Document Title

256Kx16 bit Low Power full CMOS Static RAM

Revision History

Revision No.	<u>History</u>	<u>Draft Date</u>	<u>Remark</u>
0.0	Initial draft	July 26, 2002	Preliminary
0.1	Revised Added Commercial Product. Deleted 44-TSOP2-400R Package Type.	November 29, 2002	Preliminary
1.0	Finalized - Changed Icc from 10mA to 5mA - Changed Icc1 from 10mA to 7mA - Changed Icc2 from 50mA to 30mA - Changed Iss from 3mA to 0.4mA - Changed IDR(Commercial) from 15μA to 12μA - Changed IDR(industrial) from 20μA to 12μA - Changed IDR(Automotive) from 30μA to 25μA	September 16, 2003	Final
2.0	Revised - Added Lead-Free Products - Changed IsB1(Automotive) from 30μA to 60μA - Changed IDR(Automotive) from 25μA to 30μA	January 31, 2005	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

256Kx16 bit Low Power full CMOS Static RAM

FEATURES

• Process Technology: Full CMOS

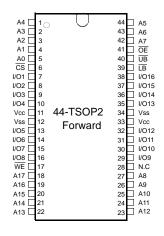
• Organization: 256Kx16

Power Supply Voltage: 4.5~5.5VLow Data Retention Voltage: 2V(Min)

• Three state output and TTL compatible

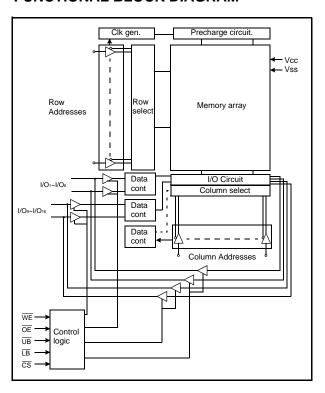
• Package Type: 44-TSOP2-400F

GENERAL DESCRIPTION


The K6X4016C3F families are fabricated by SAMSUNG's advanced full CMOS process technology. The families support various operating temperature range and small package types for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

					ssipation	
Product Family	Operating Temperature	Vcc Range	Speed	Standby (ISB1, Max)	Operating (Icc2, Max)	PKG Type
K6X4016C3F-B	Commercial(0~70°C)			20 μΑ		
K6X4016C3F-F	Industrial (-40~85°C)	4.5~5.5V 55 ¹⁾ /70ns		20 μΑ	30 mA	44-TSOP2-400F
K6X4016C3F-Q	6C3F-Q Automotive (-40~125°C)		30 μΑ			


^{1.} The parameter is measured with 50pF test load.

PIN DESCRIPTION

Name	Function	Name	Function
CS	Chip Select Input	LB	Lower Byte (I/O1~8)
ŌĒ	Output Enable Input	UB	Upper Byte(I/O9~16)
WE	Write Enable Input	Vcc	Power
A0~A17	Address Inputs	Vss	Ground
I/O1~I/O16	Data Inputs/Outputs	NC	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial Products(0~70°C)		Industrial Prod	ducts(-40~85°C)	Automotive Products(-40~125°C)			
Part Name	Function	Part Name Function Part Nam		Part Name	Function		
K6X4016C3F-TB55 K6X4016C3F-TB70 K6X4016C3F-UB55 ¹⁾ K6X4016C3F-UB70 ¹⁾	44-TSOP2-F, 55ns, LL 44-TSOP2-F, 70ns, LL 44-TSOP2-F, 55ns, LL 44-TSOP2-F, 70ns, LL	K6X4016C3F-TF55 K6X4016C3F-TF70 K6X4016C3F-UF55 ¹⁾ K6X4016C3F-UF70 ¹⁾	44-TSOP2-F, 55ns, LL 44-TSOP2-F, 70ns, LL 44-TSOP2-F, 55ns, LL 44-TSOP2-F, 70ns, LL	K6X4016C3F-TQ55 K6X4016C3F-TQ70 K6X4016C3F-UQ55 ¹⁾ K6X4016C3F-UQ70 ¹⁾	44-TSOP2-F, 55ns, L 44-TSOP2-F, 70ns, L 44-TSOP2-F, 55ns, L 44-TSOP2-F, 70ns, L		

^{1.} Lead Free Product

FUNCTIONAL DESCRIPTION

CS	OE	WE	LB	UB	I/O1~8	I/O _{9~16}	Mode	Power
Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
L	Н	Н	X ¹⁾	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Output Disabled	Active
L	L	Н	┙	Н	Dout	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	L	Н	L	L	Dout	Dout	Word Read	Active
L	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	X ¹⁾	L	L	L	Din	Din	Word Write	Active

