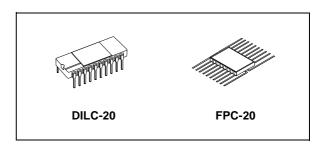


M54HC574


RAD-HARD OCTAL D-TYPE FLIP FLOP WITH 3 STATE OUTPUT NON INVERTING

- HIGH SPEED:
 - $f_{MAX} = 90MHz$ (TYP.) at $V_{CC} = 6V$
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25^{\circ}C$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 6mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 54 SERIES 574
- SPACE GRADE-1: ESA SCC QUALIFIED
- 50 krad QUALIFIED, 100 krad AVAILABLE ON REQUEST
- NO SEL UNDER HIGH LET HEAVY IONS IRRADIATION
- DEVICE FULLY COMPLIANT WITH SCC-9203-054

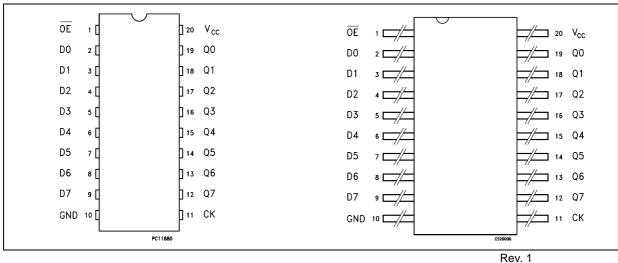
DESCRIPTION

The M54HC574 is an high speed CMOS OCTAL D-TYPE FLIP FLOP WITH 3-STATE OUTPUTS INVERTING fabricated with sub-micron silicon gate C²MOS technology.

This 8 bit D-TYPE FLIP FLOP is controlled by a clock input (CK) and an output enable input (OE).

ORDER CODES

PACKAGE	FM	ЕМ
DILC	M54HC574D	M54HC574D1
FPC	M54HC574K	M54HC574K1


On the positive transition of the clock, the Q outputs will be set to the logic state that were setup at the D inputs.

While the \overline{OE} input is at low level, the eight outputs will be in a normal logic state (high or low logic level) and while \overline{OE} is in high level the outputs will be in a high impedance state.

The output control does not affect the internal operation of flip-flops; that is, the old data can be retained or the new data can be entered even while the outputs are off.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION

June 2004 1/11

Figure 1: IEC Logic Symbols

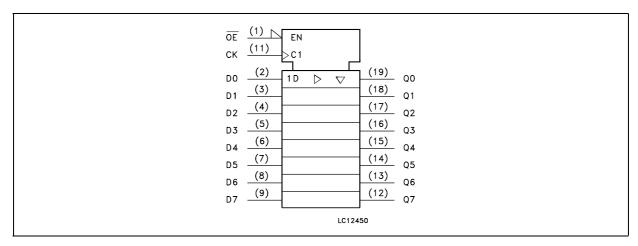
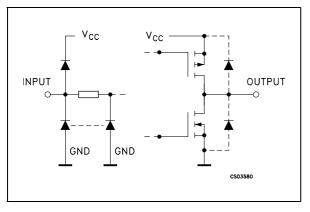



Figure 2: Input And Output Equivalent Circuit

Table 1: Pin Description

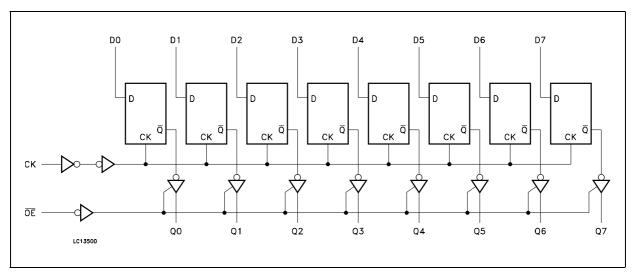

PIN N°	SYMBOL	NAME AND FUNCTION
1	OE	3 State Output Enable Input (Active LOW)
2, 3, 4, 5, 6, 7, 8, 9	D0 to D7	Data Inputs
12, 13, 14, 15, 16, 17, 18, 19	Q7 to Q0	3 State Outputs
11	CK	Clock Input (LOW to HIGH, edge triggered)
10	GND	Ground (0V)
20	V_{CC}	Positive Supply Voltage

Table 2: Truth Table

	INPUTS						
ŌĒ	СК	D	Q				
Н	X	Х	Z				
L	Z	X	NO CHANGE				
L		L	L				
L		Н	Н				

X: Don't Care Z: High Impedance

Figure 3: Logic Diagram

This logic diagram has not be used to estimate propagation delays

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Ι _Ο	DC Output Current	± 35	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P_{D}	Power Dissipation	420	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	265	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 4: Recommended Operating Conditions

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage		2 to 6	V
V _I	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t_r , t_f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

