	K6T4016V3C-TF85	44-TSOP2-F, 85ns, 3.3V, LL
K6T4016V3C-TB85	44-TSOP2-F, 85ns, 3.3V, LL	K6T4016V3C-TF10	44-TSOP2-F, 100ns, 3.3V, LL
K6T4016V3C-TB10	44-TSOP2-F, 100ns, 3.3V, LL	K6T4016V3C-RF70	44-TSOP2-R, 70ns, 3.3V, LL
K6T4016V3C-RB70	44-TSOP2-R, 70ns, 3.3V, LL	K6T4016V3C-RF85	44-TSOP2-R, 85ns, 3.3V, LL
K6T4016V3C-RB85	44-TSOP2-R, 85ns, 3.3V, LL	K6T4016V3C-RF10	44-TSOP2-R, 100ns, 3.3V, LL
K6T4016V3C-RB10	44-TSOP2-R, 100ns, 3.3V, LL		
		K6T4016U3C-TF70	44-TSOP2-F, 70ns, 3.0V, LL
K6T4016U3C-TB70	44-TSOP2-F, 70ns, 3.0V, LL	K6T4016U3C-TF85	44-TSOP2-F, 85ns, 3.0V, LL
K6T4016U3C-TB85	44-TSOP2-F, 85ns, 3.0V, LL	K6T4016U3C-TF10	44-TSOP2-F, 100ns, 3.0V, LL
K6T4016U3C-TB10	44-TSOP2-F, 100ns, 3.0V, LL	K6T4016U3C-RF70	44-TSOP2-R, 70ns, 3.0V, LL
K6T4016U3C-RB70	44-TSOP2-R, 70ns, 3.0V, LL	K6T4016U3C-RF85	44-TSOP2-R, 85ns, 3.0V, LL
K6T4016U3C-RB85	44-TSOP2-R, 85ns, 3.0V, LL	K6T4016U3C-RF10	44-TSOP2-R, 100ns, 3.0V, LL
K6T4016U3C-RB10	44-TSOP2-R, 100ns, 3.0V, LL		

FUNCTIONAL DESCRIPTION

CS	OE	WE	LB	UB	I/O 1~8	I/O 9~16	Mode	Power
н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
L	Н	Н	X ¹⁾	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	L	Н	L	L	Dout	Dout	Word Read	Active
L	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	X ¹⁾	L	Н	L	High-Z	Din	Din Upper Byte Write	
L	X ¹⁾	L	L	L	Din	Din	Word Write	Active

1. X means don't care. (Must be in low or high state)

ABSOLUTE MAXIMUM RATINGS¹⁾

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN,VOUT	-0.5 to Vcc+0.5	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.3 to 4.6	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Tstg	-65 to 150	°C	-
Operating Temperature	TA	0 to 70	°C	К6Т4016V3C-В, К6Т4016U3C-В
		-40 to 85	°C	K6T4016V3C-F, K6T4016U3C-F

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS⁴⁾

Item	Symbol	Product	Min	Тур	Max	Unit
Supply voltage	Vcc	K6T4016V3C Family K6T4016U3C Family	3.0 2.7	3.3 3.0	3.6 3.3	V
Ground	Vss	All Family	0	0	0	V
Input high voltage	Vін	K6T4016V3C, K6T4016U3C Family	2.2	-	Vcc+0.3 ²⁾	V
Input low voltage	VIL	K6T4016V3C, K6T4016U3C Family	-0.3 ³⁾	-	0.6	V

Note:

1. Commercial Product: TA=0 to 70°C, otherwise specified

Industrial Product: TA=-40 to 85°C, otherwise specified

2. Overshoot: Vcc+2.0V in case of pulse width \leq 30ns

3. Undershoot: -2.0V in case of pulse width \leq 30ns

4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

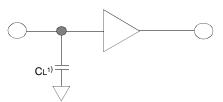
1. Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

ltem	Symbol	Test Conditions	Min	Тур	Мах	Unit
Input leakage current	L	VIL=Vss to Vcc	-1	-	1	μΑ
Output leakage current	Ilo	\overline{CS} =VIH or \overline{OE} =VIH or \overline{WE} =VIL VIO=Vss to Vcc	-1	-	1	μA
Operating power supply current	lcc	IIO=0mA, CS=VIL, VIN=VIL or VIH, Read	-	-	4	mA
Average operating current	ICC1	Cycle time=1µs, 100% duty, lio=0mA	-	-	6	mA
Average operating current	ICC2	Cycle time=Min ²⁾ , 100% duty, IIo=0mA, CS=VIL, VIN=VIH or VIL	-	-	45	mA
Output low voltage	Vol	IoL=2.1mA	-	-	0.4	V
Output high voltage	Vон	Іон=-1.0mA	2.4	-	-	V
Standby Current(TTL)	ISB	CS=VIH, Other inputs=VIL or VIH	-	-	0.3	mA
Standby Current(CMOS)	ISB1	CS≥Vcc-0.2V, Other inputs=0~Vcc	-	-	15 ¹⁾	μA

