Rev. 0.9, Jan. 2016

K4B8G1646D

DDP 8Gb D-die DDR3L SDRAM

96FBGA with Lead-Free & Halogen-Free (RoHS compliant)

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise.

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2016 Samsung Electronics Co., Ltd. All rights reserved.

Revision History

Revision No.	<u>History</u>	Draft Date	<u>Remark</u>	Editor
0.9	- First SPEC release	13th Jan. 2016	-	J.Y.Lee

Table Of Contents

DDP 8Gb D-die DDR3L SDRAM

1. Ordering Information	5
2. Key Features	5
 Package pinout/Mechanical Dimension & Addressing	6 7
4. Input/Output Functional Description	9
5. DDR3 SDRAM Addressing	10
 6. Absolute Maximum Ratings 6.1 Absolute Maximum DC Ratings 6.2 DRAM Component Operating Temperature Range 	
7. AC & DC Operating Conditions 7.1 Recommended DC operating Conditions	
 8. AC & DC Input Measurement Levels 8.1 AC & DC Logic input levels for single-ended signals 8.2 VREF Tolerances 8.3 AC & DC Logic Input Levels for Differential Signals 8.3.1. Differential signals definition 8.3.2. Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) 8.3.3. Single-ended requirements for differential signals 8.4 Differential Input Cross Point Voltage 8.5 Slew rate definition for Differential Input Signals 8.6 Slew rate definitions for Differential Input Signals 	
 9. AC & DC Output Measurement Levels. 9.1 Single-ended AC & DC Output Levels. 9.2 Differential AC & DC Output Levels. 9.3 Single-ended Output Slew Rate 9.4 Differential Output Slew Rate 9.5 Reference Load for AC Timing and Output Slew Rate 9.6 Overshoot/Undershoot Specification 9.6.1. Address and Control Overshoot and Undershoot specifications. 9.6.2. Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications 9.7 34ohm Output Driver DC Electrical Characteristics. 9.7.1. Output Drive Temperature and Voltage Sensitivity. 9.8 On-Die Termination (ODT) Levels and I-V Characteristics 9.8.1. ODT DC Electrical Characteristics. 9.8.2. ODT Temperature and Voltage sensitivity. 9.9 ODT Timing Definitions 9.9.2. ODT Timing Definitions 	
10. IDD Current Measure Method 10.1 IDD Measurement Conditions	
11. DDP 8Gb DDR3 SDRAM D-die IDD Specification Table	42
12. Input/Output Capacitance	43
 13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1866 13.1 Clock Specification 13.1.1 Definition for tCK(avg) 13.1.2 Definition for tCK(abs) 13.1.3 Definition for tCH(avg) and tCL(avg) 13.1.4 Definition for note for tJIT(per), tJIT(per, Ick) 13.1.5 Definition for tJIT(cc), tJIT(cc, Ick) 	
13.1.6. Definition for tERR(nper)	
13.2 Refresh Parameters by Device Density	

13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin	
13.3.1. Speed Bin Table Notes	
14. Timing Parameters by Speed Grade	
14.1 Jitter Notes	
14.2 Timing Parameter Notes	55
14.3 Address/Command Setup, Hold and Derating :	
14.4 Data Setup, Hold and Slew Rate Derating :	

1. Ordering Information

[Table 1] Samsung DDP 8Gb DDR3L D-die ordering information table

Organization	DDR3L-1600 (11-11-11)	DDR3L-1866 (13-13-13) ³	Package
512Mx16	K4B8G1646D-MYK0	K4B8G1646D-MYMA	96 FBGA
512Mx16	K4B8G1646D-MMK0	K4B8G1646D-MMMA	96 FBGA

NOTE :

1. Speed bin is in order of CL-tRCD-tRP.

2. 13th digit stands for below.

"Y" : Commercial temp

"M" : Industrial temp

3. Backward compatible to DDR3-1600(11-11-11)

2. Key Features

[Table 2] DDP 8Gb DDR3 D-die Speed bins

Speed	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	DDR3-1866	Unit
Speed	6-6-6	7-7-7	9-9-9	11-11-11	13-13-13	Onit
tCK(min)	2.5	1.875	1.5	1.25	1.071	ns
CAS Latency	6	7	9	11	13	nCK
tRCD(min)	15	13.125	13.5	13.75	13.91	ns
tRP(min)	15	13.125	13.5	13.75	13.91	ns
tRAS(min)	37.5	37.5	36	35	34	ns
tRC(min)	52.5	50.625	49.5	48.75	47.91	ns

- JEDEC standard 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)
- V_{DDQ} = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)
- + 400 MHz f_{CK} for 800Mb/sec/pin, 533MHz f_{CK} for 1066Mb/sec/pin, 667MHz f_{CK} for 1333Mb/sec/pin, 800MHz f_{CK} for 1600Mb/sec/pin, 933MHz f_{CK} for 1866Mb/sec/pin,
- 8 Banks
- Programmable CAS Latency(posted CAS): 5,6,7,8,9,10,11,12,13
- Programmable Additive Latency: 0, CL-2 or CL-1 clock
- Programmable CAS Write Latency (CWL) = 5 (DDR3-800), 6 (DDR3-1066), 7 (DDR3-1333), 8 (DDR3-1600) and 9(DDR3-1866)
- 8-bit pre-fetch
- Burst Length: 8 (Interleave without any limit, sequential with starting address "000" only), 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS]
- **Bi-directional Differential Data-Strobe**
- Internal(self) calibration : Internal self calibration through ZQ pin (RZQ: 240 ohm ± 1%)
- On Die Termination using ODT pin
- Average Refresh Period 7.8us at lower than $T_{\mbox{CASE}}\,85^{\circ}\mbox{C},\,3.9us$ at 85°C < T_{CASE} <u><</u> 95 °C
- Asynchronous Reset
- Support Industrial Temp (-40~95°C)
- tREFI 7.8us at -40°C < TCASE < 85°C - tREFI 3.9us at 85°C < TCASE < 95°C
- Package: 96 balls FBGA x16
- All of Lead-Free products are compliant for RoHS
- · All of products are Halogen-free

NOTE

1. This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in "DDR3 SDRAM Device Operation & Timing Diagram". 2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.

The DDP 8Gb DDR3 SDRAM D-die is organized as a 64Mbit x 16 I/Os x 8banks device. This synchronous device achieves high speed double-datarate transfer rates of up to 1866Mb/sec/pin (DDR3-1866) for general applications

The chip is designed to comply with the following key DDR3 SDRAM features such as posted CAS, Programmable CWL, Internal (Self) Calibration, On Die Termination using ODT pin and Asynchronous Reset .

All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and CK falling). All I/Os are synchronized with a pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. The address bus is used to convey row, column, and bank address information in a RAS/CAS multiplexing style. The DDR3 device operates with a single 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V) power supply and 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V). .

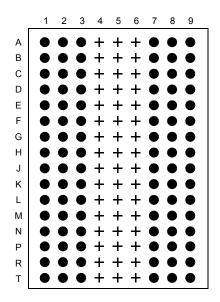
The DDP 8Gb DDR3 D-die device is available in 96ball FBGAs(x16).

3. Package pinout/Mechanical Dimension & Addressing

3.1 x16 DDP Package Pinout (Top view) : 96ball FBGA Package

	1	2	3
Α	V _{DDQ}	DQU5	DQU7
в	V _{SSQ}	V _{DD}	V _{SS}
С	V _{DDQ}	DQU3	DQU1
D	V _{SSQ}	V _{DDQ}	DMU
Е	V _{SS}	V _{SSQ}	DQL0
F	V _{DDQ}	DQL2	DQSL
G	V _{SSQ}	DQL6	DQSL
н	V _{REFDQ}	V _{DDQ}	DQL4
J	ODT1	V _{SS}	RAS
к	ODT0	V _{DD}	CAS
L	CS1	CS0	WE
м	V _{SS}	BA0	BA2
Ν	V _{DD}	A3	A0
Ρ	V _{SS}	A5	A2
R	V _{DD}	A7	A9
Т	V _{SS}	RESET	A13

4	5	6	7	8	9	
			DQU4	V _{DDQ}	V _{SS}	Α
			DQSU	DQU6	V _{SSQ}	в
			DQSU	DQU2	V _{DDQ}	С
			DQU0	V _{SSQ}	V _{DD}	D
			DML	V _{SSQ}	V _{DDQ}	Е
			DQL1	DQL3	V _{SSQ}	F
			V _{DD}	V _{SS}	V _{SSQ}	G
			DQL7	DQL5		Н
			СК	V _{SS}	CKE1	J
			СК	V_{DD}	CKE0	κ
			A10/AP	ZQ0	ZQ1	L
			NC	V _{REFCA}	V _{SS}	М
			A12/BC	BA1	V _{DD}	Ν
			A1	A4	V _{SS}	Ρ
			A11	A6	V _{DD}	R
			A14	A8	V _{SS}	т


Ball Locations (x16)

Populated ball

Ball not populated

Top view

(See the balls through the package)

3.2 Stacked / Dual - die DDR3 SDRAM x16 Ballout

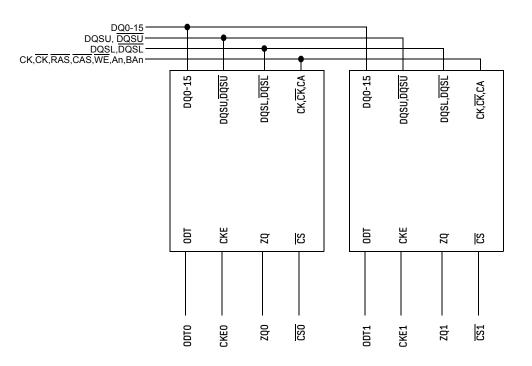
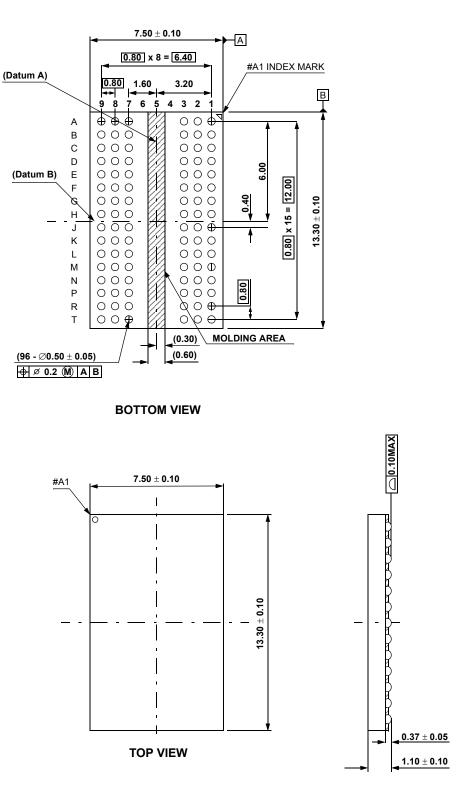



Figure 1. Stacked / Dual -die DDR3 SDRAM x16 rank association

3.3 FBGA Package Dimension (x16)

Units : Millimeters

4. Input/Output Functional Description

[Table 3] Input/Output function description

Symbol	Туре	Function
CK, CK	Input	Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of \overline{CK} . Output (read) data is referenced to the crossings of CK and \overline{CK}
CKE	Input	Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After V _{REFCA} has become stable during the power on and initialization sequence, it must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.
CS	Input	Chip Select: All commands are masked when \overline{CS} is registered HIGH. \overline{CS} provides for external Rank selection on systems with multiple Ranks. \overline{CS} is considered part of the command code.
ODT	Input	On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is programmed to disable ODT.
RAS, CAS, WE	Input	Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.
DM (DMU), (DML)	Input	Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.
BA0 - BA2	Input	Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS cycle.
A0 - A14	Input	Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions, see below) The address inputs also provide the op-code during Mode Register Set commands.
A10 / AP	Input	Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be per- formed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge) A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.
A12 / BC	Input	Burst Chop: A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be per- formed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details
RESET	Input	Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH. RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and 20% of V _{DD} , i.e. 1.20V for DC high and 0.30V for DC low.
DQ	Input/Output	Data Input/ Output: Bi-directional data bus.
DQS, (DQS)	Input/Output	Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide differential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and does not support single-ended.
TDQS, (TDQS)	Output	Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/ x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1.
NC		No Connect: No internal electrical connection is present.
V _{DDQ}	Supply	DQ Power Supply: 1.35V(1.28V~1.45V) or & 1.5V(1.425V~1.575V)
V _{SSQ}	Supply	DQ Ground
V _{DD}	Supply	Power Supply: 1.35V(1.28V~1.45V) or & 1.5V(1.425V~1.575V)
V _{SS}	Supply	Ground
V _{REFDQ}	Supply	Reference voltage for DQ
V _{REFCA}	Supply	Reference voltage for CA
ZQ	Supply	Reference Pin for ZQ calibration
	NOTE : II	nput only pins (BA0-BA2, A0-A14, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.

5. DDR3 SDRAM Addressing

1Gb

Configuration	256Mb x 4	128Mb x 8	64Mb x 16
# of Bank	8	8	8
Bank Address	BA0 - BA2	BA0 - BA2	BA0 - BA2
Auto precharge	A10/AP	A10/AP	A10/AP
Row Address	A0 - A13	A0 - A13	A0 - A12
Column Address	A0 - A9,A11	A0 - A9	A0 - A9
BC switch on the fly	A12/BC	A12/BC	A12/BC
Page size ^{*1}	1 KB	1 KB	2 KB

2Gb

Configuration	512Mb x 4	256Mb x 8	128Mb x 16
# of Bank	8	8	8
Bank Address	BA0 - BA2	BA0 - BA2	BA0 - BA2
Auto precharge	A10/AP	A10/AP	A10/AP
Row Address	A0 - A14	A0 - A14	A0 - A13
Column Address	A0 - A9,A11	A0 - A9	A0 - A9
BC switch on the fly	A12/BC	A12/BC	A12/BC
Page size ^{*1}	1 KB	1 KB	2 KB

4Gb

Configuration	1Gb x 4	512Mb x 8	256Mb x 16
# of Bank	8	8	8
Bank Address	BA0 - BA2	BA0 - BA2	BA0 - BA2
Auto precharge	A10/AP	A10/AP	A10/AP
Row Address	A0 - A15	A0 - A15	A0 - A14
Column Address	A0 - A9,A11	A0 - A9	A0 - A9
BC switch on the fly	A12/BC	A12/BC	A12/BC
Page size ^{*1}	1 KB	1 KB	2 KB

8Gb

Configuration	2Gb x 4	1Gb x 8	512Mb x 16
# of Bank	8	8	8
Bank Address	BA0 - BA2	BA0 - BA2	BA0 - BA2
Auto precharge	A10/AP	A10/AP	A10/AP
Row Address	A0 - A15	A0 - A15	A0 - A15
Column Address	A0 - A9,A11,A13	A0 - A9,A11	A0 - A9
BC switch on the fly	A12/BC	A12/BC	A12/BC
Page size ^{*1}	2 KB	2 KB	2 KB

NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered. Page size is per bank, calculated as follows: page size = $2^{\text{COLBITS}} * \text{ORG} \div 8$ where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits

6. Absolute Maximum Ratings

6.1 Absolute Maximum DC Ratings

[Table 4] Absolute Maximum DC Ratings

Symbol	Parameter	Rating	Units	NOTE
V _{DD}	Voltage on V_{DD} pin relative to Vss	-0.4 V ~ 1.80 V	V	1,3
V _{DDQ}	Voltage on V_{DDQ} pin relative to Vss	-0.4 V ~ 1.80 V	V	1,3
V _{IN,} V _{OUT}	Voltage on any pin relative to Vss	-0.4 V ~ 1.80 V	V	1
T _{STG}	Storage Temperature	-55 to +100	°C	1, 2

NOTE :

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.