Table 5: DC Specifications

		٦	est Condition				Value				
Symbol	Parameter	V _{CC}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V_{OH}	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-7.8 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =6.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =7.8 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{OZ}	High Impedance Output Leakage Current	6.0	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 5		± 10	μΑ
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μΑ

Table 6: AC Electrical Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

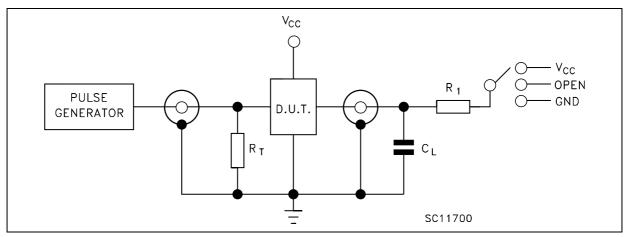
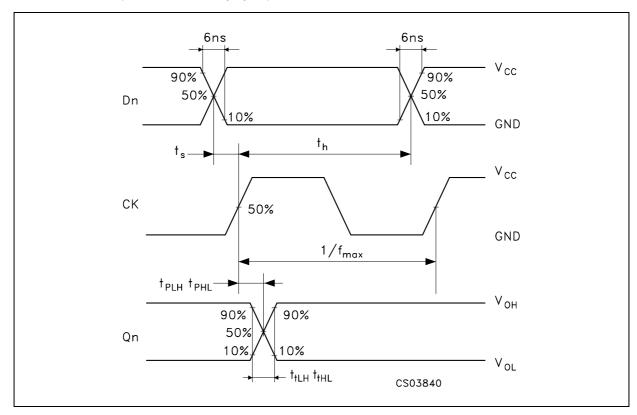

		Test Condition		Value								
Symbol	Parameter	V _{CC}	CL		Т	A = 25°	C	-40 to	85°C	-55 to	125°C	Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	x.
t _{TLH} t _{THL}	Output Transition	2.0				25	60		75		90	
	Time	4.5	50			7	12		15		18	ns
		6.0				6	10		13		15	
t _{PLH} t _{PHL}	Propagation Delay	2.0				70	150		190		225	
	Time	4.5	50			20	30		38		45	ns
	(CK - Q)	6.0				15	26		32		38	
		2.0				88	190		240		285	
		4.5	150			25	38		48		57	ns
		6.0				19	32		41		48	
t _{PZL} t _{PZH}	High Impedance	2.0				48	125		155		190	
	Output Enable	4.5	$R_L = 1 KΩ$	50 $R_L = 1 K\Omega$		15	25		31		38	ns
	Time	6.0				12	21		26		32	
		2.0				60	165		205		250	
		4.5	150	$R_L = 1 \text{ K}\Omega$		20	33		41		50	ns
		6.0				16	28		35		43	
t _{PLZ} t _{PHZ}	High Impedance	2.0				34	125		155		190	
	Output Disable	4.5	50	$R_L = 1 \text{ K}\Omega$		17	25		31		38	ns
	Time	6.0				15	21		26		32	
f _{MAX}	Maximum Clock	2.0			6.2	18		5		4.2		
	Frequency	4.5	50		31	75		25		21		MHz
		6.0			37	90		30		25		
t _{W(L)}	Minimum Pulse	2.0				15	75		95		110	
t _{W(H)}	Width	4.5	50			6	15		19		22	ns
	(CLOCK)					6	13		16		19	
t _s	Minimum Set-up	2.0				25	75		95		110	
	Time	4.5	50			6	15		19		22	ns
		6.0				4	13		16		19	
t _h	Minimum Hold	2.0					0		0		0	
	Time	4.5	50				0		0		0	ns
		6.0					0		0		0	

Table 7: Capacitive Characteristics

		Т	Test Condition		Value							
Symbol	Parameter	V _{CC}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit	
		V _{CC} (V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance					5	10		10		10	pF
C _{OUT}	Output Capacitance					10						pF
C _{PD}	Power Dissipation Capacitance (note 1)					54						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$

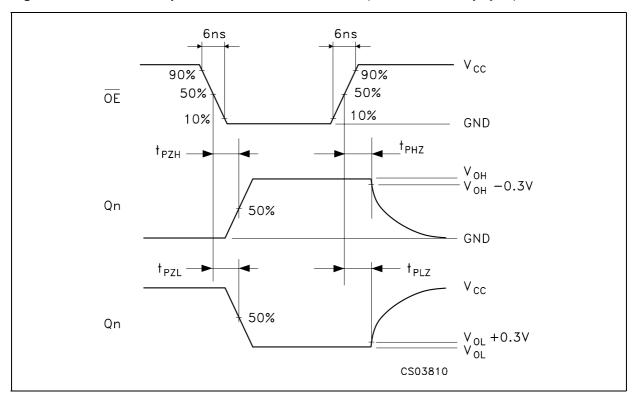
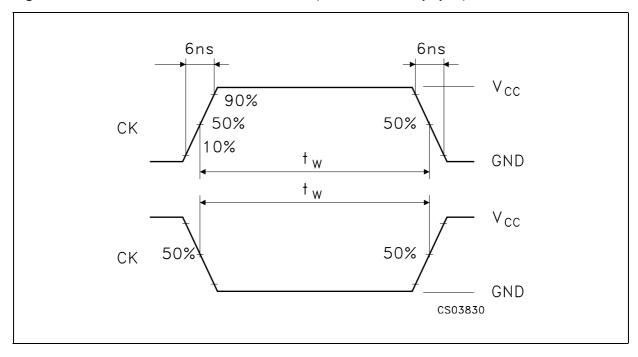