1. Industrial product = $20\mu A$

2. Cycle time = 70ns



K6T4016V3C, K6T4016U3C Family

CMOS SRAM

AC OPERATING CONDITIONS

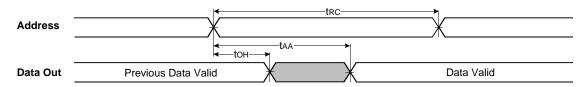
TEST CONDITIONS(Test Load and Input/Output Reference) Input pulse level: 0.4 to 2.2V Input rising and falling time: 5ns Input and output reference voltage: 1.5V Output load(see right): CL=100pF+1TTL CL=30pF+1TTL

1. Including scope and jig capacitance

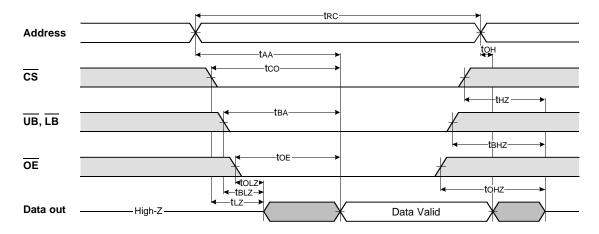
AC CHARACTERISTICS (K6T4016V3C Family: Vcc=3.0~3.6V, K6T4016U3C Family: Vcc=2.7~3.3V Commercial product: Ta=0 to 70°C, Industrial product: Ta=-40 to 85°C)

						Spee	d Bins				
	Parameter List	Symbol	55	ns	70	ns	85	ins	10	Ons	Units
			Min	Max	Min	Max	Min	Max	Min	Max	
	Read cycle time	tRC	55	-	70	-	85	-	100	-	ns
	Address access time	tAA	-	55	-	70	-	85	-	100	ns
	Chip select to output	tco	-	55	-	70	-	85	-	100	ns
	Output enable to valid output	tOE	-	25	-	35	-	40	-	50	ns
	LB, UB valid to data output	tBA	-	25	-	35	-	40	-	50	ns
Read	Chip select to low-Z output	t∟z	10	-	10	-	10	-	10	-	ns
Roud	Output enable to low-Z output	tolz	5	-	5	-	5	-	5	-	ns
	LB, UB enable to low-Z output	tBLZ	5	-	5	-	5	-	5	-	ns
	Output hold from address change	tон	10	-	10	-	10	-	15	-	ns
	Chip disable to high-Z output	tHZ	0	20	0	25	0	25	0	30	ns
	OE disable to high-Z output	tohz	0	20	0	25	0	25	0	30	ns
	LB, UB disable to high-Z output	tвнz	0	20	0	25	0	25	0	30	ns
	Write cycle time	twc	55	-	70	-	85	-	100	-	ns
	Chip select to end of write	tcw	45	-	60	-	70	-	80	-	ns
	Address set-up time	tas	0	-	0	-	0	-	0	-	ns
	Address valid to end of write	tAW	45	-	60	-	70	-	80	-	ns
	Write pulse width	tWP	40	-	55	-	60	-	70	-	ns
Write	Write recovery time	tWR	0	-	0	-	0	-	0	-	ns
	Write to output high-Z	twnz	0	20	0	25	0	25	0	30	ns
	Data to write time overlap	tDW	25	-	30	-	35	-	40	-	ns
	Data hold from write time	tDH	0	-	0	-	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	5	-	5	-	ns
	LB, UB valid to end of write	tвw	45	-	60	-	70	-	80	-	ns

DATA RETENTION CHARACTERISTICS


Item	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	Vdr	CS≥Vcc-0.2V	2.0	-	3.6	V
Data retention current	Idr	Vcc=3.0V, CS≥Vcc-0.2V	-	0.5	15 ¹⁾	μA
Data retention set-up time	tSDR	See data retention waveform	0	-	-	ms
Recovery time	trdr		5	-	-	115

