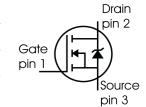


SPP20N60C2, SPB20N60C2 SPA20N60C2

Cool MOS™ Power Transistor

Feature


- New revolutionary high voltage technology
- Worldwide best R_{DS(on)} in TO 220
- Ultra low gate charge
- Periodic avalanche rated
- Extreme dv/dt rated
- Ultra low effective capacitances

Product Summary

V _{DS} @ T _{jmax}	650	V
R _{DS(on)}	0.19	Ω
I_{D}	20	Α

Туре	Package	Ordering Code	Marking
SPP20N60C2	P-TO220-3-1	Q67040-S4320	20N60C2
SPB20N60C2	P-TO263-3-2	Q67040-S4322	20N60C2
SPA20N60C2	P-TO220-3-31	Q67040-S4333	20N60C2

Maximum Ratings

Parameter	Symbol	Va	Unit	
		SPP_B	SPA	
Continuous drain current	I _D			А
$T_{\rm C}$ = 25 °C		20	20 ¹⁾	
T _C = 100 °C		13	13 ¹⁾	
Pulsed drain current, t_p limited by T_{jmax}	I _{D puls}	40	40	А
Avalanche energy, single pulse	E _{AS}	690	690	mJ
<i>I</i> _D =10A, <i>V</i> _{DD} =50V				
Avalanche energy, repetitive t_{AR} limited by T_{jmax}^{2}	E _{AR}	1	1	
<i>I</i> _D =20A, <i>V</i> _{DD} =50V				
Avalanche current, repetitive t_{AR} limited by T_{jmax}	I _{AR}	20	20	Α
Reverse diode dv/dt	d <i>v</i> /d <i>t</i>	6	6	V/ns
$I_{S} = 20 \text{ A}, V_{DS} < V_{DD}, \text{ di/d}t = 100 \text{A/}\mu\text{s}, T_{jmax} = 150 ^{\circ}\text{C}$				
Gate source voltage	V_{GS}	±20	±20	V
Gate source voltage AC (f >1Hz)	V_{GS}	±30	±30	
Power dissipation, $T_C = 25^{\circ}C$	P _{tot}	208	34.5	W
Operating and storage temperature	$T_{\rm j}$, $T_{ m stg}$	-55	+150	°C

SPP20N60C2, SPB20N60C2 SPA20N60C2

Thermal Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics					
Thermal resistance, junction - case	R_{thJC}	-	-	0.6	K/W
Thremal resistance, junction - case, FullPAK	R _{thJC_FP}	-	-	3.6	
Thermal resistance, junction - ambient, leaded	R_{thJA}	-	-	62	
Thermal resistance, junction - ambient, FullPAK	R _{thJA_FP}	-	-	80	
SMD version, device on PCB:	R_{thJA}				
@ min. footprint		-	-	62	
@ 6 cm ² cooling area ³⁾		-	35	-	
Linear derating factor			1.67	W/K	
Linear derating factor, FullPAK		-	-	0.28	
Soldering temperature,	T_{sold}	-	-	260	°C
1.6 mm (0.063 in.) from case for 10s					

Electrical Characteristics, at T_j = 25 °C, unless otherwise specified

Static Characteristics

Drain-source breakdown voltage	V _{(BR)DSS}	600	-	-	V
$V_{GS}=0V$, $I_{D}=0.25$ mA					
Drain-source avalanche breakdown voltage	V _{(BR)DS}	-	700	-	
V_{GS} =0V, I_D =20A					
Gate threshold voltage, $V_{GS} = V_{DS}$	V _{GS(th)}	3.5	4.5	5.5	
<i>I</i> _D =1mA					
Zero gate voltage drain current	I _{DSS}				μΑ
V_{DS} = 600 V, V_{GS} = 0 V, T_{j} = 25 °C		-	0.1	1	
$V_{\rm DS}$ = 600 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 150 °C		1	-	100	
Gate-source leakage current	I _{GSS}	-	-	100	nA
V_{GS} =20V, V_{DS} =0V					
Drain-source on-state resistance	R _{DS(on)}	-	0.16	0.19	Ω
V_{GS} =10V, I_{D} =13A, T_{j} =25°C					
Gate input resistance	R_{G}	-	0.54	-	
f = 1 MHz, open drain					