Figure 4: Test Circuit

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 C_L = 50pF/150pF or equivalent (includes jig and probe capacitance) R_1 = 1K Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

Figure 5: Waveform - CK To Qn Propagation Delays, CK Maximum Frequency, Dn To CK Setup And Hold Times (f=1MHz; 50% duty cycle)

47/ 6/11

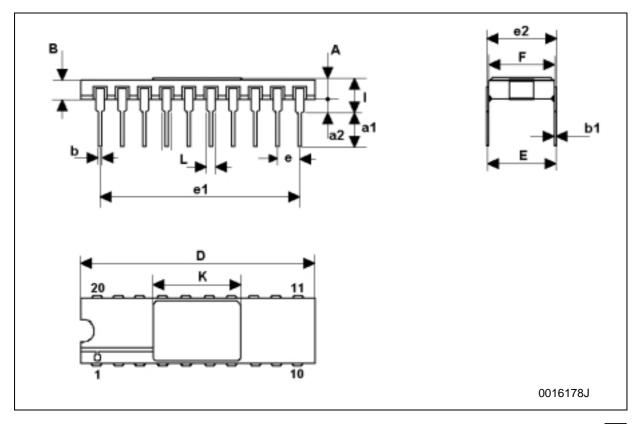
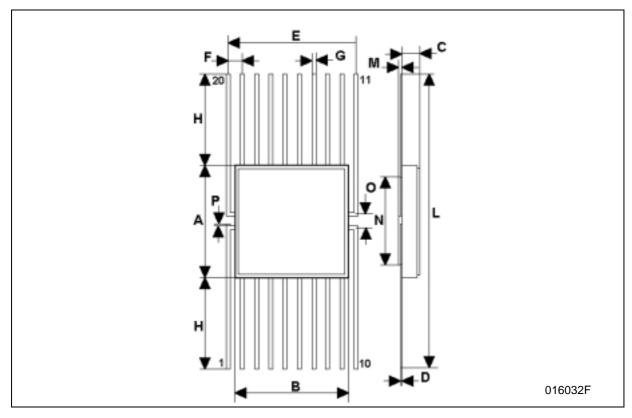

Figure 6: Waveform - Output Enable And Disable Times (f=1MHz; 50% duty cycle)

Figure 7: Waveform - CK Minimum Pulse Width (f=1MHz; 50% duty cycle)


DILC-20 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	2.1		2.71	0.083		0.107
a1	3.00		3.70	0.118		0.146
a2	0.63	0.88	1.14	0.025	0.035	0.045
В	1.93	2.03	2.23	0.076	0.080	0.088
b	0.40	0.45	0.50	0.016	0.018	0.020
b1	0.20	0.254	0.30	0.008	0.010	0.012
D	25.14	25.40	25.65	0.990	1.000	1.010
Е	7.36	7.62	7.87	0.290	0.300	0.310
е		2.54			0.100	
e1	22.73	22.86	22.99	0.895	0.900	0.905
e2	7.62	7.87	8.12	0.300	0.310	0.320
F	7.29	7.49	7.70	0.287	0.295	0.303
I			3.86			0.152
K	11.30		11.56	0.445		0.455
L	1.14	1.27	1.40	0.045	0.050	0.055

FPC-20 MECHANICAL DATA

DIM.		mm.			inch	
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	9.98	10.16	10.34	0.393	0.400	0.407
В	9.98	10.16	10.34	0.393	0.400	0.407
С	1.45	1.61	1.78	0.57	0.63	0.070
D	0.10	0.127	0.18	0.004	0.005	0.007
Е	11.30	11.43	11.56	0.445	0.450	0.455
F		1.27			0.050	
G	0.38	0.43	0.48	0.015	0.017	0.019
Н	7.24		8.16	0.285		0.320
L	24.46		26.67	0.960		1.050
М	0.45	0.50	0.55	0.018	0.020	0.022
N		7.87			0.310	
0	1.14	1.27	1.40	0.045	0.050	0.055
Р	0.10	0.18	0.25	0.004	0.007	0.010

M54HC574

Table 8: Revision History

Date	Revision	Description of Changes
01-Jun-2004	1	First Release

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