3. V_{DD} and V_{DDQ} must be within 300mV of each other at all times;and V_{REF} must be not greater than 0.6 x V_{DDQ}, When V_{DD} and V_{DDQ} are less than 500mV; V_{REF} may be equal to or less than 300mV.

6.2 DRAM Component Operating Temperature Range

[Table 5] Temperature Range

Symbol	Paramet	ter	rating	Unit	NOTE
T _{OPER}	Operating Temperature Bange	Normal	0 to 95	°C	1, 2, 4
	Operating remperature Range	perating Temperature Range Industrial		°C	1, 3, 4

NOTE :

1. Operating Temperature T_{OPER} is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2.

2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions

3. The Industrial Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between -40-85°C under all operating conditions

4. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:

a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.

b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0_b and MR2 A7 = 1_b).

7. AC & DC Operating Conditions

7.1 Recommended DC operating Conditions

[Table 6] Recommended DC Operating Conditions

Symbol	Parameter	Operation Voltage		Rating		Units	NOTE
		Operation Voltage	Min.	Тур.	Max.	Units	NOTE
V _{DD}		1.35V	1.283	1.35	1.45	V	1, 2, 3
V DD	Supply Voltage	1.5V	1.425	1.5	1.575	V	1, 2, 3
V	V _{DDQ} Supply Voltage for Output	1.35V	1.283	1.35	1.45	V	1, 2, 3
♥ DDQ		1.5V	1.425	1.5	1.575	V	1, 2, 3

NOTE :

1. Under all conditions V_{DDQ} must be less than or equal to V_{DD} .

2. V_{DDQ} tracks with $V_{\text{DD}}.$ AC parameters are measured with V_{DD} and V_{DDQ} tied together.

3. V_{DD} & V_{DDQ} rating are determined by operation voltage.

8. AC & DC Input Measurement Levels

8.1 AC & DC Logic input levels for single-ended signals

[Table 7] Single-ended AC & DC input levels for Command and Address(1.35V)

Symbol	Parameter	DDR3L-800/10	066/1333/1600	DDR3I	L-1866	Unit	NOTE
Symbol	raiameter	Min.	Max.	Min.	Max.		NOTE
			1.35V				
V _{IH.CA} (DC90)	DC input logic high	V _{REF} + 90	V _{DD}	V _{REF} + 90	V _{DD}	mV	1
V _{IL.CA} (DC90)	DC input logic low	V _{SS}	V _{REF} - 90	V _{SS}	V _{REF} - 90	mV	1
V _{IH.CA} (AC160)	AC input logic high	V _{REF} + 160	Note 2	-	-	mV	1,2,5
V _{IL.CA} (AC160)	AC input logic low	Note 2	V _{REF} - 160	-	-	mV	1,2,5
V _{IH.CA} (AC135)	AC input logic high	V _{REF} +135	Note 2	V _{REF} +135	Note 2	mV	1,2,5
V _{IL.CA} (AC135)	AC input logic lowM	Note 2	V _{REF} -135	Note 2	V _{REF} -135	mV	1,2,5
V _{IH.CA} (AC125)	AC input logic high	-	-	V _{REF} + 125	Note 2	mV	1,2,5
V _{IL.CA} (AC125)	AC input logic low	-	-	Note 2	V _{REF} + 125	mV	1,2,5
V _{REFCA} (DC)	Reference Voltage for ADD, CMD inputs	0.49*V _{DD}	0.51*V _{DD}	0.49*V _{DD}	0.51*V _{DD}	V	3,4

NOTE : 1. For input only pins except $\overline{\text{RESET}}$, $V_{\text{REF}} = V_{\text{REFCA}}(DC)$

2. See "Overshoot and Undershoot specifications" section.

3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).

 For reference: approx. VDD/2 +/- 13.5 mV
 These levels apply for 1.35 Volt operation only. If the device is operated at 1.5 V, the respective levels in JESD79-3 (VIH/L.CA(DC100), VIH/L.CA(AC175), VIHL.CA(AC150), VIH/L.CA(AC135), VIH/L.CA(AC125)etc.) apply. The 1.5 V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIH/L.CA(AC125)etc.) do not apply when the device is operated in the 1.35 voltage range.

[Table 8] Single-ended AC & DC input levels for Command and Address(1.5V)

Symbol	Parameter	DDR3-800/10	66/1333/1600	DDR3	-1866	Unit	NOTE
Symbol	Falameter	Min. Max.		Min. Max.		Unit	NOTE
			1.5V				
V _{IH.CA} (DC100)	DC input logic high	V _{REF} + 100	V _{DD}	V _{REF} + 100	V _{DD}	mV	1,5
V _{IL.CA} (DC100)	DC input logic low	V _{SS}	V _{REF} - 100	V _{SS}	V _{REF} - 100	mV	1,6
V _{IH.CA} (AC175)	AC input logic high	V _{REF} + 175	Note 2	-	-	mV	1,2,7
V _{IL.CA} (AC175)	AC input logic low	Note 2	V _{REF} - 175	-	-	mV	1,2,8
V _{IH.CA} (AC150)	AC input logic high	V _{REF} +150	Note 2	-	-	mV	1,2,7
V _{IL.CA} (AC150)	AC input logic low	Note 2	V _{REF} -150	-	-	mV	1,2,8
V _{IH.CA} (AC135)	AC input logic high	-	-	V _{REF} + 135	Note 2	mV	1,2,7
V _{IL.CA} (AC135)	AC input logic low	-	-	Note 2	V _{REF} - 135	mV	1,2,8
V _{IH.CA} (AC125)	AC input logic high	-	-	V _{REF} +125	Note 2	mV	1,2,7
V _{IL.CA} (AC125)	AC input logic low	-	-	Note 2	V _{REF} -125	mV	1,2,8
V _{REFCA} (DC)	Reference Voltage for ADD, CMD inputs	0.49*V _{DD}	0.51*V _{DD}	0.49*V _{DD}	0.51*V _{DD}	V	3,4,9

NOTE : 1. For input only pins except $\overline{\text{RESET}}$, $V_{\text{REF}} = V_{\text{REFCA}}(\text{DC})$

2. See "Overshoot and Undershoot specifications" section.

3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).

4. For reference: approx. VDD/2 +/- 15 mV.

5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)

6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)

^{7.} VIH(ac) is used as a simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135), and VIH.CA(AC125); VIH.CA(AC175) value is used when Vref + 0.175V is referenced, VIH.CA(AC150) value is used when Vref + 0.150V is referenced, VIH.CA(AC135) value is used when Vref + 0.135V is referenced, and VIH.CA(AC125) value is used when Vref + 0.125V is referenced.

^{8.} VIL(ac) is used as a simplified symbol for VIL.CA(AC175), VIL.CA(AC150), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC175) value is used when Vref - 0.175V is referenced, VIL.CA(AC150) value is used when Vref - 0.150V is referenced, VIL.CA(AC135) value is used when Vref - 0.135V is referenced, and VIL.CA(AC125) value is used when Vref - 0.125V is referenced. 9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device

[Table 9] Single-ended AC & DC input levels for DQ and DM(1.35V)

Symbol	Parameter	DDR3L-8	800/1066	DDR3L-1	333/1600	DDR31	1866	Unit	NOTE
Symbol	Falameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	NOTE
			1.3	5V					
V _{IH.DQ} (DC90)	DC input logic high	V _{REF} + 90	V_{DD}	V _{REF} + 90	V _{DD}	V _{REF} + 90	V _{DD}	mV	1
V _{IL.DQ} (DC90)	DC input logic low	V _{SS}	V _{REF} - 90	V _{SS}	V _{REF} - 90	V _{SS}	V _{REF} - 90	mV	1
V _{IH.DQ} (AC160)	AC input logic high	V _{REF} + 160	Note 2	-	-	-	-	mV	1,2,5
V _{IL.DQ} (AC160)	AC input logic low	Note 2	V _{REF} - 160	-	-	-	-	mV	1,2,5
V _{IH.DQ} (AC135)	AC input logic high	V _{REF} + 135	Note 2	V _{REF} + 135	Note 2	-	-	mV	1,2,5
V _{IL.DQ} (AC135)	AC input logic low	Note 2	V _{REF} - 135	Note 2	V _{REF} - 135	-	-	mV	1,2,5
V _{IH.DQ} (AC130)	AC input logic high	-	-	-	-	V _{REF} + 130	Note 2	mV	1,2,5
V _{IL.DQ} (AC130)	AC input logic low	-	-	-	-	Note 2	V _{REF} - 130	mV	1,2,5
V _{REFDQ} (DC)	Reference Voltage for DQ, DM inputs	0.49*V _{DD}	0.51*V _{DD}	0.49*V _{DD}	0.51*V _{DD}	0.49*V _{DD}	0.51*V _{DD}	V	3,4

NOTE :

1. For input only pins except RESET, V_{REF} = V_{REFDQ}(DC)

2. See "Overshoot and Undershoot specifications" section.

3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference:approx. +/- 13.5 mV).

 For reference: approx. VDD/2 +/- 13.5 mV.
 These levels apply for 1.35 Volt operation only. If the device is operated at 1.5 V, the respective levels in JESD79-3 (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/ L.DQ(AC150), VIH/L.DQ(AC135), etc.) apply. The 1.5 V levels (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135), etc.) do not apply when the device is operated in the 1.35 voltage range.

[Table 10] Single-ended AC & DC input levels for DQ and DM (1.5V)

Symbol	Baramatar	DDR3-8	00/1066	DDR3-13	33/1600	DDR3	-1866	Unit	NOTE
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
			1	.5V					
V _{IH.DQ} (DC100)	DC input logic high	V _{REF} + 100	V _{DD}	V _{REF} + 100	V _{DD}	V _{REF} + 100	V _{DD}	mV	1,5
V _{IL.DQ} (DC100)	DC input logic low	V _{SS}	V _{REF} - 100	V _{SS}	V _{REF} - 100	V _{SS}	V _{REF} - 100	mV	1,6
V _{IH.DQ} (AC175)	AC input logic high	V _{REF} + 175	NOTE 2	-	-	-	-	mV	1,2,7
V _{IL.DQ} (AC175)	AC input logic low	NOTE 2	V _{REF} - 175	-	-	-	-	mV	1,2,8
V _{IH.DQ} (AC150)	AC input logic high	V _{REF} + 150	NOTE 2	V _{REF} + 150	NOTE 2	-	-	mV	1,2,7
V _{IL.DQ} (AC150)	AC input logic low	NOTE 2	V _{REF} - 150	NOTE 2	V _{REF} - 150	-	-	mV	1,2,8
V _{IH.DQ} (AC135)	AC input logic high	V _{REF} + 135	NOTE 2	V _{REF} + 135	NOTE 2	V _{REF} + 135	NOTE 2	mV	1,2,7,10
V _{IL.DQ} (AC135)	AC input logic low	NOTE 2	V _{REF} - 135	NOTE 2	V _{REF} - 135	NOTE 2	V _{REF} - 135	mV	1,2,8,10
V _{REFDQ} (DC)	Reference Voltage for DQ, DM inputs	0.49*V _{DD}	0.51*V _{DD}	0.49*V _{DD}	0.51*V _{DD}	0.49*V _{DD}	0.51*V _{DD}	V	3,4,9

NOTE :

1. For input only pins except $\overline{\text{RESET}}$, $V_{\text{REF}} = V_{\text{REFDQ}}(\text{DC})$

2. See "Overshoot and Undershoot specifications" section.

3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).

4. For reference: approx. VDD/2 +/- 15 mV.

5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)

6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)

7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150), and VIH.DQ(AC135); VIH.DQ(AC175) value is used when Vref + 0.175V is referenced,

VIH.DQ(AC150) value is used when Vref + 0.150V is referenced, and VIH.DQ(AC135) value is used when Vref + 0.135V is referenced.

8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150), and VIL.DQ(AC135); VIL.DQ(AC175) value is used when Vref - 0.175V is referenced, VIL.DQ(AC150) value is used when Vref - 0.150V is referenced, and VIL.DQ(AC135) value is used when Vref - 0.135V is referenced.

9. VrefDQ(DC) is measured relative to VDD at the same point in time on the same device

10. Optional in DDR3 SDRAM for DDR3-800/1066/1333/1600: Users should refer to the DRAM supplier data sheetand/or the DIMM SPD to determine if DDR3 SDRAM devices support this option.

$8.2\,V_{REF}\,Tolerances$

The dc-tolerance limits and ac-noise limits for the reference voltages V_{REFCA} and V_{REFDQ} are illustrate in Figure 1. It shows a valid reference voltage $V_{REF}(t)$ as a function of time. (V_{REF} stands for V_{REFCA} and V_{REFDQ} likewise).

 $V_{REF}(DC)$ is the linear average of $V_{REF}(t)$ over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7 on page 13. Furthermore $V_{REF}(t)$ may temporarily deviate from $V_{REF}(DC)$ by no more than $\pm 1\% V_{DD}$.