SPP20N60C2, SPB20N60C2 SPA20N60C2

Electrical Characteristics

Parameter	Symbol Conditions		Values			Unit
			min.	typ.	max.	
Characteristics				•		•
Transconductance	9 _{fs}	$V_{\rm DS} \ge 2*I_{\rm D}*R_{\rm DS(on)max},$ $I_{\rm D} = 13A$	-	12	-	S
Input capacitance	C _{iss}	V_{GS} =0V, V_{DS} =25V,	-	3000	-	pF
Output capacitance	C_{oss}	f=1MHz	-	1170	-	
Reverse transfer capacitance	C_{rss}		-	28	-	
Effective output capacitance, ⁴⁾ energy related	C _{o(er)}	$V_{GS} = 0V$, $V_{DS} = 0V$ to 480V	-	83	-	
Effective output capacitance, ⁵⁾ time related	C _{o(tr)}		-	160	-	
Turn-on delay time	t _{d(on)}	V _{DD} =380V, V _{GS} =0/13V,	-	21	-	ns
Rise time	<i>t</i> _r	<i>I</i> _D =20A,	-	51	-	
Turn-off delay time	t _{d(off)}	R_{G} =3.6Ω, T_{j} =125°C	-	56	84	
Fall time	<i>t</i> f		-	6	9	
Gate Charge Characteristics				•	•	•
Gate to source charge	Q _{gs}	V _{DD} =350V, I _D =20A	-	21	-	nC
Gate to drain charge	Q _{gd}		-	46	-	
Gate charge total	Q_{g}	V_{DD} =350V, I_{D} =20A, V_{GS} =0 to 10V	-	79	103	
Gate plateau voltage	V _(plateau)	V _{DD} =350V, I _D =20A	-	8	-	V

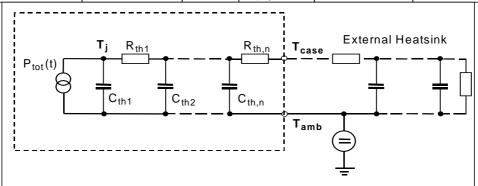
¹Limited only by maximum temperature

²Repetitve avalanche causes additional power losses that can be calculated as $P_{AV} = E_{AR}^* f$.

 $^{^3\}text{Device}$ on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air.

 $^{^4}C_{
m O(er)}$ is a fixed capacitance that gives the same stored energy as $C_{
m OSS}$ while $V_{
m DS}$ is rising from 0 to 80% $V_{
m DSS}$.

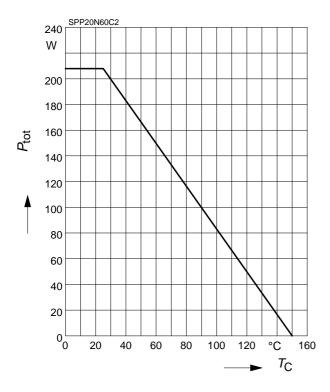
 $^{^5}C_{\mathrm{O(tr)}}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 80% V_{DSS} .


SPP20N60C2, SPB20N60C2 SPA20N60C2

Electrical Characteristics

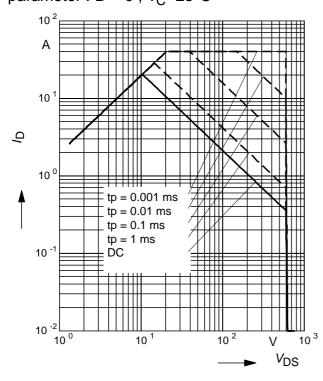
Parameter	Symbol	Conditions	Values		Unit	
			min.	typ.	max.	
Characteristics			•			
Inverse diode continuous	IS	T _C =25°C	-	-	20	Α
forward current						
Inverse diode direct current,	I _{SM}		-	-	40	
pulsed						
Inverse diode forward voltage	V _{SD}	$V_{GS}=0V$, $I_{F}=I_{S}$	-	1	1.2	V
Reverse recovery time	<i>t</i> _{rr}	V_{R} =350V, I_{F} = I_{S} ,	-	610	1040	ns
Reverse recovery charge	Q _{rr}	d <i>i</i> _⊏ /d <i>t</i> =100A/µs	-	12	-	μC
Peak reverse recovery current	/ _{rrm}		-	48	-	Α
Peak rate of fall of reverse	di _{rr} /dt	<i>T</i> _j =25°C	-	1500	-	A/µs
recovery current						

