High Power LED Series
 3535 Ceramic Hot Binning

LH351C

High efficacy and high quality color rendering makes the LH351C suitable use in a broad range of applications

Features \& Benefits

- Operates at a maximum current of up to 2 A
- Uniform light distribution under any beam angle
- 90 CRI makes it well suited for most applications
- Hot binning @ 85 으

Applications

- Indoor Lighting: Spotlight, Downlight
- Outdoor Lighting: Street Light, Tunnel Light, Security Light, Area Light, Stadium/Arena Light
- Industrial Lighting: High Bay Light, Low Bay Light
- Consumer Lighting: Torch Light

Table of Contents

1. Characteristics 3
2. Product Code Information 6
3. Typical Characteristics Graphs 16
4. Outline Drawing \& Dimension 18
5. Reliability Test Items \& Conditions 19
6. Soldering Conditions 20
7. Tape \& Reel ------------------------ 21
8. Label Structure 23
9. Packing Structure 24
10. Precautions in Handling \& Use 26

1. Characteristics

a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Operating Temperature	$\mathrm{T}_{\text {opr }}$	$-40 \sim+105$	${ }^{\circ} \mathrm{C}$	Note 1)*
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+120$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	T_{j}	150	$\bigcirc{ }^{\circ} \mathrm{C}$	-
Forward Current	I_{F}	2000	mA	-
Peak Pulse Forward Current	$I_{\text {fp }}$	2600	mA	Duty $1 / 10$ pulse width 10 ms
Assembly Process Temperature		$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~S} \end{gathered}$	-
ESD (HBM)	-	± 8	kV	-

Notes:

1) Refer to the derating curve, '3. Typical Characteristics Graph', for proper driving current that maintained below maximum junction temperature.
b) Electro-optical Characteristics

Item	Unit	Condition		Value		
		If (mA)	$\mathrm{T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{C}\right)$	Min	Typ	Max
Forward voltage	v	700	85	2.6		3.1
Reverse Voltage (@ 5 mA)	v		25	11		15
Thermal Resistance (junction to solder point)	○C/W		25		3	
Beam Angle	\bigcirc	700	25		128	

Notes:

1) Samsung maintains measurement tolerance of: luminous flux $= \pm 7 \%$, forward voltage $= \pm 0.1 \mathrm{~V}$
2) Characteristics @ $25^{\circ} \mathrm{C}$ are for reference only
c) Luminous Flux Characteristics ($\mathrm{T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

Sorting @ 700 mA (Im)			Calculated Minimum Flux ${ }^{2}$ ((m)				
Flux Rank	Flux Range ${ }^{1)}$	Sub Rank	@ 350 mA	@ 700 mA	@ 1050 mA	@ 1500 mA	@ 2000 mA
FF	$150 \sim 210$	$F B, G B, H B$	81	150	213	284	354
GF	$170 \sim 230$	$G B, H B, J B$	92	170	241	322	401
HF	$190 \sim 250$	$H B, J B, K B$	103	190	269	360	448
JF	$210 \sim 270$	$J B, K B, M B$	114	210	298	398	495
KF	$230 \sim 290$	$K B, M B, N B$	124	230	326	436	542
MF	$250 \sim 310$	$M B, N B, P B$	135	250	354	474	590
NF	$270 \sim 330$	$N B, P B, Q B$	146	270	383	512	637
PF	$290 \sim 350$	$P B, Q B, R B$	157	290	411	550	684
$Q F$	$310 \sim 370$	$Q B, R B, S B$	168	310	439	587	731
RF	$330 \sim 390$	$R B, S B, T B$	178	330	468	625	778
SF	$350 \sim 410$	$S B, T B, U B$	189	350	496	663	825
TF	$370 \sim 430$	$T B, U B, V B$	200	370	524	701	872
UF	$390 \sim 450$	$U B, V B, W B$	211	390	553	739	920
VF	$410 \sim 470$	$V B, W B, Y B$	222	410	581	777	967
WF	$430 \sim 490$	$W B, Y B, Z B$	232	430	609	815	1,014

Notes:

1) Samsung maintains measurement tolerance of: luminous flux $= \pm 7 \%, \mathrm{CRI}= \pm 3$
2) Calculated minimum flux values at $350 / 1050 / 1500 / 2000 \mathrm{~mA}$ are for reference only.