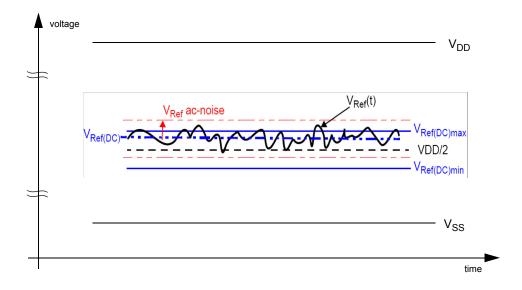


Figure 1. Illustration of V_{REF}(DC) tolerance and VREF ac-noise limits

The voltage levels for setup and hold time measurements $V_{IH}(AC)$, $V_{IH}(DC)$, $V_{IL}(AC)$ and $V_{IL}(DC)$ are dependent on V_{REF} .

"V_{REF}" shall be understood as $V_{REF}(DC),$ as defined in Figure 1 .

This clarifies, that dc-variations of V_{REF} affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for $V_{REF}(DC)$ deviations from the optimum position within the data-eye of the input signals.

This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V_{REF} ac-noise. Timing and voltage effects due to ac-noise on V_{REF} up to the specified limit (+/-1% of V_{DD}) are included in DRAM timings and their associated deratings.

8.3 AC & DC Logic Input Levels for Differential Signals

8.3.1 Differential signals definition

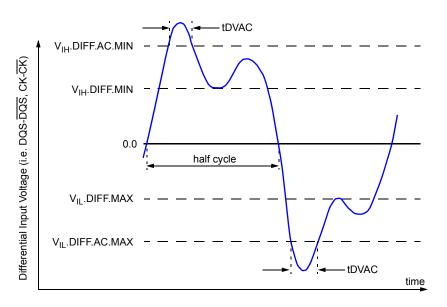


Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC

8.3.2 Differential swing requirement for clock (CK - \overline{CK}) and strobe (DQS - \overline{DQS})

[Table 11] Differential AC & DC Input Levels

Symbol Parameter		1.3	5V	1.	5V	unit	NOTE
		min	max	min	max		
V _{IHdiff}	differential input high	+0.18	NOTE 3	+0.20	NOTE 3	V	1
V _{ILdiff}	differential input low	NOTE 3	-0.18	NOTE 3	-0.20	V	1
V _{IHdiff} (AC)	differential input high ac	2 x (V _{IH} (AC) - V _{REF})	NOTE 3	2 x (V _{IH} (AC) - V _{REF})	NOTE 3	V	2
V _{ILdiff} (AC)	differential input low ac	NOTE 3 2 x (V _{IL} (AC) - V _{REF})		NOTE 3 2 x (V _{IL} (AC) - V _{REF})		V	2

NOTE :

1. Used to define a differential signal slew-rate.

2. for CK - CK use V_{IH}/V_{IL}(AC) of ADD/CMD and V_{REFCA}; for DQS - DQS use V_{IH}/V_{IL}(AC) of DQs and V_{REFDQ}; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.

3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS need to be within the respective limits (V_{IH}(DC) max, V_{IL}(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"

[Table 12] Allowed time before ringback (tDVAC) for CK - $\overline{\text{CK}}$ and DQS - $\overline{\text{DQS}}$ (1.35V)

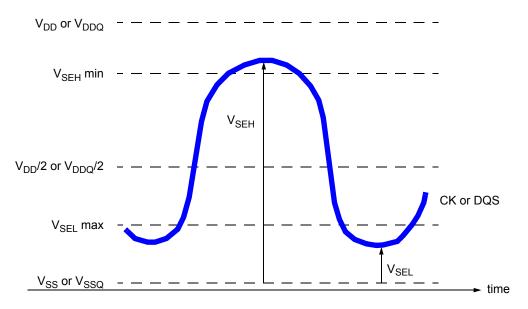
	C	DR3L-800/10	066/1333/160	0	DDR3L-1866						
Slew Rate [V/ns]	tDVAC [ps] @ V _{IH/} _{Ldiff} (AC) = 320mV		tDVAC [ps] @ V _{IH/} _{Ldiff} (AC) = 270mV		tDVAC [ps] @ VIH/Ldiff(ac) =270mV		tDVAC [ps] @ VIH/Ldiff(ac) =250mV		tDVAC [ps] @ VIH/Ldiff(ac) =260mV		
	min	max	min	max	min	max	min	max	min	max	
> 4.0	189	-	201	-	163	-	168	-	176	-	
4.0	189	-	201	-	163	-	168	-	176	-	
3.0	162	-	179	-	140	-	147	-	154	-	
2.0	109	-	134	-	95	-	105	-	111	-	
1.8	91	-	119	-	80	-	91	-	97	-	
1.6	69	-	100	-	62	-	74	-	78	-	
1.4	40	-	76	-	37	-	52	-	56	-	
1.2	note	-	44	-	5	-	22	-	24	-	
1.0	note	-	note	-	note	-	note	-	note	-	
< 1.0	note	-	note	-	note	-	note	-	note	-	

NOTE: Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.

[Table 13] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.5V)

			DDR3-800/10	66/1333/1600)			DDR	3-1866	
Slew Rate [V/ns]	tDVAC [ps] @ V _{IH/Ldiff} (AC)= 350mV		tDVAC [ps] @ V _{IH/Ldiff} (AC)= 300mV		tDVAC [ps] @ VIH/L diff(ac) =270mv (DQS - DQS#) only (Optional)		tDVAC [ps] @ V _{IH/Ldiff} (AC) = 270mV		tDVAC [ps] @ V _{IH/Ldiff} (AC) =250mV(CK - CK#) only	
	min	max	min	max	min	max	min	max	min	max
> 4.0	75	-	175	-	214	-	134	-	139	-
4.0	57	-	170	-	214	-	134	-	139	-
3.0	50	-	167	-	191	-	112	-	118	-
2.0	38	-	119	-	146	-	67	-	77	-
1.8	34	-	102	-	131	-	52	-	63	-
1.6	29	-	81	-	113	-	33	-	45	-
1.4	22	-	54	-	88	-	9	-	23	-
1.2	note	-	19	-	56	-	note	-	note	-
1.0	note	-	note	-	11	-	note	-	note	-
< 1.0	note	-	note	-	note	-	note	-	note	-

NOTE: Rising input differential signal shall become equal to or greater than VIHdiff(ac) level and Falling input differential signal shall become equal to or less than VILdiff(ac) level.


8.3.3 Single-ended requirements for differential signals


Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for single-ended signals.

CK and CK have to approximately reach V_{SEH}min / V_{SEL}max [approximately equal to the ac-levels { V_{IH}(AC) / V_{IL}(AC)} for ADD/CMD signals] in every half-cycle.

DQS, DQSL, DQSU, DQS, DQSL have to reach V_{SEH}min / V_{SEL}max [approximately the ac-levels { V_{IH}(AC) / V_{IL}(AC)} for DQ signals] in every half-cycle proceeding and following a valid transition.

Note that the applicable ac-levels for ADD/CMD and DQ's might be different per speed-bin etc. E.g. if $V_{IH}150(AC)/V_{IL}150(AC)$ is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and \overline{CK} .

Note that while ADD/CMD and DQ signal requirements are with respect to V_{REF} , the single-ended components of differential signals have a requirement with respect to $V_{DD}/2$; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach V_{SEL} max, V_{SEH} min has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.

Symbol	Parameter	DDR3-800/1066	Unit	NOTE	
	Faldilleter	Min	Max		NOTE
V _{SEH}	Single-ended high-level for strobes	(V _{DD} /2)+0.175	NOTE3	V	1, 2
* SEH	Single-ended high-level for CK, \overline{CK}	(V _{DD} /2)+0.175	NOTE3	V	1, 2
V _{SEL}	Single-ended low-level for strobes	NOTE3	(V _{DD} /2)-0.175	V	1, 2
* SEL	Single-ended low-level for CK, \overline{CK}	NOTE3	(V _{DD} /2)-0.175	V	1, 2

[Table 14] Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU

NOTE :

1. For CK, \overline{CK} use $V_{IH}/V_{IL}(AC)$ of ADD/CMD; for strobes (DQS, \overline{DQS} , DQSL, \overline{DQSL} , DQSU, \overline{DQSU}) use $V_{IH}/V_{IL}(AC)$ of DQs.

2. V_{IH}(AC)/V_{IL}(AC) for DQs is based on V_{REFDQ}; V_{IH}(AC)/V_{IL}(AC) for ADD/CMD is based on V_{REFCA}; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here

3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU, DQSU need to be within the respective limits (V_{IH}(DC) max, V_{IL}(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification"

8.4 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, \overline{CK} and DQS, \overline{DQS}) must meet the requirements in below table. The differential input cross point voltage V_{IX} is measured from the actual cross point of true and complement signal to the mid level between of V_{DD} and V_{SS}.

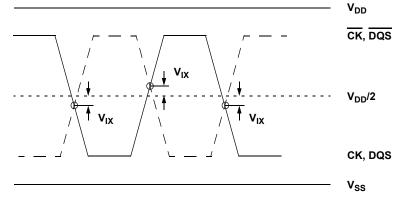


Figure 4. VIX Definition

[Table 15] Cross point voltage for differential input signals (CK, DQS) : 1.35V

Symbol	Parameter	DDR3L-800/1066	/1333/1600/1866	Unit	NOTE
	Falameter	Min	Мах	Onne	NOTE
V _{IX}	Differential Input Cross Point Voltage relative to $V_{DD}/2$ for CK, \overline{CK}	-150	150	mV	1
V _{IX}	Differential Input Cross Point Voltage relative to V _{DD} /2 for DQS,DQS	-150	150	mV	

NOTE :

1. The relationbetween Vix Min/Max and VSEL/VSEH should satisfy following.

 $(VDD/2) + Vix(Min) - VSEL \ge 25mV$

VSEH - ((VDD/2) + Vix(Max)) $\ge 25mV$

[Table 16] Cross point voltage for differential input signals (CK, DQS) : 1.5V

Symbol	Parameter	DDR3-800/1066/	1333/1600/1866	Unit	NOTE
Symbol	Falameter	Min Max for CK CK -150 150	Onit	NOTE	
V _{IX}	Differential Input Cross Point Voltage relative to $V_{DD}/2$ for CK, \overline{CK}	-150	150	mV	
*IX		-175	175	mV	1
V _{IX}	Differential Input Cross Point Voltage relative to $V_{DD}/2$ for DQS, DQS	-150	150	mV	

NOTE :

1. Extended range for V_{IX} is only allowed for clock and if single-ended clock input signals CK and \overline{CK} are monotonic, have a single-ended swing V_{SEL} / V_{SEH} of at least V_{DD}/2 ±250 mV, and the differential slew rate of CK- \overline{CK} is larger than 3 V/ ns.

8.5 Slew rate definition for Differential Input Signals

See 14.3 "Address/Command Setup, Hold and Derating :" on page 50 for single-ended slew rate definitions for address and command signals. See 14.4 "Data Setup, Hold and Slew Rate Derating :" on page 56 for single-ended slew rate definitions for data signals.

8.6 Slew rate definitions for Differential Input Signals

Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 17 and Figure 5.

[Table 17] Differential input slew rate definition

Description	Meas	ured	Defined by
Description	From	То	Defined by
Differential input slew rate for rising edge (CK-CK and DQS-DQS)	V _{ILdiffmax}	V _{IHdiffmin}	[V _{IHdiffmin} - V _{ILdiffmax] /} Delta TRdiff
Differential input slew rate for falling edge (CK-CK and DQS-DQS)	V _{IHdiffmin}	VILdiffmax	[V _{IHdiffmin} - V _{ILdiffmax] /} Delta TFdiff

NOTE :

The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds.

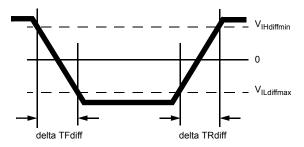


Figure 5. Differential Input Slew Rate definition for DQS, DQS, and CK, CK

9. AC & DC Output Measurement Levels

9.1 Single-ended AC & DC Output Levels

[Table 18] Single-ended AC & DC output levels

Symbol	Parameter	DDR3-800/1066/1333/1600/1866	Units	NOTE
V _{OH} (DC)	DC output high measurement level (for IV curve linearity)	0.8 x V _{DDQ}	V	
V _{OM} (DC)	DC output mid measurement level (for IV curve linearity)	0.5 x V _{DDQ}	V	
V _{OL} (DC)	DC output low measurement level (for IV curve linearity)	0.2 x V _{DDQ}	V	
V _{OH} (AC)	AC output high measurement level (for output SR)	V _{TT} + 0.1 x V _{DDQ}	V	1
V _{OL} (AC)	AC output low measurement level (for output SR)	V _{TT} - 0.1 x V _{DDQ}	V	1

NOTE : 1. The swing of +/-0.1 x V_{DDQ} is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to V_{TT}=V_{DDQ}/2.

9.2 Differential AC & DC Output Levels [Table 19] Differential AC & DC output levels

SymbolParameterDDR3-800/1066/1333/1600/1866UnitsNOTEV_{OHdiff}(AC)AC differential output high measurement level (for output SR)+0.2 x V_{DDQ}V1V_{OLdiff}(AC)AC differential output low measurement level (for output SR)-0.2 x V_{DDQ}V1

NOTE : 1. The swing of +/-0.2xV_{DDQ} is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to V_{TT}=V_{DDQ}/2 at each of the differential outputs.

9.3 Single-ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between $V_{OL}(AC)$ and $V_{OH}(AC)$ for single ended signals as shown in Table 20 and Figure 6.

[Table 20] Single-ended output slew rate definition

Description	Meas	ured	Defined by
Description	From	То	Denned by
Single ended output slew rate for rising edge	V _{OL} (AC)	V _{OH} (AC)	[V _{OH} (AC)-V _{OL} (AC)] / Delta TRse
Single ended output slew rate for falling edge	V _{OH} (AC)	V _{OL} (AC)	[V _{OH} (AC)-V _{OL} (AC)] / Delta TFse

NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.

[Table 21] Single-ended output slew rate

Parameter Sy	Symbol	Operation	DDR	3-800	DDR3	-1066	DDR3	-1333	DDR3	-1600	DDR3	-1866	Units
	Symbol	Voltage	Min	Мах	Min	Max	Min	Мах	Min	Max	Min	Max	Units
Single ended output slew rate	SRQse	1.35V	1.75	5 ¹⁾	V/ns								
	0110000	1.5V	2.5	5	2.5	5	2.5	5	2.5	5	2.5	5	V/ns

Description : SR : Slew Rate

Q : Query Output (like in DQ, which stands for Data-in, Query-Output)

se : Single-ended Signals

For Ron = RZQ/7 setting

NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.

- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ signals in the same byte lane are static (i.e they stay at either high or low).

- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.