Typical Transient Thermal Characteristics

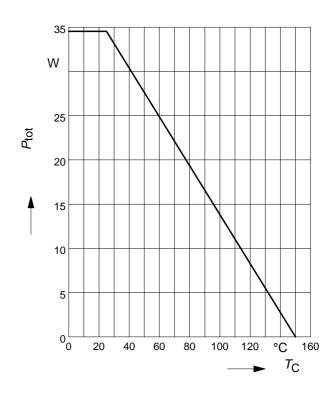

Symbol	Va	lue	Unit	Symbol	Value		Unit
	SPP_B	SPA			SPP_B	SPA	
R _{th1}	0.007416	0.077	K/W	C _{th1}	0.0004409	0.000376	Ws/K
R _{th2}	0.016	0.015		C _{th2}	0.001462	0.00141	
R_{th3}	0.021	0.022		C _{th3}	0.0024	0.00192	
R_{th4}	0.06	0.063		C _{th4}	0.003031	0.00332	
R _{th5}	0.083	0.214		C _{th5}	0.02	0.019	
R _{th6}	0.038	2.479		C _{th6}	0.146	0.412	

SPP20N60C2, SPB20N60C2 SPA20N60C2

1 Power dissipation

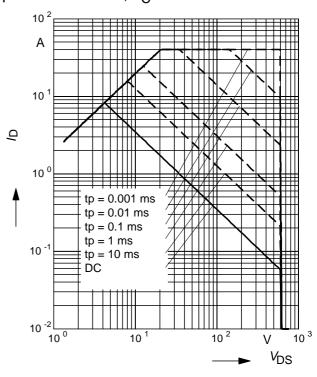

$$P_{\text{tot}} = f(T_{\text{C}})$$

3 Safe operating area


$$I_{D} = f(V_{DS})$$

parameter : D = 0 , $T_C = 25$ °C

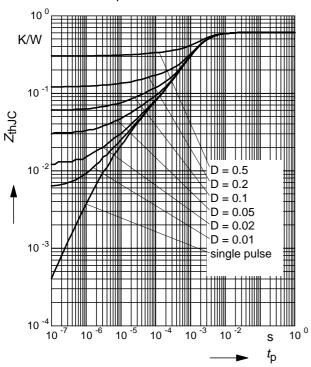
2 Power dissiaption FullPAK


$$P_{\text{tot}} = f(T_{\text{C}})$$

4 Safe operating area FullPAK

$$I_{D} = f(V_{DS})$$

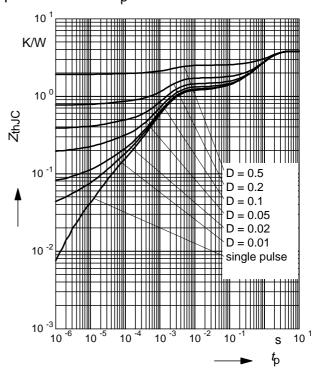
parameter: D = 0, $T_C = 25$ °C


Page 5 2002-08-12