2. Product Code Information

a) Luminous Flux Bins ($\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$ C)

a) Luminous Flux Bins ($\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$ C)

" $\overbrace{}^{*}$ can be "0" (Whole bin), "P" (Quarter bin), or "M" (MacAdam 3-step ellipse bin) of the color binning
" \diamond " can be "T" (Half bin), "N" (MacAdam 5-step ellipse bin) of the color binning
a）Luminous Flux Bins（ $\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$ ）

$\begin{gathered} \text { CRI/ } \\ \text { Nominal CCT (K) } \end{gathered}$	Flux rank											
	FB	GB	HB	JB	KB	MB	NB	PB	QB	RB	SB	TB
（min．flux）	150	170	190	210	230	250	270	290	310	330	350	370
SPHWHTL3D50GE4W ぶHF												
2700 SPHWHTL3D50GE4W ぞJF												
3000 SPHWHTL3D50GE4V ぞJF												
SPHWHTL3D50GE4U えてJF												
90 SPHWHTL3D50GE4UぇKF												
SPHWHTL3D50GE4T ¿JJ $^{\text {J }}$												
SPHWHTL3D50GE4T \＆KF												
SPHWHTL3D50GE4R®KF												
SPHWHTL3D50GE4R®MF												
SPHWHTL3D50GE4Q \diamond KF												
SPHWHTL3D50GE4Q®MF												

＂${ }^{2}$＂can be＂ 0 ＂（Whole bin），＂P＂（Quarter bin），or＂M＂（MacAdam 3－step ellipse bin）of the color binning
＂\diamond＂can be＂T＂（Half bin），＂N＂（MacAdam 5－step ellipse bin）of the color binning
b) Color Bins ($\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

Nominal CCT (K)	CRI (R_{a})	Color Rank	Chromaticity Bins
2200	70	to (Whole bin)	1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G
		$\pi \mathrm{P}$ (Quarter bin)	6, 7, A, B
		2\% M (MacAdam 3-step)	MacAdam 3-step
2700	70, 80, 90	\% (Whole bin)	1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G
		i P (Quarter bin)	6, 7, A, B
		2\% (MacAdam 3-step)	MacAdam 3-step
3000, 3500, 4000	70, 80, 90	≈ 0 (Whole bin)	1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G
		$\pi \mathrm{P}$ (Quarter bin)	6, 7, A, B
		M (MacAdam 3-step)	MacAdam 3-step
	75	≈ 0 (Whole bin)	1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G
5000, 5700	70, 75, 80, 90	HT (Half bin)	1, 2, 3, 4
		\% N (MacAdam 5-step)	MacAdam 5-step
6500	70	\%T (Half bin)	1, 2, 3, 4
		\% N (MacAdam 5-step)	MacAdam 5-step

c) Voltage Bins ($\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

Nominal CCT (K)	CRI (Ra_{a}) Min.	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
-	-	-	E4	E2	2.6 ~ 2.9
				G2	2.9 ~ 3.1

d) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

Region	CIE X	CIE y									
		Y rank	(2200 K)					W rank	(2700 K)		
Y1	0.4805	0.3968	Y9	0.4925	0.4156	W1	0.4373	0.3893	W9	0.4465	0.4071
	0.4854	0.3968		0.4976	0.4156		0.4418	0.3981		0.4513	0.4164
	0.4915	0.4062		0.5038	0.4250		0.4475	0.3994		0.4573	0.4178
	0.4865	0.4062		0.4984	0.4250		0.4428	0.3906		0.4523	0.4085
Y2	0.4854	0.3968	YA	0.4976	0.4156	W2	0.4428	0.3906	WA	0.4523	0.4085
	0.4903	0.3969		0.5028	0.4156		0.4475	0.3994		0.4573	0.4178
	0.4966	0.4062		0.5091	0.4249		0.4532	0.4008		0.4634	0.4193
	0.4915	0.4062		0.5038	0.4250		0.4483	0.3919		0.4582	0.4099
Y3	0.4903	0.3969	YB	0.5028	0.4156	W3	0.4483	0.3919	WB	0.4582	0.4099
	0.4952	0.3969		0.5080	0.4156		0.4532	0.4008		0.4634	0.4193
	0.5016	0.4062		0.5145	0.4249		0.4589	0.4021		0.4695	0.4207
	0.4966	0.4062		0.5091	0.4249		0.4538	0.3931		0.4641	0.4112
Y4	0.4952	0.3969	YC	0.5080	0.4156	W4	0.4538	0.3931	WC	0.4641	0.4112
	0.5000	0.3969		0.5132	0.4156		0.4589	0.4021		0.4695	0.4207
	0.5066	0.4062		0.5198	0.4249		0.4646	0.4034		0.4756	0.4221
	0.5016	0.4062		0.5145	0.4249		0.4593	0.3944		0.4700	0.4126
Y5	0.4865	0.4062	YD	0.4984	0.4250	W5	0.4418	0.3981	WD	0.4513	0.4164
	0.4915	0.4062		0.5038	0.4250		0.4465	0.4071		0.4562	0.4260
	0.4976	0.4156		0.5099	0.4344		0.4523	0.4085		0.4624	0.4274
	0.4925	0.4156		0.5044	0.4344		0.4475	0.3994		0.4573	0.4178
Y6	0.4915	0.4062	YE	0.5038	0.4250	W6	0.4475	0.3994	WE	0.4573	0.4178
	0.4966	0.4062		0.5091	0.4249		0.4523	0.4085		0.4624	0.4274
	0.5028	0.4156		0.5154	0.4343		0.4582	0.4099		0.4687	0.4289
	0.4976	0.4156		0.5099	0.4344		0.4532	0.4008		0.4634	0.4193
Y7	0.4966	0.4062	YF	0.5091	0.4249	W7	0.4532	0.4008	WF	0.4634	0.4193
	0.5016	0.4062		0.5145	0.4249		0.4582	0.4099		0.4687	0.4289
	0.508	0.4156		0.5209	0.4342		0.4641	0.4112		0.4750	0.4304
	0.5028	0.4156		0.5154	0.4343		0.4589	0.4021		0.4695	0.4207
Y8	0.5016	0.4062	YG	0.5145	0.4249	W8	0.4589	0.4021	WG	0.4695	0.4207
	0.5066	0.4062		0.5198	0.4249		0.4641	0.4112		0.4750	0.4304
	0.5132	0.4156		0.5264	0.4342		0.4700	0.4126		0.4813	0.4319
	0.5080	0.4156		0.5209	0.4342		0.4646	0.4034		0.4756	0.4221

d) Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y
		V rank	(3000 K)		
V1	0.4147	0.3814	V9	0.4221	0.3984
	0.4183	0.3898		0.4259	0.4073
	0.4242	0.3919		0.4322	0.4096
	0.4203	0.3833		0.4281	0.4006
V2	0.4203	0.3833	VA	0.4281	0.4006
	0.4242	0.3919		0.4322	0.4096
	0.4300	0.3939		0.4385	0.4119
	0.4259	0.3853		0.4342	0.4028
V3	0.4259	0.3853	VB	0.4342	0.4028
	0.4300	0.3939		0.4385	0.4119
	0.4359	0.3960		0.4449	0.4141
	0.4316	0.3873		0.4403	0.4049
V4	0.4316	0.3873	VC	0.4403	0.4049
	0.4359	0.3960		0.4449	0.4141
	0.4418	0.3981		0.4513	0.4164
	0.4373	0.3893		0.4465	0.4071
V5	0.4183	0.3898	VD	0.4259	0.4073
	0.4221	0.3984		0.4299	0.4165
	0.4281	0.4006		0.4364	0.4188
	0.4242	0.3919		0.4322	0.4096
V6	0.4242	0.3919	VE	0.4322	0.4096
	0.4281	0.4006		0.4364	0.4188
	0.4342	0.4028		0.4430	0.4212
	0.4300	0.3939		0.4385	0.4119
V7	0.4300	0.3939	VF	0.4385	0.4119
	0.4342	0.4028		0.4430	0.4212
	0.4403	0.4049		0.4496	0.4236
	0.4359	0.3960		0.4449	0.4141
V8	0.4359	0.3960	VG	0.4449	0.4141
	0.4403	0.4049		0.4496	0.4236
	0.4465	0.4071		0.4562	0.4260
	0.4418	0.3981		0.4513	0.4164