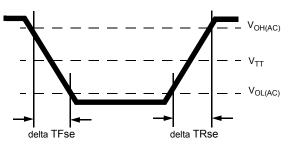


Figure 6. Single-ended Output Slew Rate Definition

9.4 Differential Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between $V_{OLdiff}(AC)$ and $V_{OHdiff}(AC)$ for differential signals as shown in Table 22 and Figure 7.

[Table 22] Differential output slew rate definition

Description	Meas	ured	Defined by
Description	From	То	Denned by
Differential output slew rate for rising edge	V _{OLdiff} (AC)	V _{OHdiff} (AC)	[V _{OHdiff} (AC)-V _{OLdiff} (AC)] / Delta TRdiff
Differential output slew rate for falling edge	V _{OHdiff} (AC)	V _{OLdiff} (AC)	[V _{OHdiff} (AC)-V _{OLdiff} (AC)]/ Delta TFdiff

NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.

[Table 23] Differential output slew rate

Parameter	Symbol	Operation	DDR	3-800	DDR3	-1066	DDR3	-1333	DDR3	-1600	DDR3	-1866	Units
	Symbol	Voltage	Min	Мах	Min	Мах	Min	Мах	Min	Max	Min	Max	Units
Differential output slew rate	SRQdiff	1.35V	3.5	12	3.5	12	3.5	12	3.5	12	3.5	12	V/ns
	SKQUIII	1.5V	5	10	5	10	5	10	5	10	5	12	V/ns

Description : SR : Slew Rate

Q : Query Output (like in DQ, which stands for Data-in, Query-Output)

diff : Differential Signals

For Ron = RZQ/7 setting

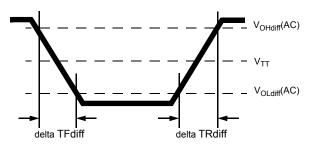


Figure 7. Differential Output Slew Rate Definition

9.5 Reference Load for AC Timing and Output Slew Rate

Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements.

It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.

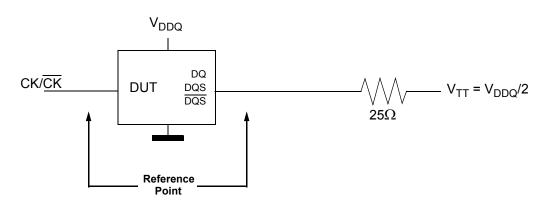


Figure 8. Reference Load for AC Timing and Output Slew Rate

9.6 Overshoot/Undershoot Specification

9.6.1 Address and Control Overshoot and Undershoot specifications

[Table 24] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2. CS. RAS. CAS. WE. CKE, ODT)

Parameter	Specification						
Parameter	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	DDR3-1866	Unit	
	1.35V						
Maximum peak amplitude allowed for overshoot area (See Figure 9)	0.4	0.4	0.4	0.4	0.4	V	
Maximum peak amplitude allowed for undershoot area (See Figure 9)	0.4	0.4	0.4	0.4	0.4	V	
Maximum overshoot area above V _{DD} (See Figure 9)	0.67	0.5	0.4	0.33	0.28	V-ns	
Maximum undershoot area below V _{SS} (See Figure 9)	0.67	0.5	0.4	0.33	0.28	V-ns	
	1.5V	•	-	-	· · · · · · · · · · · · · · · · · · ·		
Maximum peak amplitude allowed for overshoot area (See Figure 9)	0.4	0.4	0.4	0.4	0.4	V	
Maximum peak amplitude allowed for undershoot area (See Figure 9)	0.4	0.4	0.4	0.4	0.4	V	
Maximum overshoot area above V _{DD} (See Figure 9)	0.67	0.5	0.4	0.33	0.28	V-ns	
Maximum undershoot area below V _{SS} (See Figure 9)	0.67	0.5	0.4	0.33	0.28	V-ns	
(A0-A15, BA0-BA3, CS#,	RAS#, CAS#,	WE#, CKE, C	DT)				

The sum of the applied voltage (VDD) and peak amplitude overshoot voltage is not to exceed absolute maximum DC ratings
 The sum of applied voltage (VDD) and the peak amplitude undershoot voltage is not to exceed absolute maximum DC ratings

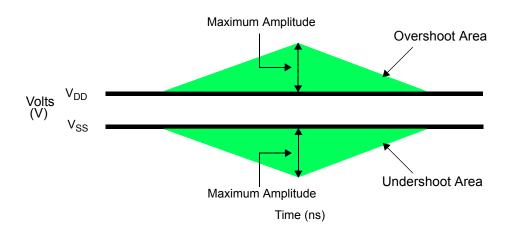


Figure 9. Address and Control Overshoot and Undershoot Definition

9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications

[Table 25] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK)

DDD2 000		Specification						
DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	DDR3-1866	Unit			
1.35V								
0.4	0.4	0.4	0.4	0.4	V			
0.4	0.4	0.4	0.4	0.4	V			
0.25	0.19	0.15	0.13	0.10	V-ns			
0.25	0.19	0.15	0.13	0.10	V-ns			
1.5V	•							
0.4	0.4	0.4	0.4	0.4	V			
0.4	0.4	0.4	0.4	0.4	V			
0.25	0.19	0.15	0.13	0.10	V-ns			
0.25	0.19	0.15	0.13	0.10	V-ns			
Q, DQS, DQS	#, DM)			11				
	0.4 0.25 0.25 1.5V 0.4 0.4 0.25 0.25	0.4 0.4 0.4 0.4 0.25 0.19 0.25 0.19 1.5V 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.25 0.19	0.4 0.4 0.4 0.4 0.4 0.4 0.25 0.19 0.15 0.25 0.19 0.15 1.5V 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.25 0.19 0.15 0.25 0.19 0.15	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.25 0.19 0.15 0.13 0.25 0.19 0.15 0.13 0.25 0.19 0.15 0.13 1.5V 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.25 0.19 0.15 0.13 0.25 0.19 0.15 0.13	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.25 0.19 0.15 0.13 0.10 0.25 0.19 0.15 0.13 0.10 0.25 0.19 0.15 0.13 0.10 ISV 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.25 0.19 0.15 0.13 0.10 0.25 0.19 0.15 0.13 0.10			

The sum of the applied voltage (VDD) and peak amplitude overshoot voltage is not to exceed absolute maximum DC ratings
 The sum of applied voltage (VDD) and the peak amplitude undershoot voltage is not to exceed absolute maximum DC ratings

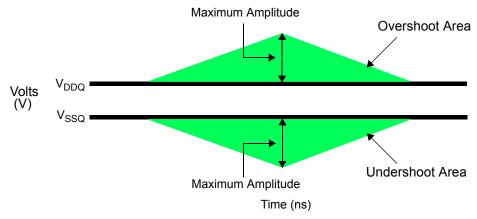


Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot Definition

9.7 34ohm Output Driver DC Electrical Characteristics

A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ as follows: RON₃₄ = RZQ/7 (Nominal 34.3ohms +/- 10% with nominal RZQ=240ohm)

The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows

RONpu =	V _{DDQ} -V _{OUT}	under the condition that RONpd is turned off
KONpu –	l lout l	
RONpd =	V _{OUT}	under the condition that RONpu is turned off
KONPU –	l lout l	
		Output Driver

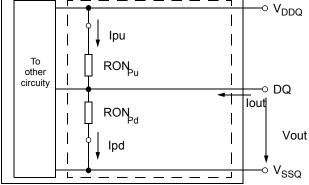


Figure 11. Output Driver : Definition of Voltages and Currents

[Table 26] Output Driver DC Electrical Characteristics, assuming RZQ=240ohms ;

entire operating temperature range ; after proper ZQ calibration

RONnom	Resistor	Vout	Min	Nom	Мах	Units	Notes
		1.	.35V	•			
		V_{OLdc} = 0.2 x V_{DDQ}	0.6	1.0	1.15		1,2,3
	RON34pd	V_{OMdc} = 0.5 x V_{DDQ}	0.9	1.0	1.15		1,2,3
2406-		V_{OHdc} = 0.8 x V_{DDQ}	0.9	1.0	1.45	D70 / 7	1,2,3 1,2,3
34Ohms		V_{OLdc} = 0.2 x V_{DDQ}	0.9	1.0	1.45	RZQ/7	1,2,3
	RON34pu	V_{OMdc} = 0.5 x V_{DDQ}	0.9	1.0	1.15		1,2,3
		V _{OHdc} = 0.8 x V _{DDQ}	0.6	1.0	1.15		1,2,3 1,2,3
		V_{OLdc} = 0.2 x V_{DDQ}	0.6	1.0	1.15		1,2,3
	RON40pd	V_{OMdc} = 0.5 x V_{DDQ}	0.9	1.0	1.15		1,2,3
40Ohms RC		V_{OHdc} = 0.8 x V_{DDQ}	0.9	1.0	1.45	D7 0/0	1,2,3
		V_{OLdc} = 0.2 x V_{DDQ}	0.9	1.0	1.45	RZQ/6	1,2,3
	RON40pu	V _{OMdc} = 0.5 x V _{DDQ}	0.9	1.0	1.15		1,2,3
		V_{OHdc} = 0.8 x V_{DDQ}	0.6	1.0	1.15		1,2,3
	Pull-up and Pull-down, pupd	V_{OMdc} = 0.5 x V_{DDQ}	-10		10	%	1,2,4
		1	.5V				
		V_{OLdc} = 0.2 x V_{DDQ}	0.6	1.0	1.1		1,2,3
	RON34pd	V _{OMdc} = 0.5 x V _{DDQ}	0.9	1.0	1.1		1,2,3
34Ohms		V _{OHdc} = 0.8 x V _{DDQ}	0.9	1.0	1.4	RZQ/7	1,2,3
34011115		V_{OLdc} = 0.2 x V_{DDQ}	0.9	1.0	1.4	RZQ/7	1,2,3
	RON34pu	V_{OMdc} = 0.5 x V_{DDQ}	0.9	1.0	1.1		1,2,3
		V_{OHdc} = 0.8 x V_{DDQ}	0.6	1.0	1.1		1,2,3
		V_{OLdc} = 0.2 x V_{DDQ}	0.6	1.0	1.1		1,2,3
	RON40pd	V_{OMdc} = 0.5 x V_{DDQ}	0.9	1.0	1.1		1,2,3
100hm		V_{OHdc} = 0.8 x V_{DDQ}	0.9	1.0	1.4	D70 /0	1,2,3
40Ohms		V_{OLdc} = 0.2 x V_{DDQ}	0.9	1.0	1.4	RZQ/6	1,2,3
	RON40pu	V_{OMdc} = 0.5 x V_{DDQ}	0.9	1.0	1.1		1,2,3
		V _{OHdc} = 0.8 x V _{DDQ}	0.6	1.0	1.1		1,2,3
	Pull-up and Pull-down, pupd	V _{OMdc} = 0.5 x V _{DDQ}	-10		10	%	1,2,4

NOTE :

1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity

2. The tolerance limits are specified under the condition that V_{DDQ} = V_{DD} and that V_{SSQ} = V_{SS}

3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X V_{DDQ}. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 X V_{DDQ} and 0.8 X V_{DDQ}

4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X V_{DDQ} :

 $MMpupd = \frac{RONpu - RONpd}{RONnom} \times 100$

9.7.1 Output Drive Temperature and Voltage Sensitivity

If temperature and/or voltage change after calibration, the tolerance limits widen according to Table 27 and Table 28.

 $\Delta T = T - T(@calibration); \quad \Delta V = V_{DDQ} - V_{DDQ} (@calibration); \quad V_{DD} = V_{DDQ}$

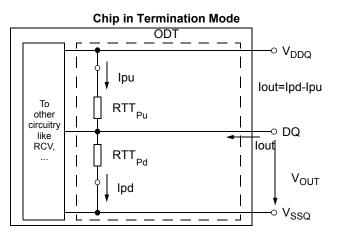
*dR_{ON}dT and dR_{ON}dV are not subject to production test but are verified by design and characterization

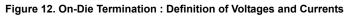
[Table 27] Output Driver Sensitivity Definition

	Min	Мах	Units
RONPU@V _{OHDC}	0.6 - dR _{ON} dTH * ∆T - dR _{ON} dVH * ∆V	1.1 + dR _{ON} dTH * ΔT + dR _{ON} dVH * ΔV	RZQ/7
RON@V _{OMDC}	0.9 - dR _{ON} dTM * ΔT - dR _{ON} dVM * ΔV	1.1 + dR _{ON} dTM * ΔT + dR _{ON} dVM * ΔV	RZQ/7
RONPD@ _{VOLDC}	0.6 - dR _{ON} dTL * ∆T - dR _{ON} dVL * ∆V	1.1 + $dR_{ON}dTL * \Delta T $ + $dR_{ON}dVL * \Delta V $	RZQ/7

[Table 28] Output Driver Voltage and Temperature Sensitivity

Speed Bin	800/1066/1333 1			/1866	Units
	Min	Мах	Min	Мах	Onits
dR _{ON} dTM	0	1.5	0	1.5	%/°C
dR _{ON} dVM	0	0.15	0	0.13	%/mV
dR _{ON} dTL	0	1.5	0	1.5	%/°C
dR _{ON} dVL	0	0.15	0	0.13	%/mV
dR _{ON} dTH	0	1.5	0	1.5	%/°C
dR _{ON} dVH	0	0.15	0	0.13	%/mV


9.8 On-Die Termination (ODT) Levels and I-V Characteristics


On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.

ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins.