SPP20N60C2, SPB20N60C2 SPA20N60C2

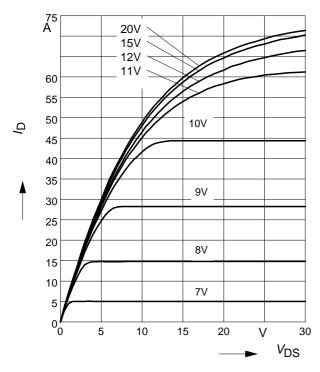
5 Transient thermal impedance

$$Z_{\text{thJC}} = f(t_{\text{p}})$$


parameter: $D = t_p/T$

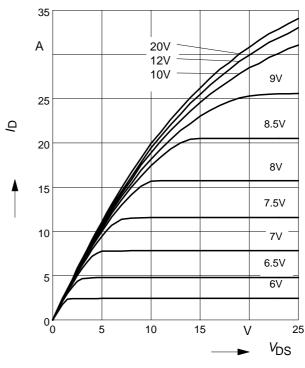
6 Transient thermal impedance FullPAK

$$Z_{\text{thJC}} = f(t_{\text{p}})$$


parameter: $D = t_D/t$

7 Typ. output characteristic

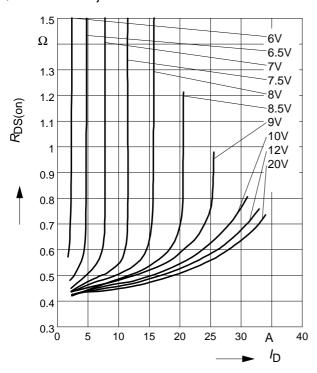
 $I_{D} = f(V_{DS}); T_{j}=25^{\circ}C$


parameter: $t_p = 10 \mu s$, V_{GS}

8 Typ. output characteristic

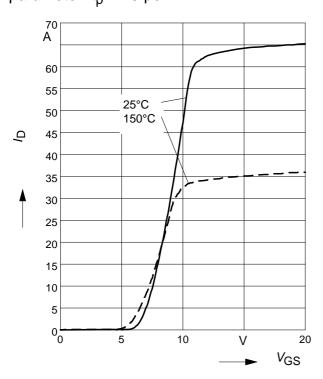
 $I_{D} = f(V_{DS}); T_{j}=150^{\circ}C$

parameter: $t_p = 10 \mu s$, V_{GS}


Page 6 2002-08-12

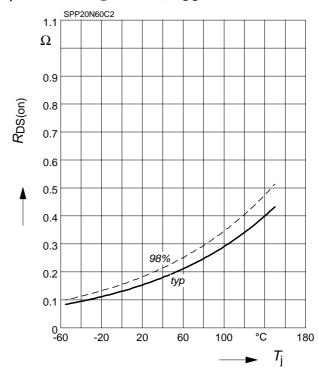
SPP20N60C2, SPB20N60C2 SPA20N60C2

9 Typ. drain-source on resistance


 $R_{DS(on)} = f(I_D)$

parameter: T_j=150°C, V_{GS}

11 Typ. transfer characteristics


 $I_D = f(V_{GS}); V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$ parameter: $t_D = 10 \ \mu s$