Region	CIE x	CIE y	Region	CIE x	CIE y
		U rank	(3500 K)		
U1	0.3889	0.3690	U9	0.3941	0.3848
	0.3915	0.3768		0.3968	0.3930
	0.3981	0.3800		0.4040	0.3966
	0.3953	0.3720		0.4010	0.3882
U2	0.3953	0.3720	UA	0.4010	0.3882
	0.3981	0.3800		0.4040	0.3966
	0.4048	0.3832		0.4113	0.4001
	0.4017	0.3751		0.4080	0.3916
U3	0.4017	0.3751	UB	0.4080	0.3916
	0.4048	0.3832		0.4113	0.4001
	0.4116	0.3865		0.4186	0.4037
	0.4082	0.3782		0.4150	0.3950
U4	0.4082	0.3782	UC	0.4150	0.3950
	0.4116	0.3865		0.4186	0.4037
	0.4183	0.3898		0.4259	0.4073
	0.4147	0.3814		0.4221	0.3984
U5	0.3915	0.3768	UD	0.3968	0.3930
	0.3941	0.3848		0.3996	0.4015
	0.4010	0.3882		0.4071	0.4052
	0.3981	0.3800		0.4040	0.3966
U6	0.3981	0.3800	UE	0.4040	0.3966
	0.4010	0.3882		0.4071	0.4052
	0.4080	0.3916		0.4146	0.4089
	0.4048	0.3832		0.4113	0.4001
U7	0.4048	0.3832	UF	0.4113	0.4001
	0.4080	0.3916		0.4146	0.4089
	0.4150	0.3950		0.4222	0.4127
	0.4116	0.3865		0.4186	0.4037
U8	0.4116	0.3865	UG	0.4186	0.4037
	0.4150	0.3950		0.4222	0.4127
	0.4221	0.3984		0.4299	0.4165
	0.4183	0.3898		0.4259	0.4073

d) Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y
		T rank	$4000 \mathrm{~K})$		
T1	0.3670	0.3578	T9	0.3702	0.3722
	0.3726	0.3612		0.3763	0.3760
	0.3744	0.3685		0.3782	0.3837
	0.3686	0.3649		0.3719	0.3797
T2	0.3726	0.3612	TA	0.3763	0.3760
	0.3783	0.3646		0.3825	0.3798
	0.3804	0.3721		0.3847	0.3877
	0.3744	0.3685		0.3782	0.3837
T3	0.3783	0.3646	TB	0.3825	0.3798
	0.3840	0.3681		0.3887	0.3836
	0.3863	0.3758		0.3912	0.3917
	0.3804	0.3721		0.3847	0.3877
T4	0.3840	0.3681	TC	0.3887	0.3837
	0.3898	0.3716		0.3950	0.3875
	0.3924	0.3794		0.3978	0.3958
	0.3863	0.3758		0.3912	0.3917
T5	0.3686	0.3649	TD	0.3719	0.3797
	0.3744	0.3685		0.3782	0.3837
	0.3763	0.3760		0.3802	0.3916
	0.3702	0.3722		0.3736	0.3874
T6	0.3744	0.3685	TE	0.3782	0.3837
	0.3804	0.3721		0.3847	0.3877
	0.3825	0.3798		0.3869	0.3958
	0.3763	0.3760		0.3802	0.3916
T7	0.3804	0.3721	TF	0.3847	0.3877
	0.3863	0.3758		0.3912	0.3917
	0.3887	0.3836		0.3937	0.4001
	0.3825	0.3798		0.3869	0.3958
T8	0.3863	0.3758	TG	0.3912	0.3917
	0.3924	0.3794		0.3978	0.3958
	0.3950	0.3875		0.4006	0.4044
	0.3887	0.3836		0.3937	0.4001

d) Chromaticity Region \& Coordinates

Region	CIE x	CIE y
R rank (5000 K)		
R1	0.3371	0.3490
	0.3451	0.3554
	0.3440	0.3427
	0.3366	0.3369
R2	0.3451	0.3554
	0.3533	0.3620
	0.3515	0.3487
	0.3440	0.3427
R3	0.3376	0.3616
	0.3463	0.3687
	0.3451	0.3554
	0.3371	0.3490
R4	0.3463	0.3687
	0.3551	0.3760
	0.3533	0.3620
	0.3451	0.3554