A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as follows :

DTTou -	V _{DDQ} -V _{OUT}	under the condition that RTTpd is turned off
RTTpu =	l lout l	
RTTpd =	V _{OUT}	under the condition that RTTpu is turned off
KTIPU -	l lout l	

9.8.1 ODT DC Electrical Characteristics

Table 29 provides and overview of the ODT DC electrical characteristics. They values for $RTT_{60pd120}$, $RTT_{60pu120}$, $RTT_{120pd240}$, $RTT_{120pu240}$, RTT_{40pd80} , RTT_{40pu80} , RTT_{30pd60} , RTT_{30pu60} , RTT_{20pu40} , RTT_{20pu40} are not specification requirements, but can be used as design guide lines:

[Table 29] ODT DC Electrical Characteristics, assuming RZQ=240ohm +/- 1% entire operating temperature range; after proper ZQ calibration

			1.35V						
IR1 (A9,A6,A2)	RTT	RESISTOR	Vout	Min	Nom	Мах	Unit	Notes	
			$V_{OL}(DC) 0.2XV_{DDQ}$	0.6	1.0	1.15	R _{ZQ}	1,2,3,4	
		RTT _{120pd240}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ}	1,2,3,4	
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.45	R _{ZQ}	1,2,3,4	
(0,1,0)	120 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.45	R _{ZQ}	1,2,3,4	
		RTT _{120pu240}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ}	1,2,3,4	
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.15	R _{ZQ}	1,2,3,4	
		RTT ₁₂₀	$V_{IL}(AC)$ to $V_{IH}(AC)$	0.9	1.0	1.65	R _{ZQ} /2	1,2,5	
			$V_{OL}(DC) 0.2XV_{DDQ}$	0.6	1.0	1.15	R _{ZQ} /2	1,2,3,4	
		RTT _{60pd120}	$0.5 XV_{DDQ}$	0.9	1.0	1.15	R _{ZQ} /2	1,2,3,4	
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /2	1,2,3,4	
(0,0,1)	60 ohm		$V_{OL}(DC) 0.2XV_{DDQ}$	0.9	1.0	1.45	R _{ZQ} /2	1,2,3,4	
		RTT _{60pu120}	$0.5 XV_{DDQ}$	0.9	1.0	1.15	R _{ZQ} /2	1,2,3,4	
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /2	1,2,3,4	
		RTT ₆₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.65	R _{ZQ} /4	1,2,5	
	40 ohm	RTT _{40pd80}	V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /3	1,2,3,4	
			$0.5 XV_{DDQ}$	0.9	1.0	1.15	R _{ZQ} /3	1,2,3,4	
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /3	1,2,3,4	
(0,1,1)		RTT _{40pu80}	V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /3	1,2,3,4	
			0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /3	1,2,3,4	
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /3	1,2,3,4	
		RTT ₄₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.65	R _{ZQ} /6	1,2,5	
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /4	1,2,3,4	
		RTT _{30pd60}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /4	1,2,3,4	
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /4	1,2,3,4	
(1,0,1)	30 ohm	30 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /4	1,2,3,4
		RTT _{30pu60}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /4	1,2,3,4	
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /4	1,2,3,4	
		RTT ₃₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.65	R _{ZQ} /8	1,2,5	
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /6	1,2,3,4	
		RTT _{20pd40}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /6	1,2,3,4	
		ļ Ē	V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /6	1,2,3,4	
(1,0,0)	20 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.45	R _{ZQ} /6	1,2,3,4	
		RTT _{20pu40}	0.5XV _{DDQ}	0.9	1.0	1.15	R _{ZQ} /6	1,2,3,4	
		ļ Ē	V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.15	R _{ZQ} /6	1,2,3,4	
		RTT ₂₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.65	R _{ZQ} /12	1,2,5	
/iation of V _M w.r.t '	$V_{\rm PPO}/2$ AVM	1 I		-5		5	%	1,2,5,6	

			1.5V					
MR1 (A9,A6,A2)	RTT	RESISTOR	Vout	Min	Nom	Мах	Unit	Notes
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.1	R _{ZQ}	1,2,3,4
		RTT _{120pd240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ}	1,2,3,4
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.4	R _{ZQ}	1,2,3,4
(0,1,0)	120 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.4	R _{ZQ}	1,2,3,4
		RTT _{120pu240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ}	1,2,3,4
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.1	R _{ZQ}	1,2,3,4
		RTT ₁₂₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.6	R _{ZQ} /2	1,2,5
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /2	1,2,3,4
		RTT _{60pd240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /2	1,2,3,4
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /2	1,2,3,4
(0,0,1)	60 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /2	1,2,3,4
		RTT _{60pu240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /2	1,2,3,4
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /2	1,2,3,4
		RTT ₆₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.6	R _{ZQ} /4	1,2,5
	40 ohm	RTT _{40pd240}	V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /3	1,2,3,4
			0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /3	1,2,3,4
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /3	1,2,3,4
(0,1,1)		RTT _{40pu240}	V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /3	1,2,3,4
			0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /3	1,2,3,4
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /3	1,2,3,4
		RTT ₄₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.6	R _{ZQ} /6	1,2,5
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /4	1,2,3,4
		RTT _{60pd240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /4	1,2,3,4
			V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /4	1,2,3,4
(1,0,1)	30 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /4	1,2,3,4
		RTT _{60pu240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /4	1,2,3,4
			V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /4	1,2,3,4
		RTT ₆₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.6	R _{ZQ} /8	1,2,5
			V _{OL} (DC) 0.2XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /6	1,2,3,4
		RTT _{60pd240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /6	1,2,3,4
		Į Ī	V _{OH} (DC) 0.8XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /6	1,2,3,4
(1,0,0)	20 ohm		V _{OL} (DC) 0.2XV _{DDQ}	0.9	1.0	1.4	R _{ZQ} /6	1,2,3,4
		RTT _{60pu240}	0.5XV _{DDQ}	0.9	1.0	1.1	R _{ZQ} /6	1,2,3,4
		l [V _{OH} (DC) 0.8XV _{DDQ}	0.6	1.0	1.1	R _{ZQ} /6	1,2,3,4
		RTT ₆₀	V _{IL} (AC) to V _{IH} (AC)	0.9	1.0	1.6	R _{ZQ} /12	1,2,5
eviation of V _M w.r.t	V _{DDQ} /2, ΔVM	•		-5		5	%	1,2,5,6

K4B8G1646D

- 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity
- 2. The tolerance limits are specified under the condition that V_{DDQ} = V_{DD} and that V_{SSQ} = V_{SS}
- Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XV_{DDQ}. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2XV_{DDQ} and 0.8XV_{DDQ}.
- 4. Not a specification requirement, but a design guide line
- 5. Measurement definition for RTT:
 - Apply V_{IH}(AC) to pin under test and measure current I(V_{IH}(AC)), then apply V_{IL}(AC) to pin under test and measure current I(V_{IL}(AC)) respectively

$$RTT = \frac{V_{IH}(AC) - V_{IL}(AC)}{I(V_{IH}(AC)) - I(V_{II}(AC))}$$

6. Measurement definition for V_M and ΔV_M : Measure voltage (V_M) at test pin (midpoint) with no load

$$\Delta V_{\rm M} = \left(\frac{2 \times V_{\rm M}}{V_{\rm DDQ}} - 1 \right) \times 100$$

9.8.2 ODT Temperature and Voltage sensitivity

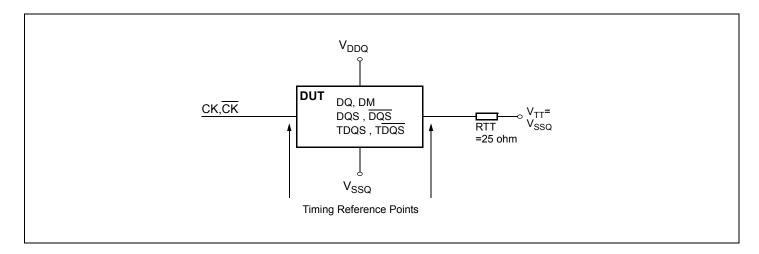
If temperature and/or voltage change after calibration, the tolerance limits widen according to table below

 $\Delta T = T - T(@calibration); \quad \Delta V = V_{DDQ} - V_{DDQ} (@calibration); \quad V_{DD} = V_{DDQ}$

[Table 30] ODT Sensitivity Definition

	Min	Мах	Units
RTT	0.9 - dR _{TT} dT * $ \Delta T $ - dR _{TT} dV * $ \Delta V $	1.6 + dR _{TT} dT * $ \Delta T $ + dR _{TT} dV * $ \Delta V $	RZQ/2,4,6,8,12

[Table 31] ODT Voltage and Temperature Sensitivity


	Min	Мах	Units
dR _{TT} dT	0	1.5	%/°C
dR _{TT} dV	0	0.15	%/mV

NOTE : These parameters may not be subject to production test. They are verified by design and characterization.

9.9 ODT Timing Definitions

9.9.1 Test Load for ODT Timings

Different than for timing measurements, the reference load for ODT timings is defined in Figure 13.

Figure 13. ODT Timing Reference Load

9.9.2 ODT Timing Definitions

Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 32 and subsequent figures. Measurement reference settings are provided in Table 33.

[Table 32] ODT Timing Definitions

Symbol	Begin Point Definition	End Point Definition	Figure
tAON	Rising edge of CK - \overline{CK} defined by the end point of ODTLon	Extrapolated point at V _{SSQ}	Figure 14
tAONPD	Rising edge of CK - \overline{CK} with ODT being first registered high	Extrapolated point at V _{SSQ}	Figure 15
tAOF	Rising edge of CK - \overline{CK} defined by the end point of ODTLoff	End point: Extrapolated point at V _{RTT_Nom}	Figure 16
tAOFPD	Rising edge of CK - \overline{CK} with ODT being first registered low	End point: Extrapolated point at V _{RTT_Nom}	Figure 17
	Rising edge of CK - \overline{CK} defined by the end point of ODTLcnw, ODTL-cwn4 of ODTLcwn8	End point: Extrapolated point at V_{RTT_Wr} and V_{RTT_Nom} respectively	Figure 18

[Table 33] Reference Settings for ODT Timing Measurements

Measured Parameter	RTT_Nom Setting	RTT_Wr Setting	V _{SW1} [V]	V _{SW2} [V]	NOTE
tAON	R _{ZQ} /4	NA	0.05	0.10	
IAON	R _{ZQ} /12	NA	0.10	0.20	
tAONPD	R _{ZQ} /4	NA	0.05	0.10	
IAONPD	R _{ZQ} /12	NA	0.10	0.20	
tAOF	R _{ZQ} /4	NA	0.05	0.10	
IAUF	R _{ZQ} /12	NA	0.10	0.20	
tAOFPD	R _{ZQ} /4	NA	0.05	0.10	
IAUFPD	R _{ZQ} /12	NA	0.10	0.20	
tADC	R _{ZQ} /12	R _{ZQ} /2	0.20	0.25	

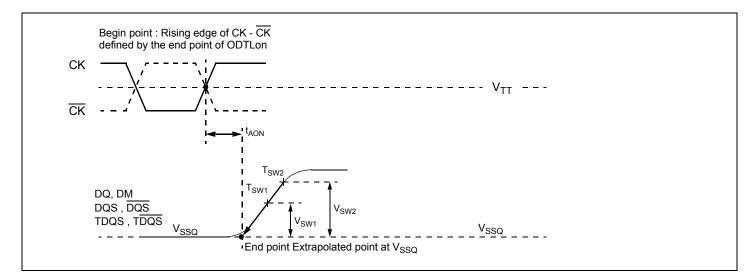


Figure 14. Definition of tAON

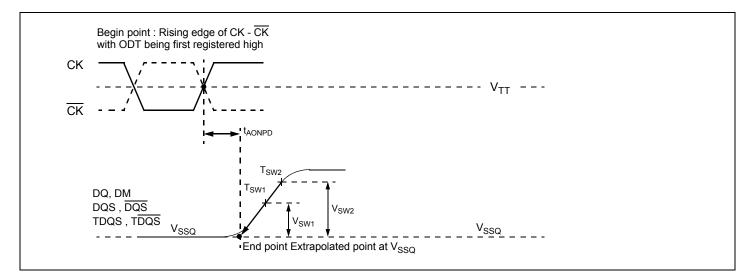
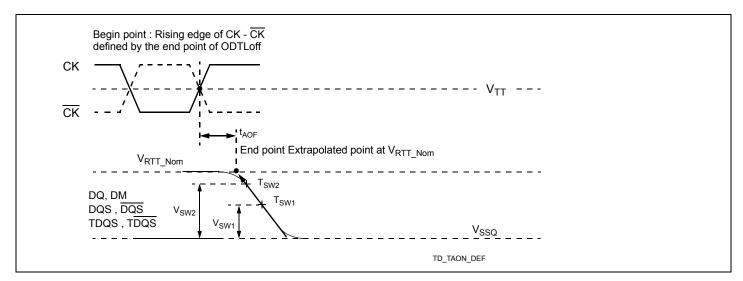
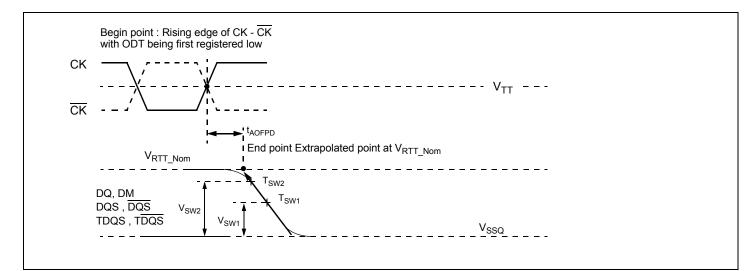




Figure 15. Definition of tAONPD

Figure 17. Definition of tAOFPD

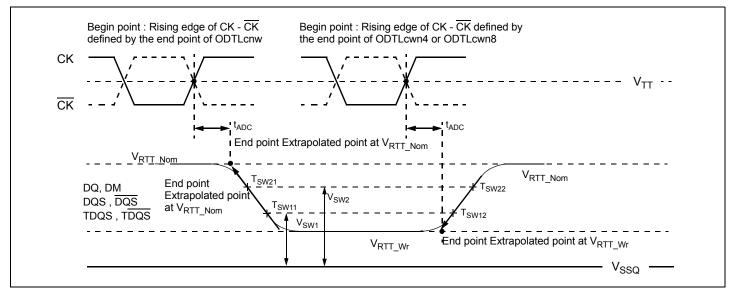


Figure 18. Definition of tADC

10. IDD Current Measure Method

10.1 IDD Measurement Conditions

In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and IDDQ measurements.

- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all V_{DD} balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents.
- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents.
- Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since V_{DD} and V_{DDQ} are using one merged-power layer in Module PCB.