^{1.} X means don't care. (Must be in low or high state)

ABSOLUTE MAXIMUM RATINGS(1)

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN,VOUT	-0.5 to Vcc+0.5V(max. 7.0V)	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.3 to 7.0	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
		0 to 70		K6X4016C3F-B
Operating Temperature	TA	-40 to 85	°C	K6X4016C3F-F
		-40 to 125		K6X4016C3F-Q

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input high voltage	VIH	2.2	-	Vcc+0.5 ²⁾	V
Input low voltage	VIL	-0.53)	-	0.8	V

Note:

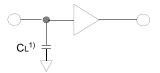
- Commercial Product: Ta=0 to 70°C, otherwise specified Industrial Product: Ta=-40 to 85°C, otherwise specified Automotive Product Ta=-40 to 125°C, otherwise specified
- 2. Overshoot: Vcc+3.0V in case of pulse width $\leq 30 \text{ns}$
- 3. Undershoot: -3.0V in case of pulse width \leq 30ns
- 4. Overshoot and undershoot are sampled, not 100% tested

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS


Item	Symbol	Test Conditions		Min	Тур	Max	Unit
Input leakage current	Iц	VIN=Vss to Vcc			1	1	μΑ
Output leakage current	llo	CS=VIH or OE=VIH or WE=VIL, VIO=VS	s to Vcc	-1	-	1	μΑ
Operating power supply current	Icc	IIO=0mA, CS=VIL, VIN=VIL or VIH, Read	t	-	-	5	mA
Average operating current		Cycle time=1µs, 100% duty, Iio=0mA CS≤0.2V, V _{IN} ≥0.2V or V _{IN} ≥Vcc-0.2V		-	-	7	mA
Avoided operating earliest	ICC2	Cycle time=Min, 100% duty, Iio=0mA, CS=VIL, VIN=VIH or VIL			-	30	mA
Output low voltage	Vol	IoL=2.1mA		-	-	0.4	V
Output high voltage	Voн	Іон=-1.0mA		2.4	-	-	V
Standby Current(TTL)	Isb	СS=VIH, Other inputs = VIL or VIH		-	-	0.4	mA
			K6X4016C3F-B	-	-	20	μА
Standby Current(CMOS)	ISB1	CS≥Vcc-0.2V, Other inputs=0~Vcc	K6X4016C3F-F	-	-	20	μΛ
Output high voltage Standby Current(TTL)			K6X4016C3F-Q	-	-	60	μΑ

AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Test Input/Output Reference)

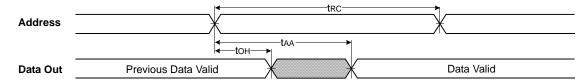
Input pulse level: 0.8 to 2.4V
Input rising and falling time: 5ns
Input and output reference voltage: 1.5V
Output load (See right): CL=100pF+1TTL
CL=50pF+1TTL

1. Including scope and jig capacitance

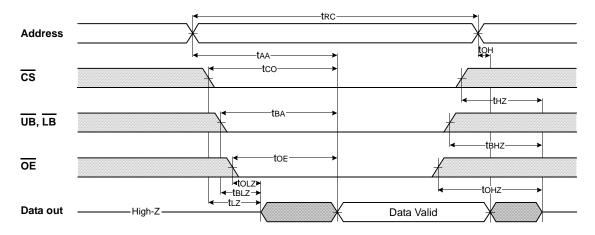
AC CHARACTERISTICS

(Vcc=4.5~5.5V, Commercial Product: Ta=0 to 70°C, Industrial Product: Ta=-40 to 85°C, Automotive Product: Ta=-40 to 125°C,)

				Spee	d Bins		
Parameter List		Symbol	55	5ns	70)ns	Units
			Min	Max	Min	Max	
	Read cycle time	trc	55	-	70	-	ns
	Address access time	taa	-	55	-	70	ns
	Chip select to output	tco	-	55	-	70	ns
	Output enable to valid output	toE	-	25	-	35	ns
	Chip select to low-Z output	tLZ	10	-	10	-	ns
Read	Output enable to low-Z output	toLz	5	-	5	-	ns
Read	LB, UB enable to low-Z output	tBLZ	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	20	0	25	ns
	OE disable to high-Z output	tonz	0	20	0	25	ns
	Output hold from address change	tон	10	-	10	-	ns
	LB, UB valid to data output	tва	-	25	-	35	ns
	UB, LB disable to high-Z output	tBHZ	0	20	0	25	ns
	Write cycle time	twc	55	-	70	-	ns
	Chip select to end of write	tcw	45	-	60	-	ns
	Address set-up time	tas	0	-	0	-	ns
	Address valid to end of write	taw	45	-	60	-	ns
	Write pulse width	twp	45	-	55	-	ns
Write	Write recovery time	twr	0	-	0	-	ns
	Write to output high-Z	twnz	0	20	0	25	ns
	Data to write time overlap	tow	25	-	30	-	ns
	Data hold from write time	tDH	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	ns
	LB, UB valid to end of write	tвw	45	-	60	-	ns