Region	CIE x	CIE y
Q rank (5700 K)		
Q1	0.3215	0.3350
	0.3290	0.3417
	0.3290	0.3300
	0.3222	0.3243
Q2	0.3290	0.3417
	0.3371	0.3490
	0.3366	0.3369
	0.3290	0.3300
Q3	0.3207	0.3462
	0.3290	0.3538
	0.3290	0.3417
	0.3215	0.3350
Q4	0.3290	0.3538
	0.3376	0.3616
	0.3371	0.3490
	0.3290	0.3417

Region	CIE x	CIE y
Prank (6500 K)		
P1	0.3068	0.3113
	0.3144	0.3186
	0.3130	0.3290
	0.3048	0.3207
P2	0.3144	0.3186
	0.3221	0.3261
	0.3213	0.3373
	0.3130	0.3290
P3	0.3048	0.3207
	0.3130	0.3290
	0.3115	0.3391
	0.3028	0.3304
P4	0.3130	0.3290
	0.3213	0.3373
	0.3205	0.3481
	0.3115	0.3391

e) MacAdam Ellipse ($\left.\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}\right)$

Nom. CCT	Color	Ellipse	Center		Rotation	a	b
(K)	Rank		CIE x	CIE y	Angle $\theta\left({ }^{\circ}\right)$		
2200	YM	3-step	0.5018	0.4153	53.45	0.0072	0.0040
2700	WM	3 -step	0.4578	0.4101	53.70	0.0081	0.0042
3000	VM	3-step	0.4338	0.4030	53.22	0.0083	0.0041
3500	UM	3-step	0.4073	0.3917	54.00	0.0093	0.0041
4000	TM	3-step	0.3818	0.3797	53.72	0.0094	0.0040
5000	RN	5-step	0.3447	0.3553	59.62	0.0137	0.0059
5700	QN	5-step	0.3287	0.3417	59.10	0.0125	0.0053
6500	PN	5-step	0.3123	0.3282	58.57	0.0116	0.0048

Note:

3. Typical Characteristics Graphs

a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

Cool White (CRI70)

b) Forward Current Characteristics ($\mathrm{T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

Warm White (CRI80)

c) Temperature Characteristics $\left(\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}\right)$

d) Color Shift Characteristics ($\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

e) Derating Curve and Beam Angle Chracteristics ($\mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

[Top View]

[Side View]

[Bottom View]

- Measurement unit: mm
- Tolerance: $\pm 0.13 \mathrm{~mm}$

Recommended Soldering Pattern

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s).
2) The thermal pad is electrically isolated from the anode and cathode contact pads.
3) T_{s} point and measurement method:
(1) Measure the nearest point to thermal pad as shown above. If necessary, remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED's characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.
5. Reliability Test Items \& Conditions
a) Test Items

b) Criteria for Judging the Damage

Item	Symbol	Test Condition $\left(T_{j}=25{ }^{\circ} \mathrm{C}\right)$	Min.	Maxit

6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension
(unit: mm)

$2.60 \pm a .10 \times 00)$

Taping Diretion

b) Reel Dimension

Notes:

1) Quantity: The quantity/reel is 800 pcs
2) Cumulative tolerance: Cumulative tolerance / 10 pitches is $\pm 0.2 \mathrm{~mm}$
3) Adhesion strength of cover tape: Adhesion strength is $0.1-0.7 \mathrm{~N}$ when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
4) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 7)

Bin Code:
(a) (b): Forward Voltage bin (refer to 9 page)
(c)(d): Chromaticity bin (refer to 9 page)
(e) \dagger : Luminous Flux bin (refer to 7 page)
b) Lot Number