For IDD and IDDQ measurements, the following definitions apply :

- "0" and "LOW" is defined as $V_{IN} \leq V_{IL}AC(max)$.
- "1" and "HIGH" is defined as $V_{IN} \ge V_{IH}AC(min)$.
- "FLOATING" is defined as inputs are V_{REF} = V_{DD} / 2.
- "Timing used for IDD and IDDQ Measured Loop Patterns" are provided in Table 34
- "Basic IDD and IDDQ Measurement Conditions" are described in Table 35
- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 31 through Table 39.
- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting
- RON = RZQ/7 (34 Ohm in MR1);
- Qoff = 0B (Output Buffer enabled in MR1);
- RTT_Nom = RZQ/6 (40 Ohm in MR1);
- RTT_Wr = RZQ/2 (120 Ohm in MR2);
- TDQS Feature disabled in MR1
- Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
- Define $\underline{D} = \{\underline{CS}, \underline{RAS}, \underline{CAS}, \underline{WE}\} := \{HIGH, LOW, LOW, LOW\}$ Define $\overline{D} = \{\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE}\} := \{HIGH, HIGH, HIGH, HIGH\}$
- RESET Stable time is : During a Cold Bood RESET (Initialization), current reading is valid once power is stable and RESET has been LOW for 1ms; During Warm Boot RESET(while operating), current reading is valid after RESET has been LOW for 200ns + tRFC

Demonstra	. Dia	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	DDR3-1866	l la it
Paramete	r Bin	6-6-6	7-7-7	9-9-9	11-11-11	13-13-13	Unit
tCKmin(IDD)		2.5	1.875	1.5	1.25	1.071	ns
CL(IDD)		6	7	9	11	13	nCK
tRCDmin(IDD)		6	7	9	11	13	nCK
tRCmin(IDD)		21	27	33	39	45	nCK
tRASmin(IDD)		15	20	24	28	32	nCK
tRPmin(IDD)		6	7	9	11	13	nCK
	x4/x8	16	20	20	24	26	nCK
tFAW(IDD)	x16	20	27	30	32	33	nCK
	x4/x8	4	4	4	5	5	nCK
tRRD(IDD)	x16	4	6	5	6	6	nCK
tRFC(IDD) - 51	2Mb	36	48	60	72	85	nCK
tRFC(IDD) - 10	Gb	44	59	74	88	103	nCK
tRFC(IDD) - 20	Gb	64	86	107	128	150	nCK
tRFC(IDD) - 40	Gb	104	139	174	208	243	nCK
tRFC(IDD) - 80	Gb	140	187	234	280	328	nCK

[Table 34] Timing used for IDD and IDDQ Measured - Loop Patterns

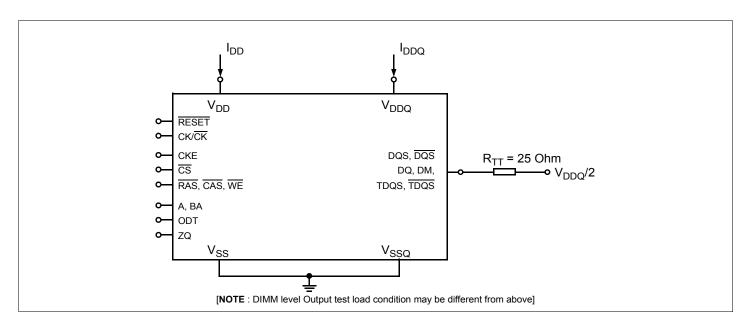


Figure 19. Measurement Setup and Test Load for IDD and IDDQ Measurements

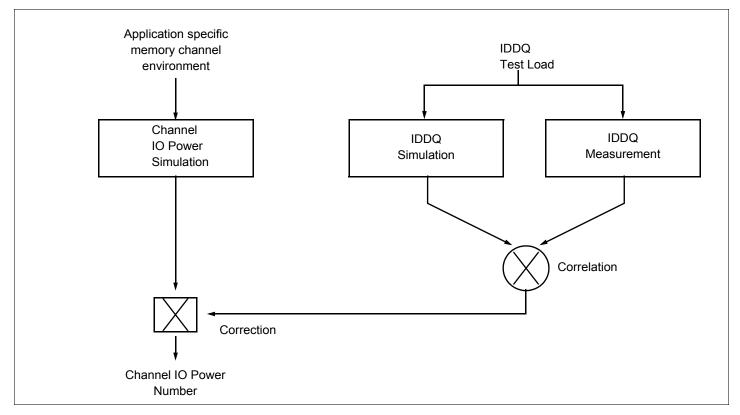


Figure 20. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.

[Table 35] Basic IDD and IDDQ Measurement Conditions

Symbol	Description
IDD0	Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 34 on page 34 ; BL: 8 ¹); AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 36 on page 38 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active
	at a time: 0,0,1,1,2,2, (see Table 36); Output Buffer and RTT: Enabled in Mode Registers ²); ODT Signal: stable at 0; Pattern Details: see Table 36 Operating One Bank Active-Read-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 34 on page 34 ; BL: 8 ¹); AL: 0; CS: High between ACT, RD and PRE; Command,
IDD1	Address, Bank Address Inputs, Data IO: partially toggling according to Table 37 on page 39; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2, (see Table 37); Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at 0; Pattern Details: see Table 37
IDD2N	Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 34 on page 34; BL: 8 ¹); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially tog- gling according to Table 38 on page 39; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Reg- isters ²); ODT Signal: stable at 0; Pattern Details: see Table 38
IDD2NT	Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 34 on page 34 ; BL: 8 ¹); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially tog- gling according to Table 39 on page 40 ; Data IO: FLOATING; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Reg- isters ²); ODT Signal: toggling according to Table 39 ; Pattern Details: see Table 39
IDDQ2NT	Precharge Standby ODT IDDQ Current Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
IDD2P0	Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: see Table 34 on page 34 ; BL: 8 ¹); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ²); ODT Signal: stable at 0; Pre- charge Power Down Mode: Slow Exi ³
IDD2P1	Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: see Table 34 on page 34; BL: 8 ¹ ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pre- charge Power Down Mode: Fast Exit ³
IDD2Q	Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 34 on page 34 ; BL: 8 ¹⁾ ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ²⁾ ; ODT Signal: stable at 0
IDD3N	Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 34 on page 34 ; BL: 8 ¹); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially tog- gling according to Table 38 on page 39 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Regis- ters ²); ODT Signal: stable at 0; Pattern Details: see Table 34
IDD3P	Active Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 34 on page 34 ; BL: 8 ¹⁾ ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0
IDD4R	Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 34 on page 34 ; BL: 8 ¹); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: par- tially toggling according to Table 40 on page 40 ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 40 ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2, (see Table 7 on page 13); Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pattern Details: see Table 40
IDDQ4R	Operating Burst Read IDDQ Current Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
IDD4W	Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 34 on page 34 ; BL: 8 ¹); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: par- tially toggling according to Table 41 on page 41 ; Data IO: seamless write data burst with different data between one burst and the next one according to Table 41; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2, (see Table 41); Output Buffer and RTT: Enabled in Mode Registers ²); ODT Signal: stable at <u>HIGH</u> ; Pattern Details: see Table 41
IDD5B	Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 34 on page 34 ; BL: 8 ¹); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling according to Table 42 on page 41 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 42); Output Buffer and RTT: Enabled in Mode Registers ² ; ODT Signal: stable at 0; Pattern Details: see Table 42
IDD6	Self Refresh Current: Normal Temperature Range TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled ⁴⁾ ; Self-Refresh Temperature Range (SRT): Normal ⁵⁾ ; CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 34 on page 34 ; BL: 8 ¹⁾ ; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self- Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ²); ODT Signal: FLOATING

[Table 35] Basic IDD and IDDQ Measurement Conditions

Symbol	Description
IDD7	Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 34 on page 34 ; BL: 8 ¹); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table 43 on page 42 ; Data IO: read data bursts with different data between one burst and the next one according to Table 43 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,7) with different addressing, see Table 43 ; Output Buffer and RTT: Enabled in Mode Registers ²); ODT Signal: stable at 0; Pattern Details: see Table 43
IDD8	RESET Low Current RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal : FLOATING

NOTE :

1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B

2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B

3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit

4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature

5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range

6) Read Burst type : Nibble Sequential, set MR0 A[3]=0B

[Table 36] IDD0 Measurement - Loop Pattern¹⁾

-			Do Weastrement - Eoc	P												
CK/CK	СКЕ	Sub-Loop	Cycle Number	Command	<u>cs</u>	RAS	CAS	WE	ОDT	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	ACT	0	0	1	1	0	0	00	0	0	0	0	-
			1,2	D, D	1	0	0	0	0	0	00	0	0	0	0	-
			3,4	$\overline{D}, \overline{D}$	1	1	1	1	0	0	00	0	0	0	0	-
				repeat p	battern 1	4 until	nRAS -	1, trunca	ate if neo	cessary						
			nRAS	PRE	0	0	1	0	0	0	00	0	0	0	0	-
				repeat p	battern 1	4 until	nRC - 1	, truncat	e if nece	essary						
			1*nRC + 0	ACT	0	0	1	1	0	0	00	0	0	F	0	-
			1*nRC + 1, 2	D, D	1	0	0	0	0	0	00	0	0	F	0	-
þ	ligh		1*nRC + 3, 4	$\overline{D}, \overline{D}$	1	1	1	1	0	0	00	0	0	F	0	-
toggling	Static High			repeat p	battern 1	4 until	1*nRC ·	+ nRAS	- 1, trunc	cate if ne	ecessary					
ţ	Sta		1*nRC + nRAS	PRE	0	0	1	0	0	0	00	0	0	F	0	
				repeat ?	14 unti	l 2*nRC	- 1, trun	cate if ne	ecessary	,						
		1	2*nRC	repeat S	Sub-Loo	p 0, use	BA[2:0]	= 1 inst	ead							
		2	4*nRC	repeat S	Sub-Loo	p 0, use	BA[2:0]	= 2 inst	ead							
		3	6*nRC	repeat S	Sub-Loo	p 0, use	BA[2:0]	= 3 inst	ead							
		4	8*nRC	repeat S	Sub-Loo	p 0, use	BA[2:0]	= 4 inst	ead							
		5	10*nRC	repeat S	Sub-Loo	p 0, use	BA[2:0]	= 5 inst	ead							
		6	12*nRC	repeat S	Sub-Loo	p 0, use	BA[2:0]	= 6 inst	ead							
		7	14*nRC	repeat S	Sub-Loo	p 0, use	BA[2:0]	= 7 inst	ead							

NOTE : 1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL.

Rev. 0.9

[Table 37] IDD1 Measurement - Loop Pattern¹⁾

Normal Sector (all of all all all all all all all all all al					Data ²⁾											
		0	0	ACT	0	0	1	1	0	0	00	0	0	0	0	-
			1,2	-	1	0	0	0	0	0	00	0	0	0	0	-
			3,4	$\overline{D}, \overline{D}$	1	1	1	1	0	0	00	0	0	0	0	-
				repeat patte	rn 14	until n	RCD- 1	, trunca	ate if ne	ecessar	У					
			nRCD	RD	0	1	0	1	0	0	00	0	0	0	0	0000000
				PRE 0 0 1 0 0 0 0 0 0 0 0 - repeat pattern 14 until nRC - 1, truncate if necessary ACT 0 0 1 1 0 0 0 0 F 0 -												
			nRAS	PRE	0	0	1	0	0	0	00	0	0	0	0	-
				repeat patte	rn 14	until n	RC - 1,	truncat	te if neo	cessary	1					
			1*nRC+0	ACT	0	0	1	1	0	0	00	0	0	F	0	-
			1*nRC + 1, 2	D, D	1	0	0	0	0	0	00	0	0	F	0	-
b	igh		1*nRC + 3, 4	D, D	1	1	1	1	0	0	00	0	0	F	0	-
gglir	tic H			repeat patte	rn nRC	+ 1,,	4 until	nRC +	nRCD	- 1, tru	ncate if	necess	sary			
đ	Sta		1*nRC + nRCD	RD	0	1	0	1 1 0 0 00 0								
				repeat patte	rn nRC	+ 1,,	4 until	nRC +	1 0 0 00 0 0 F 0 - 0 0 0 0 0 0 F 0 - 1 0 0 00 0 0 F 0 - 1 0 0 00 0 F 0 - RC + nRCD - 1, truncate if necessary - - - - - 1 0 0 00 0 F 0 0 0 RC + nRAS - 1, truncate if necessary - - - - - 0 0 00 0 F 0 - -							
			1*nRC + nRAS	PRE	0	0	1	0	0	0	00	0	0	F 0 - F 0 - F 0 - F 0 0		
				repeat patte	rn nRC	+ 1,,	4 until	2 * nR	C - 1, tr	uncate	if nece	ssary				
		1	2*nRC	repeat Sub-	Loop 0	use B	A[2:0]	= 1 inst	ead							
		2	4*nRC	repeat Sub-	Loop 0	use B	A[2:0]	= 2 inst	ead							
		3	6*nRC	C repeat Sub-Loop 0, use BA[2:0] = 1 instead C repeat Sub-Loop 0, use BA[2:0] = 2 instead C repeat Sub-Loop 0, use BA[2:0] = 3 instead												
		4	8*nRC	repeat Sub-	Loop 0	use B	A[2:0]	= 4 inst	ead							
		5	10*nRC	repeat Sub-	Loop 0	use B	A[2:0]	= 5 inst	ead							
		6	12*nRC	repeat Sub-	Loop 0	use B	A[2:0]	= 6 inst	ead							
		7	14*nRC	repeat Sub-	Loop 0	use B	A[2:0]	= 7 inst	ead							

NOTE :

1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.

2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.

[Table 38] IDD2 and IDD3N Measurement - Loop Pattern¹⁾

CK/CK	СКЕ	Sub-Loop	Cycle Number	Command	<u>cs</u>	RAS	<u>CAS</u>	WE	ОВТ	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	D	1	0	0	0	0	0	00	0	0	0	0	-
			1	D	1	0	0	0	0	0	00	0	0	0	0	-
			2	D	1	1	1	1	0	0	00	0	0	F	0	-
			3	D	1	1	1	1	0	0	00	0	0	F	0	-
b	High	1	4-7	repeat Sub-	Loop 0	, use E	BA[2:0]	= 1 ins	tead							
toggling		2	8-11	repeat Sub-	Loop 0	, use E	BA[2:0]	= 2 ins	tead							
ţ	Static	3	12-15	repeat Sub-	Loop 0	, use E	BA[2:0]	= 3 ins	tead							
		4	16-19	repeat Sub-	Loop 0	, use E	BA[2:0]	= 4 ins	tead							
		5	20-23	repeat Sub-	Loop 0	, use E	BA[2:0]	= 5 ins	tead							
		6	24-27	repeat Sub-	Loop 0	, use E	BA[2:0]	= 6 ins	tead							
		7	28-31	repeat Sub-	Loop 0	, use E	BA[2:0]	= 7 ins	tead							

NOTE :

DM must be driven Low all the time. DQS, DQS are MID-LEVEL.
 DQ signals are MID-LEVEL.