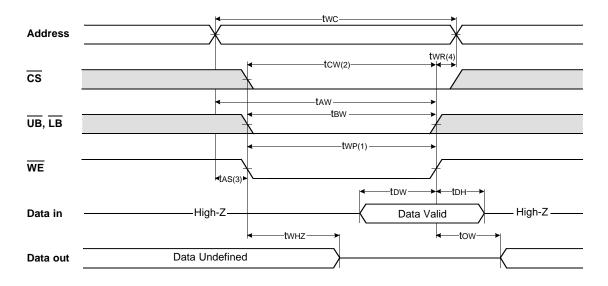
1. Industrial product = $20\mu A$



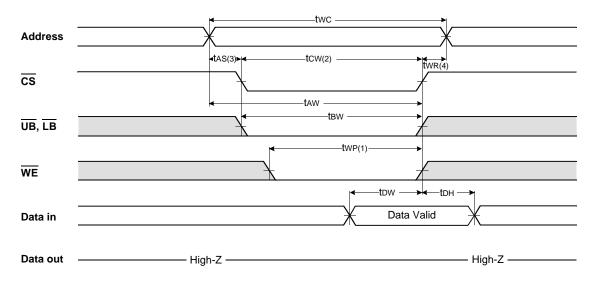
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS=OE=VIL, WE=VIH, UB or/and LB=VIL)

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

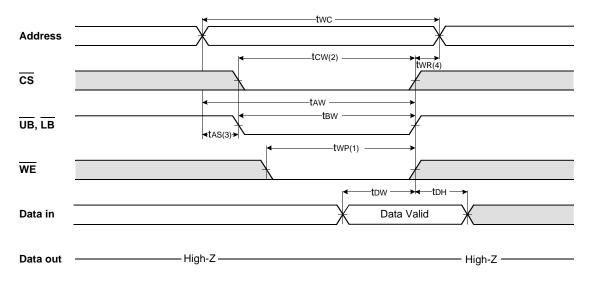

NOTES (READ CYCLE)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.



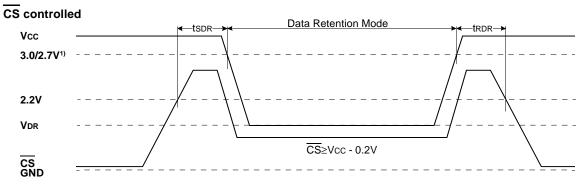
K6T4016V3C, K6T4016U3C Family

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)



TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)



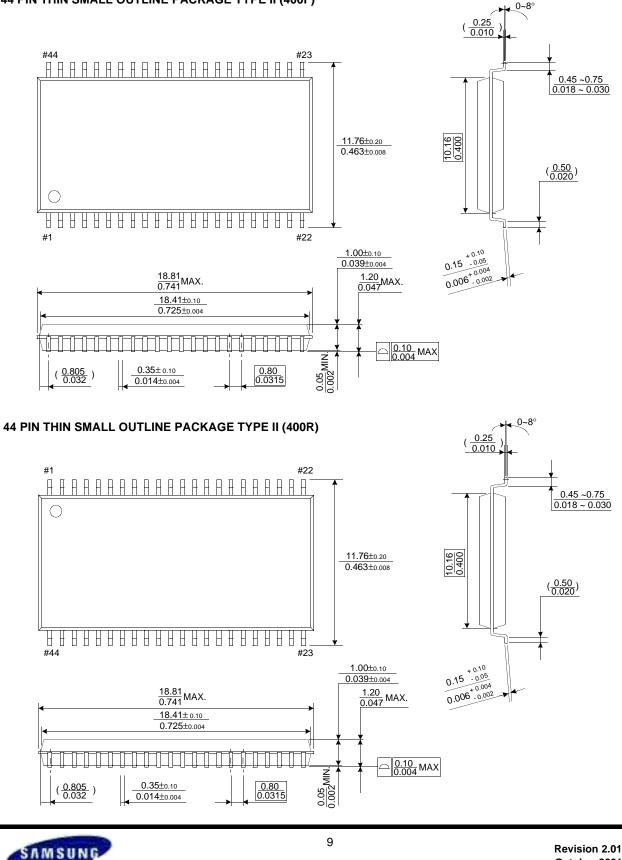
NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(twp) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the \overline{CS} going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.

4. twe is measured from the end of write to the address change. twe is applied in case a write ends with CS or WE going high.

DATA RETENTION WAVE FORM

1. 3.0V for K6T4016V3C Family, 2.7V for K6T4016U3C Family


K6T4016V3C, K6T4016U3C Family

CMOS SRAM

PACKAGE DIMENSIONS

44 PIN THIN SMALL OUTLINE PACKAGE TYPE II (400F)

Unit: millimeter(inch)

ELECTRONICS