The lot number is composed of the following characters:

E2R1PB

SPHWHTL3D50CE4RTPF E2R1PB |III|||
(1)(2)(3)(4)(5)(7)(8)(9/I(C)(b)(C)/800 pcs ||
snmsung ctive EH[
(1)(2)(3)(4)(5)(6)(7)(8)(9) $/ 1$ (b)(b) $/ 800 \mathrm{pcs}$
(1), (2) : Production site (GB : Nanchang, China)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) \quad Year (Y: 2014, Z: 2015, A: 2016, B: 2017, C: 2018, D: 2019 ...)
(5) : Month ($\left.1^{\sim} 9, A, B, C\right)$
(6) $:$ Day $\left(1^{\sim} \sim 9, A, B^{\sim} V\right)$
(7)(8) : Product serial number (001~999)
(a)(b) : Reel number (001~999)

9. Packing Structure

a) Packing Process

Material: Paper SW(B)

Type	Size (mm)			Note
	(a)	(b)	(c)	
7 inch (L)	245 ± 5	220 ± 5	182 ± 5	Up to 8 reels
7 inch (S)	245 ± 5	220 ± 5	86 ± 5	Up to 4 reels

(1P) Supplier Part Number: SPHWHTL3D50CE4RTPF
||
(33P) Bin Code / E2R1PB

(1T) Lot Number / GBAB94001
$|||\mid$
(Q) Quantity : 6,400 ||||||||||||||||||
(100) Data Code : 1735
|||||||||||||
(4L) Country of Origin : KR ||||||||||||
2. Peak package body temperature: 240 C
3. Atter this bag is opened, devioes that will be subjected to reflow solidor or other high temperiture processes must be:
a. Mounted within 672 hours at factory conditions of equal to or less than $30 \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at < 10\% RH
4. Devices require bake, before mounting, if:
a.Humidity Indicator Card is $>65 \%$ when read at $23 \pm 5^{\circ} \mathrm{C}$, or b. 2 a is not met.
5. If baking is required, devioss must be baked for 1 hours at $60 \pm 5^{\circ} \mathrm{C}$
Note: i device containers cannot be subjected to high tempernture or shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure,
Bag seal due date: \qquad
(f blank, see code label)
Note: Level and body temperature by IPC/JEDEC J-STD-020

주의 사항

이 안류미늅 지펴 백은 슴기 및 정전기로부터 제품을 보로하 기 위하여 제작되었습니다. 개쏭 후에는 족시 술더 작입율 실 시하는 것을 권장합니다.
슙기 및 정전기로누터 제쭘을 보호 하기 위혜서 개붕 후 사용 하지 않는 자재는 본 滈애 놓이 보难 하시기 바랍니다. 사용하 지 않는 자재를 븐 팩에 넣을 매는 반드시 동봉뎐 드라이 패 가 합께 넣조 지푀부분을 완전하게 밀콩하여 주시기 바랍니다.

- Important

This Al Zipper bag is designed to protect the enclosed products from moisture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zlpper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.
c) Silica Gel \& Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling \& Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment. Shelf life of sealed bags is 12 months at temperature $0 \sim 40 \circ \mathrm{C}, 0^{\sim} 90 \%$ RH.
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30 \circ \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at <10 \% RH
6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5{ }^{\circ} \mathrm{C}$.
8) Devices must be baked for 1 hour at $60 \pm 5{ }^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.

Legal and additional information.

About Samsung Electronics Co., Ltd.

Samsung Electronics Co., Ltd. inspires the world and shapes the future with transformative ideas and technologies, redefining the worlds of TVs, smartphones, wearable devices, tablets, cameras, digital appliances, printers, medical equipment, network systems and semiconductors

We are also leading in the Internet of Things space through, among others, our Digital Health and Smart Home initiatives. We employ 307,000 people across 84 countries. To discover more, please visit our official website at www.samsung.com and our official blog at global.samsungtomorrow.com.

Copyright © 2017 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct t time of creation. Samsung is not liable for errors or omissions. All brand product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
1, Samsung ro
Giheung-gu
Yongin-si, Gyeonggi-do, 17113
KOREA