[Table 39] IDD2NT and IDDQ2NT Measurement - Loop Pattern¹⁾

CK/CK	CKE	Sub-Loop	Cycle Number	Command	CS	RAS	CAS	WE	ОDT	BA[2:0]	A[15:11]	A[10]	[7:9]A	A[6:3]	A[2:0]	Data ²⁾
		0	0	D	1	0	0	0	0	0	00	0	0	0	0	-
			1	D	1	0	0	0	0	0	00	0	0	0	0	
			2	D	1	1	1	1	0	0	00	0	0	F	0	
			3	D	1	1	1	1	0	0	00	0	0	F	0	
g	High	1	4-7	D 1 1 1 0 0 00 0 0 F 0 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1												
toggling	tic H	2	8-11	repeat Sub-	Loop 0	, but O l	DT = 1	and BA	[2:0] =	2						
ğ	Static	3	12-15	repeat Sub-	Loop 0	, but O l	DT = 1	and BA	[2:0] =	3						
	Ī	4	16-19	repeat Sub-	Loop 0	, but O l	DT = 0	and BA	[2:0] =	4						
	Ī	5	20-23	repeat Sub-	Loop 0	, but O l	DT = 0	and BA	[2:0] =	5						
	Ī	6	24-27	repeat Sub-	Loop 0	, but O l	DT = 1	and BA	[2:0] =	6						
		7	28-31	repeat Sub-	Loop 0	, but O l	DT = 1	and BA	[2:0] =	: 7						

NOTE :

1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.

2. DQ signals are MID-LEVEL.

[Table 40] IDD4R and IDDQ4R Measurement - Loop Pattern¹⁾

CK/CK	СКЕ	Sub-Loop	Cycle Number	Command	<u>cs</u>	RAS	<u>CAS</u>	WE	ОDT	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	RD	0	1	0	1	0	0	00	0	0	0	0	0000000
			1	D	1	0	0	0	0	0	00	0	0	0	0	-
			2,3	D,D	1	1	1	1	0	0	00	0	0	0	0	-
			4	RD	0	1	0	1	0	0	00	0	0	F	0	00110011
			5	D	1	0	0	0	0	0	00	0	0	F	0	-
þ	High		6,7	D,D	1	1	1	1	0	0	00	0	0	F	0	-
toggling	tic H	1	8-15	repeat Sub-	Loop 0	, but B	A[2:0] =	= 1								
đ	Static	2	16-23	repeat Sub-	Loop 0	, but B	A[2:0] =	= 2								
		3	24-31	repeat Sub-l	Loop 0	, but B	A[2:0] =	= 3								
		4	32-39	repeat Sub-	Loop 0	, but B	4[2:0] =	= 4								
		5	40-47	repeat Sub-	Loop 0	, but B	4[2:0] =	= 5								
		6	48-55	repeat Sub-	Loop 0	, but B /	4[2:0] =	= 6								
		7	56-63	repeat Sub-	Loop 0	, but B /	A[2:0] =	= 7								

NOTE :

DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
 Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.

[Table 41] IDD4W Measurement - Loop Pattern¹⁾

		_		-												
CK/CK	СКЕ	Sub-Loop	Cycle Number	Command	CS	RAS	CAS	ME	ОDT	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	WR	0	1	0	0	1	0	00	0	0	0	0	0000000
			1	D 1 0 0 1 0 00 0							-					
			2,3								-					
			4	WR	0	1	0	0	0 1 0 00 0 0 F 0 00110011							00110011
			5	D 1 0 0 0 1 0 00 0 F 0								-				
b	High		6,7	D,D	D 1 0 0 1 0 00 0 F 0 -								-			
toggling	tic H	1	8-15	repeat Sub-l	Loop 0	, but B /	A[2:0] =	= 1								
đ	Static	2	16-23	repeat Sub-	Loop 0	, but B /	4[2:0] =	= 2								
		3	24-31	repeat Sub-l	Loop 0	, but B /	4[2:0] =	= 3								
		4	32-39	repeat Sub-	Loop 0	, but B /	4[2:0] =	= 4								
		5	40-47	repeat Sub-	Loop 0	, but B /	4[2:0] =	= 5								
		6	48-55	repeat Sub-	Loop 0	, but B /	4[2:0] =	= 6								
		7	56-63	repeat Sub-	Loop 0	, but B /	4[2:0] =	= 7								
NOT	_															

NOTE :

DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
 Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.

[Table 42] IDD5B Measurement - Loop Pattern¹⁾

CK/CK	СКЕ	Sub-Loop	Cycle Number	Command	<u>cs</u>	RAS	CAS	WE	ОDT	BA[2:0]	A[15:11]	A[10]	A[9:7]	A[6:3]	A[2:0]	Data ²⁾
		0	0	REF	0	0	0	1	0	0	00	0	0	0	0	-
		1	1,2	D	1	0	0	0	0	0	00	0	0	0	0	-
			3,4	D,D	1	1	1	1	0	0	00	0	0	F	0	-
			58	repeat cycle	s 14,	but B/	A[2:0] =	- 1								
þ	High		912	repeat cycle	s 14,	but BA	\[2:0] =	2								
toggling	tic H		1316	repeat cycle	s 14,	but BA	\[2:0] =	= 3								
ţ	Static		1720	repeat cycle	s 14,	but BA	\[2:0] =	= 4								
			2124	repeat cycle	s 14,	but BA	\[2:0] =	= 5								
			2528	repeat cycle	s 14,	but BA	\[2:0] =	• 6								
			2932	repeat cycle	s 14,	but BA	A[2:0] =	: 7								
		2	33nRFC - 1	repeat Sub-	Loop	1, until	nRFC	- 1. Tru	incate,	if nece	ssary.					

NOTE :

DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
 DQ signals are MID-LEVEL.

datasheet

DDP DDR3L SDRAM

Rev. 0.9

SAMSUNG

[Table 43] IDD7 Measurement - Loop Pattern¹⁾

נימו	- 510	םון כי						1							1	
Product 2 D 1 0 </th <th>Data²⁾</th>					Data ²⁾											
			0	ACT	0	0	1	1	0	0	00	0	0	0	0	-
		_	1	RDA	0	1	0	1	0	0	00	1	0	0	0	0000000
		0	2	D	1	0	0	0	0	0	00	0	0	0	0	-
				repeat abov	e D Co	mmano	d until r	RRD -	1	•	•					
			nRRD	ACT	0	0	1	1	0	1	00	0	0	F	0	-
		4	nRRD + 1	RDA	0	1	0	1	0	1	00	1	0	F	0	00110011
		'	nRRD + 2	D	1	0	0	0	0	1	00	0	0	F	0	-
				repeat abov	e D Co	mmano	d until 2	2*nRRD	-1					•		
		2	2 * nRRD	repeat Sub-	Loop 0	, but B	A[2:0] :	= 2								
		3	3 * nRRD	repeat Sub-	Loop 1	, but B	A[2:0] :	= 3								
		4	4 * ~ DDD	D	1	0	0	0	0	3	00	0	0	F	0	-
		4	4 IRRD	Assert and	repeat	above	D Cor	nmand	until r	FAW -	1, if ne	ecessa	ry			
		5	nFAW	repeat Sub-	Loop 0	, but B	A[2:0] :	= 4								
		6	nFAW+nRRD	repeat Sub-	Loop 1	, but B /	A[2:0] :	= 5								
		7	nFAW+2*nRRD	repeat Sub-	Loop 0	, but B	A[2:0]	= 6								
		8	nFAW+3*nRRD	repeat Sub-	Loop 1	, but B	A[2:0] :	= 7								
	ч	0		D	1	0	0	0	0	7	00	0	0	F	0	-
lling	Hig	9		Assert and	repeat	above	D Cor	nmand	until 2	2*nFAW	/ - 1, if	necess	sary			
0 ACT 0 0 1 1 0				-												
	S	10	2*nFAW+1	RDA	0	1	0	1	0	0	00	1	0	F	0	00110011
		10	2*nFA\\/+2	D	1	0	0	0	0	0	00	0	0	F	0	-
			2 III AW+2	Repeat abo	ve D C	omma	nd unt	il 2*nF/	4W + n	RRD -	1					
			2*nFAW+nRRD	ACT	0	0	1	1	0	1	00	0	0	0	0	-
		11	2*nFAW+nRRD+1	RDA	0	1	0	1	0	1	00	1	0	0	0	0000000
		11	2*nFΔ\//±nDDD±2	D	1	0	0	0	0	1	00	0	0	0	0	-
				Repeat abo	ve D C	omma	nd unt	il 2*nF/	AW + 2	*nRRD	- 1					
		12	2*nFAW+2*nRRD	repeat Sub-	Loop 1	0, but E	3A[2:0]	= 2								
		13	2*nFAW+3*nRRD	repeat Sub-	Loop 1			= 3								
		14	2*nFΔ\//≠ <i>1</i> *nDDD	D	1	0	0	0	0	3	00	0	0	0	0	-
		14		Assert and	repeat	above	D Cor	nmand	until 3	8*nFAW	/ - 1, if	necess	sary			
	0 2 D 1 0															
		16	3*nFAW+nRRD	repeat Sub-	Loop 1	1, but E	BA[2:0]	= 5								
		17	3*nFAW+2*nRRD	repeat Sub-	ACT 0 0 1 1 0											
		18	3*nFAW+3*nRRD	ACT 0 0 1 1 0												
Provide 2 D 1 0 </td <td>-</td>			-													
		19	3 IIFAW+4 IIKKU	Assert and	repeat	above	D Cor	nmand	until 4	l*n FAW	/ - 1, if	necess	sary			

NOTE :

DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.
 Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL.

11. DDP 8Gb DDR3 SDRAM D-die IDD Specification Table

[Table 44] IDD Specification for DDP 8Gb DDR3 D-die

		512Mx16 (K	4B8G1646D)			
Symbol	DDR3-160) (11-11-11)	DDR3-186	6(13-13-13)	Unit	NOTE
	1.35V	1.5V	1.35V	1.5V		
IDD0	TBD	TBD	TBD	TBD	mA	
IDD1	TBD	TBD	TBD	TBD	mA	
IDD2P0(slow exit)	TBD	TBD	TBD	TBD	mA	
IDD2P1(fast exit)	TBD	TBD	TBD	TBD	mA	
IDD2N	TBD	TBD	TBD	TBD	mA	
IDD2NT	TBD	TBD	TBD	TBD	mA	
IDD2Q	TBD	TBD	TBD	TBD	mA	
IDD3P	TBD	TBD	TBD	TBD	mA	
IDD3N	TBD	TBD	TBD	TBD	mA	
IDD4R	TBD	TBD	TBD	TBD	mA	
IDD4W	TBD	TBD	TBD	TBD	mA	
IDD5B	TBD	TBD	TBD	TBD	mA	
IDD6	TBD	TBD	TBD	TBD	mA	
IDD7	TBD	TBD	TBD	TBD	mA	
IDD8	TBD	TBD	TBD	TBD	mA	

NOTE : DDP PKG IDD Specification Calculation method

Symbol	DDP PKG IDD Calculation Status
IDD0 _(DDP)	IDD0 _(DDP) = IDD0 + IDD2N
IDD1 _(DDP)	IDD1 _(DDP) = IDD1 + IDD2N
IDD2P _(DDP)	IDD2P _(DDP) = IDD2P + IDD2P
IDD2N _(DDP)	IDD2N _(DDP) = IDD2N + IDD2N
IDD2NT _(DDP)	IDD2NT _{(DDP) =} IDD2NT + IDD2NT
IDD2Q _(DDP)	IDD2Q _{(DDP) =} IDD2Q + IDD2Q
IDD3P _(DDP)	IDD3P _(DDP) = IDD3P + IDD3P
IDD3N _(DDP)	IDD3N _(DDP) = IDD3N + IDD2N
IDD4R _(DDP)	IDD4R _{(DDP) =} IDD4R + IDD2N
IDD4W _(DDP)	IDD4W _(DDP) = IDD4W + IDD2N
IDD5B _(DDP)	IDD5B _{(DDP) =} IDD5B + IDD2N
IDD6 _(DDP)	IDD6 _{(DDP) =} IDD6 + IDD6
IDD7 _(DDP)	IDD7 _{(DDP)=} IDD7 + IDD2N

* DDP IDD values are combined by current of both Mono die.

12. Input/Output Capacitance

[Table 45] Input/Output Capacitance

Paramotor	Symbol	DDR	3-800	DDR3	-1066	DDR3	-1333	DDR3	8-1600	DDR3	-1866	Units	NOTE
Parameter	Бутвоі	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units	NOTE
	•			1.35V									
Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS)	CIO	1.4	2.5	1.4	2.5	1.4	2.3	1.4	2.2	1.4	5.0	pF	1,2,3
Input capacitance (CK and CK)	ССК	0.8	1.6	0.8	1.6	0.8	1.4	0.8	1.4	0.8	1.4	pF	2,3
Input capacitance delta (CK and \overline{CK})	CDCK	0	0.15	0	0.15	0	0.15	0	0.15	0	0.15	pF	2,3,4
Input capacitance (All other input-only pins)	CI	0.75	1.3	0.75	1.3	0.75	1.3	0.75	1.2	0.75	3.2	pF	2,3,6
Input/Output capacitance delta (DQS and DQS)	CDDQS	0	0.2	0	0.2	0	0.15	0	0.15	0	0.15	pF	2,3,5
Input capacitance delta (All control input-only pins)	CDI_CTRL	-0.5	0.3	-0.5	0.3	-0.4	0.2	-0.4	0.2	-0.4	0.2	pF	2,3,7,8
Input capacitance delta (all ADD and CMD input-only pins)	CDI_ADD_CMD	-0.5	0.5	-0.5	0.5	-0.4	0.4	-0.4	0.4	-0.4	0.4	pF	2,3,9,10
Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS)	CDIO	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF	2,3,11
Input/output capacitance of ZQ pin	CZQ	-	3	-	3	-	3	-	3	-	3	pF	2, 3, 12
	-	-	-	1.5V	-	-	-	-		-	-	-	
Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS)	CIO	1.4	3.0	1.4	2.7	1.4	2.5	1.4	2.3	1.4	5.0	pF	1,2,3
Input capacitance (CK and CK)	ССК	0.8	1.6	0.8	1.6	0.8	1.4	0.8	1.4	0.8	1.3	pF	2,3
Input capacitance delta (CK and CK)	CDCK	0	0.15	0	0.15	0	0.15	0	0.15	0	0.15	pF	2,3,4
Input capacitance (All other input-only pins)	CI	0.75	1.4	0.75	1.35	0.75	1.3	0.75	1.3	0.75	3.2	pF	2,3,6
Input capacitance delta (DQS and DQS)	CDDQS	0	0.2	0	0.2	0	0.15	0	0.15	0	0.15	pF	2,3,5
Input capacitance delta (All control input-only pins)	CDI_CTRL	-0.5	0.3	-0.5	0.3	-0.4	0.2	-0.4	0.2	-0.4	0.2	pF	2,3,7,8
Input capacitance delta (all ADD and CMD input-only pins)	CDI_ADD_CMD	-0.5	0.5	-0.5	0.5	-0.4	0.4	-0.4	0.4	-0.4	0.4	pF	2,3,9,10
Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS)	CDIO	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF	2,3,11
Input/output capacitance of ZQ pin	CZQ	-	3	-	3	-	3	-	3	-	3	pF	2, 3, 12

NOTE :

1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS

2. This parameter is not subject to production test. It is verified by design and characterization.

The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER(VNA)") with V_{DD}, V_{DDQ}, V_{SS}, V_{SSQ} applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). V_{DD}=V_{DDQ}=1.5V or 1.35V, V_{BIAS}=V_{DD}/2 and ondie termination off.