10 Drain-source on-state resistance

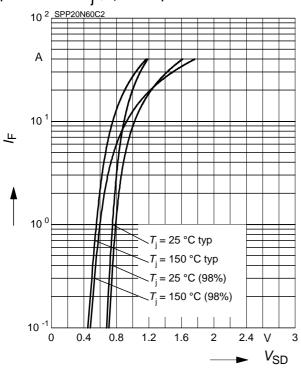
 $R_{DS(on)} = f(T_j)$

parameter : $I_D = 13 \text{ A}$, $V_{GS} = 10 \text{ V}$

12 Typ. gate charge

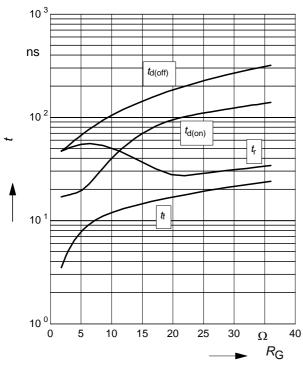
 $V_{GS} = f (Q_{Gate})$

parameter: $I_D = 20 \text{ A pulsed}$

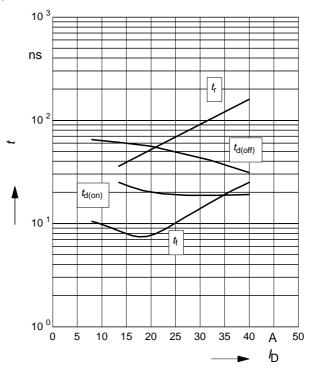

Page 7 2002-08-12

SPP20N60C2, SPB20N60C2 SPA20N60C2

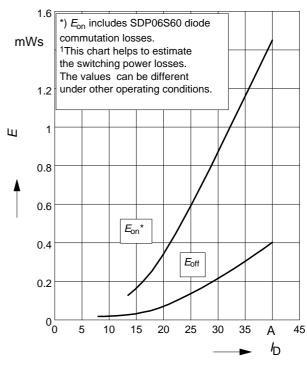
13 Forward characteristics of body diode


 $I_{\mathsf{F}} = f(\mathsf{V}_{\mathsf{SD}})$

parameter: T_i , $tp = 10 \mu s$


15 Typ. switching time

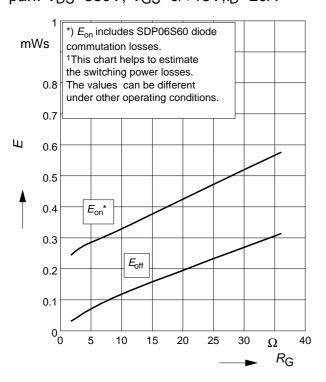
 $t = f(R_G)$, inductive load, T_j =125°C par.: V_{DS} =380V, V_{GS} =0/+13V, I_D =20A


14 Typ. switching time

 $t = f(I_D)$, inductive load, T_j =125°C par.: V_{DS} =380V, V_{GS} =0/+13V, R_G =3.6 Ω

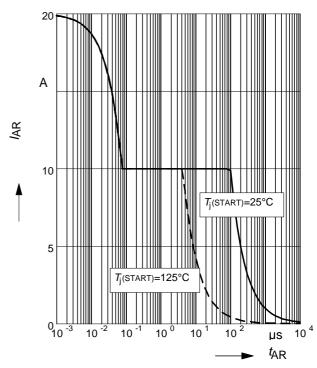
16 Typ. switching losses¹⁾

 $E = f(I_{\rm D})$, inductive load, $T_{\rm j}$ =125°C par.: $V_{\rm DS}$ =380V, $V_{\rm GS}$ =0/+13V, $R_{\rm G}$ =3.6 Ω



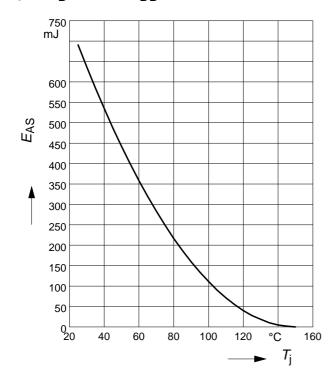
Page 8 2002-08-12

SPP20N60C2, SPB20N60C2 SPA20N60C2

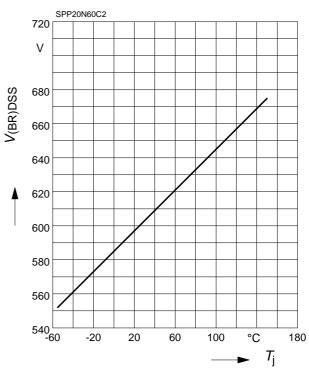

17 Typ. switching losses¹⁾

 $E = f(R_G)$, inductive load, $T_i = 125$ °C par.: V_{DS} =380V, V_{GS} =0/+13V, I_{D} =20A