DATA RETENTION CHARACTERISTICS

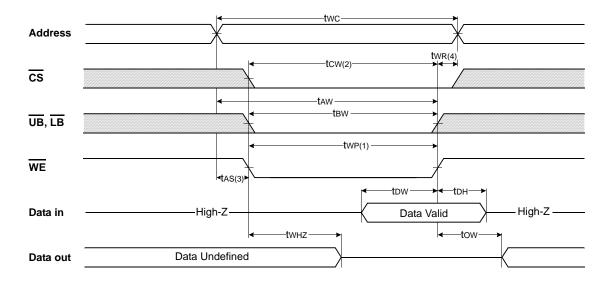
Item	Symbol	Test Cond	Test Condition		Тур	Max	Unit
Vcc for data retention	Vdr	CS ≥Vcc-0.2V	 CS≥Vcc-0.2V			5.5	V
Data retention current	IDR	Vcc=3.0V, CS ≥Vcc-0.2V K6X4016C3F	K6X4016C3F-B			12	
			K6X4016C3F-F		-	12	μΑ
			K6X4016C3F-Q			30	
Data retention set-up time	tsdr	Soo data rotantian wayafa	rm	0	-	-	ms
Recovery time	trdr	See data retention wavelo	See data retention waveform			-	1115



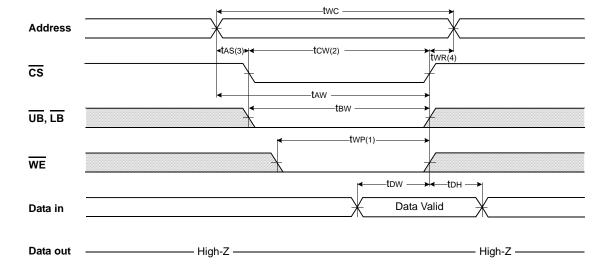
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = VIL, \overline{WE} = VIH, \overline{UB}$ or/and $\overline{LB} = VIL$)

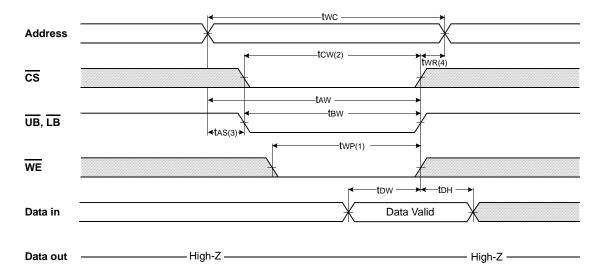
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



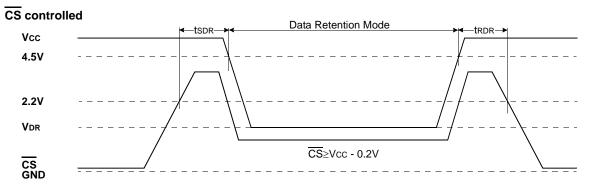
NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

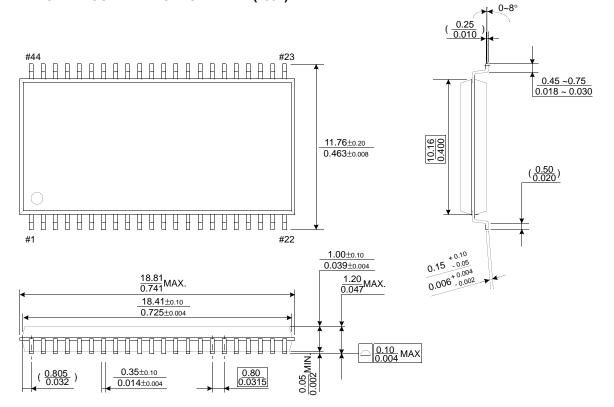


TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)


TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(twr) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The twr is measured from the beginning of write to the end of write.
- 2. tcw is measured from the $\overline{\text{CS}}$ going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.


DATA RETENTION WAVE FORM

PACKAGE DIMENSIONS

Units: millimeter(inch)

44 PIN THIN SMALL OUTLINE PACKAGE TYPE II (400F)