18 Avalanche SOA


 $I_{AR} = f(t_{AR})$ par.: *T*_j ≤ 150 °C

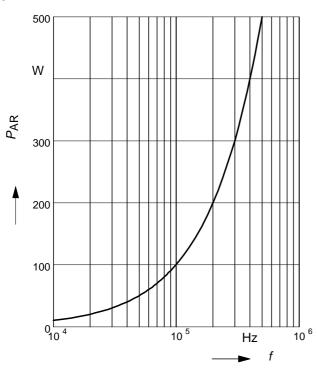
19 Avalanche energy


$$E_{AS} = f(T_j)$$

par.: $I_D = 10 \text{ A}, V_{DD} = 50 \text{ V}$

20 Drain-source breakdown voltage

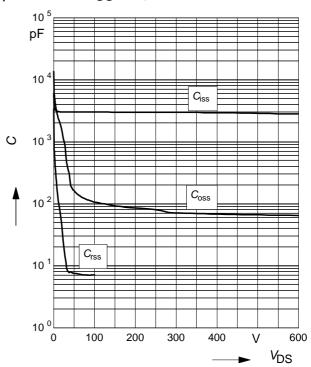
$$V_{(BR)DSS} = f(T_j)$$


Page 9 2002-08-12

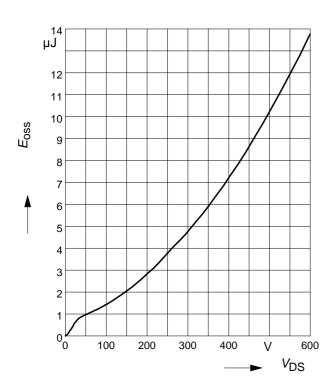
SPP20N60C2, SPB20N60C2 SPA20N60C2

21 Avalanche power losses

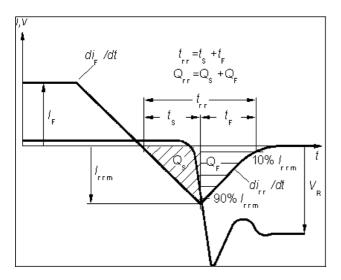
$P_{\mathsf{AR}} = f(f)$


parameter: EAR=1mJ

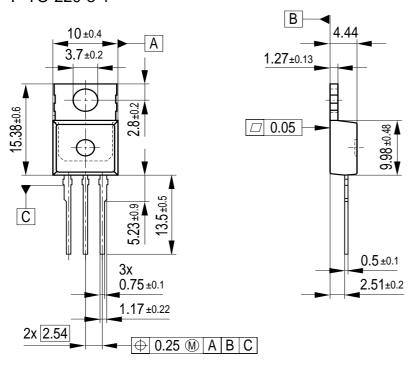
22 Typ. capacitances


$$C = f(V_{DS})$$

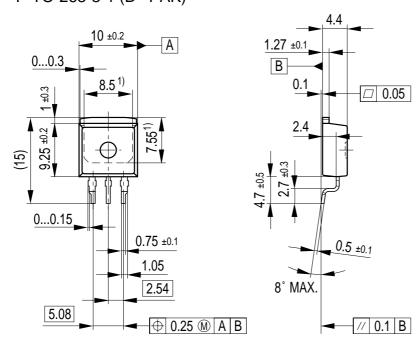
parameter: $V_{GS}=0V$, f=1 MHz


23 Typ. $C_{\rm OSS}$ stored energy

$$E_{\rm oss} = f(V_{\rm DS})$$

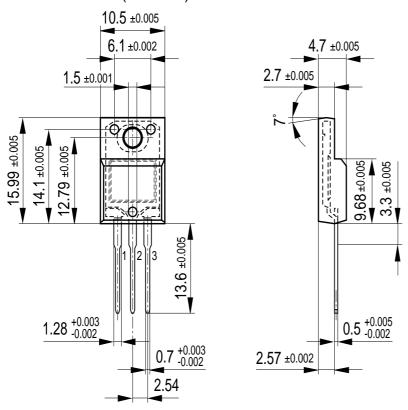


Definition of diodes switching characteristics


SPP20N60C2, SPB20N60C2 SPA20N60C2

P-TO-220-3-1

All metal surfaces tin plated, except area of cut. Metal surface min. x=7.25, y=12.3


P-TO-263-3-1 (D²-PAK)

Typical All metal surfaces: tin plated, except area of cut. Metal surface min. x=7.25, y=6.9

SPP20N60C2, SPB20N60C2 SPA20N60C2

P-TO-220-3-31 (FullPAK)

Please refer to mounting instructions (application note AN-TO220-3-31-01)

SPP20N60C2, SPB20N60C2 SPA20N60C2

Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.