3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here

4. Absolute value of CCK-CCK

Absolute value of CIO(DQS)-CIO(DQS)
 CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.
 CDI_CTRL applies to ODT, CS and CKE____

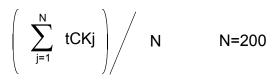
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))

9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE

10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))

11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))

12. Maximum external load capacitance on ZQ pin: 5pF


13. Electrical Characteristics and AC timing for DDR3-800 to **DDR3-1866**

13.1 Clock Specification

The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3 SDRAM device.

13.1.1 Definition for tCK(avg)

tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to rising edge.

13.1.2 Definition for tCK(abs)

tCK(abs) is defind as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test.

13.1.3 Definition for tCH(avg) and tCL(avg)

tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses: tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:

$$\sum_{j=1}^{N} tCHj \right) / N x tCK(avg) N=200 \left(\sum_{j=1}^{N} tCLj \right) / N x tCK(avg) N=200$$

13.1.4 Definition for note for tJIT(per), tJIT(per, lck)

tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200} tJIT(per) defines the single period jitter when the DLL is already locked. tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.

tJIT(per) and tJIT(per,lck) are not subject to production test.

13.1.5 Definition for tJIT(cc), tJIT(cc, lck)

tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi} tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked. tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only. tJIT(cc) and tJIT(cc,lck) are not subject to production test.

13.1.6 Definition for tERR(nper)

tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test.

13.2 Refresh Parameters by Device Density

[Table 46] Refresh parameters by device density

Parameter		Symbol	1Gb	2Gb	4Gb	8Gb	Units	NOTE
All Bank Refresh to active/refresh cmd time		tRFC	110	160	260	350	ns	
		$0~^\circ C \leq T_{CASE} \leq 85^\circ C$	7.8	7.8	7.8	7.8	μS	
Average periodic refresh interval	tREFI	-40 °C \leq T _{CASE} \leq 85°C	7.8	7.8	7.8	7.8	μS	2
		$85~^\circ C < T_{CASE} \leq 95^\circ C$	3.9	3.9	3.9	3.9	μS	1

NOTE :

1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material.

2. Supported only for industrial Temperature.

13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin

DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.

[Table 47] DDR3-800 Speed Bins

	Speed		DD	R3-800		
(CL-nRCD-nRP		6	- 6 - 6	Units	NOTE
Param	ieter	Symbol	Symbol min max]	
Internal read command to	first data	tAA	15	20	ns	
ACT to internal read or write	te delay time	tRCD	15	-	ns	
PRE command period		tRP	15	-	ns	
ACT to ACT or REF comm	and period	tRC	52.5	-	ns	
ACT to PRE command per	iod	tRAS	37.5	9*tREFI	ns	
CL = 5	CWL = 5	tCK(AVG)	3.0	3.3	ns	1,2,3,4,11,12
CL = 6	CWL = 5	tCK(AVG)	2.5 3.3		ns	1,2,3
Supported CL Settings				5,6	nCK	
Supported CWL Settings				5	nCK	

[Table 48] DDR3-1066 Speed Bins

S	peed		DDR	3-1066		
CL-n	RCD-nRP		7 -	7 - 7	Units	NOTE
Parameter		Symbol	min	max		
Internal read command to first of	lata	tAA	13.125 20		ns	
ACT to internal read or write de	lay time	tRCD	13.125	-	ns	
PRE command period		tRP	13.125	-	ns	
ACT to ACT or REF command	period	tRC	50.625	-	ns	
ACT to PRE command period		tRAS	37.5	9*tREFI	ns	
CL = 5	CWL = 5	tCK(AVG)	3.0	3.3	ns	1,2,3,4,5,11, 12
	CWL = 6	tCK(AVG)	Res	erved	ns	4
CL = 6	CWL = 5	tCK(AVG)	2.5	3.3	ns	1,2,3,5
CL = 0	CWL = 6	tCK(AVG)	Res	erved	ns	1,2,3,4
01 - 7	CWL = 5	tCK(AVG)	Res	erved	ns	4
CL = 7	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3,4,10
Cl = 0	CWL = 5	tCK(AVG)	Res	erved	ns	4
CL = 8	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3
Supported CL Settings	•		5,6	6,7,8	nCK	
Supported CWL Settings			Ę	5,6	nCK	

[Table 49] DDR3-1333 Speed Bins

	Speed		DDR	3-1333		
CL	nRCD-nRP		9 -	9 - 9	Units	NOTE
Paramete	ər	Symbol	min	max		
Internal read command to firs	t data	tAA	13.5 (13.125) ⁸ 20		ns	
ACT to internal read or write	delay time	tRCD	13.5 (13.125) ⁸	ns		
PRE command period		tRP	13.5 (13.125) ⁸	-	ns	
ACT to ACT or REF command period		tRC	49.5 (49.125) ⁸	-	ns	
ACT to PRE command period	1	tRAS	36	9*tREFI	ns	
CL = 5	CWL = 5	tCK(AVG)	3.0	3.3	ns	1,2,3,4,6,11, 12
	CWL = 6,7	tCK(AVG)	Res	ns	4	
	CWL = 5	tCK(AVG)	2.5	3.3	ns	1,2,3,6
CL = 6	CWL = 6	tCK(AVG)	Res	ns	1,2,3,4,6	
	CWL = 7	tCK(AVG)	Res	ns	4	
	CWL = 5	tCK(AVG)	Res	erved	ns	4
CL = 7	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3,4,6
	CWL = 7	tCK(AVG)	Res	erved	ns	1,2,3,4
	CWL = 5	tCK(AVG)	Res	erved	ns	4
CL = 8	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3,6
	CWL = 7	tCK(AVG)	Res	erved	ns	1,2,3,4
CL = 9	CWL = 5,6	tCK(AVG)	Res	erved	ns	4
02 - 3	CWL = 7	tCK(AVG)	1.5	<1.875	ns	1,2,3,4,10
CL = 10		tCK(AVG)	Reserved		ns	4
CWL = 7		tCK(AVG)	1.5	<1.875	ns	1,2,3
Supported CL Settings			5,6,7,	nCK		
Supported CWL Settings			5,	nCK		

[Table 50] DDR3-1600 Speed Bins

	Speed		DDR3	3-1600		
C	L-nRCD-nRP		11-1	1-11	Units	NOTE
Parame	eter	Symbol	min	max		
Internal read command to fi	rst data	tAA	13.75 (13.125) ⁸ 20		ns	
ACT to internal read or write	e delay time	tRCD	13.75 (13.125) ⁸	-	ns	
PRE command period		tRP	13.75 (13.125) ⁸ -		ns	
ACT to ACT or REF comma	and period	tRC	48.75 (48.125) ⁸	-	ns	
ACT to PRE command period	bd	tRAS	35	9*tREFI	ns	
CL = 5	CWL = 5	tCK(AVG)	3.0	3.3	ns	1,2,3,4,7,11, 12
	CWL = 6,7,8	tCK(AVG)	Rese	erved	ns	4
	CWL = 5	tCK(AVG)	2.5	3.3	ns	1,2,3,7
CL = 6	CWL = 6	tCK(AVG)	Rese	erved	ns	1,2,3,4,7
	CWL = 7, 8	tCK(AVG)	Rese	erved	ns	4
	CWL = 5	tCK(AVG)	Rese	erved	ns	4
CL = 7	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3,4,7
GL = 7	CWL = 7	tCK(AVG)	Rese	ns	1,2,3,4,7	
	CWL = 8	tCK(AVG)	Rese	erved	ns	4
	CWL = 5	tCK(AVG)	Rese	erved	ns	4
CL = 8	CWL = 6	tCK(AVG)	1.875	<2.5	ns	1,2,3,7
UL - 0	CWL = 7	tCK(AVG)	Rese	erved	ns	1,2,3,4,7
	CWL = 8	tCK(AVG)	Rese	erved	ns	1,2,3,4
	CWL = 5,6	tCK(AVG)	Rese	erved	ns	4
CL = 9	CWL = 7	tCK(AVG)	1.5	<1.875	ns	1,2,3,4,7
	CWL = 8	tCK(AVG)	Rese	erved	ns	1,2,3,4
	CWL = 5,6	tCK(AVG)	Rese	erved	ns	4
CL = 10	CWL = 7	tCK(AVG)	1.5	<1.875	ns	1,2,3,7
CWL = 8 tCK(AV		tCK(AVG)	Rese	ns	1,2,3,4	
CU = 11 CWL = 5,6,7		tCK(AVG)	Reserved		ns	4
CL = 11 CWL = 8		tCK(AVG)	1.25	<1.5	ns	1,21,2,3,10
Supported CL Settings			5,6,7,8	nCK		
Supported CWL Settings			5,6	nCK		

[Table 51] DDR3-1866 Speed Bins

SI	beed		DDR3	-1866		
CL-nR	CD-nRP		13-1	3-13	Units	NOTE
Parameter		Symbol	min	max		
Internal read command to first da	ata	tAA	13.91 (13.125) ¹³ 20		ns	
ACT to internal read or write dela	ay time	tRCD	13.91 (13.125) ¹³	ns		
PRE command period		tRP	13.91 (13.125) ¹³	ns		
ACT to ACT or REF command p	eriod	tRC	47.91 (47.125) ¹³	-	ns	
ACT to PRE command period		tRAS	34	9*tREFI	ns	
CWL = 5		tCK(AVG)	3.0	3.3	ns	1,2,3,4,8,11, 12
	CWL = 6,7,8,9	tCK(AVG)	Reserved		ns	4
	CWL = 5	tCK(AVG)	2.5	3.3	ns	1,2,3,8
CL = 6	CWL = 6	tCK(AVG)	Rese	erved	ns	1,2,3,4,8
	CWL = 7,8,9	tCK(AVG)	Rese	erved	ns	4
	CWL = 5	tCK(AVG)	Rese	erved	ns	4
CL = 7	CWL = 6	tCK(AVG)	1.875	2.5	ns	1,2,3,4,8
	CWL = 7,8,9	tCK(AVG)	Rese	erved	ns	4
	CWL = 5	tCK(AVG)	Rese	erved	ns	4
CL = 8	CWL = 6	tCK(AVG)	1.875 <2.5		ns	1,2,3,8
CL = 0	CWL = 7	tCK(AVG)	Reserved		ns	1,2,3,4,8
	CWL = 8,9	tCK(AVG)	Rese	erved	ns	4
	CWL = 5,6	tCK(AVG)	Rese	erved	ns	4
CL = 9	CWL = 7	tCK(AVG)	1.5	1.875	ns	1,2,3,4,8
CL = 9	CWL = 8	tCK(AVG)	Rese	erved	ns	4
	CWL = 9	tCK(AVG)	Rese	erved	ns	4
	CWL = 5,6	tCK(AVG)	Rese	erved	ns	4
CL = 10	CWL = 7	tCK(AVG)	1.5	<1.875	ns	1,2,3,8
	CWL = 8	tCK(AVG)	Rese	erved	ns	1,2,3,4,8
	CWL = 5,6,7	tCK(AVG)	Rese	erved	ns	4
CL = 11	CWL = 8	tCK(AVG)	1.25	1.5	ns	1,2,3,4,8
	CWL = 9	tCK(AVG)	Rese	erved	ns	1,2,3,4
CI - 12	CWL = 5,6,7,8	tCK(AVG)	Reserved		ns	4
CL = 12 CWL = 9		tCK(AVG)	Reserved		ns	1,2,3,4
CI - 12	CWL = 5,6,7,8	tCK(AVG)	Rese	Reserved		4
CL = 13	CWL = 9	tCK(AVG)	1.071	<1.25	ns	1,2,3,10
Supported CL Settings	•		5,6,7,8,9,	nCK		
Supported CWL Settings			5,6,7	nCK		

13.3.1 Speed Bin Table Notes

Absolute Specification {T_{OPER}; V_{DDQ} = V_{DD} = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)};

NOTE :

- 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
- tCK(AVG).MIN limits: Since CAS Latency is not purely analog data and strobe output are synchronized by the DLL all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "Supported CL".
- 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
- 4. "Reserved" settings are not allowed. User must program a different value.
- 5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
- 6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
- 7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
- Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
- 9. Any DDR3-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization.
- 10. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1866(CL13) devices supporting downshift to DDR3-1333(CL9) or DDR3-1600(CL11) or DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1333(CL9) or DDR3-1866(CL13) or DDR3-1600(CL11) or DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1333(CL9) or DDR3-1866(CL13) or DDR3-1600(CL11) or DDR3-1333(CL9) or DDR3-1866(CL13) are bytes for tAAmin (Byte16), tRCDmin (Byte 21), and tRPmin (Byte 20). Sprogrammed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).
- 11. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.
- 12. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding.
- 13. For devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example, DDR3-1866 devices supporting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes for tAAmin(byte16), tRCDmin(Byte18) and tRPmin (byte20). Once tRP (Byte20) is programmed to 13.125ns, tRCmin (Byte21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin = 34ns + 13.125ns)

14. Timing Parameters by Speed Grade

[Table 52] Timing Parameters by Speed Bin(Cont.)

Speed		DDR	3-800	DDR	3-1066	DDR	3-1333	DDR	3-1600	DDR3	-1866	Units	NOTE
Parameter	Symbol	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	Units	NOTE
Clock Timing													
Minimum Clock Cycle Time (DLL off mode)	tCK(DLL_OF F)	8	-	8	-	8	-	8	-	8	-	ns	6
Average Clock Period	tCK(avg)				See Speed	I Bins Table	e					ps	
Clock Period	tCK(abs)	tCK(avg)mi n + tJIT(per)min	tCK(avg)ma x + tJIT(per)ma x	ick(avy)iii	tCK(avg)ma x + tJIT(per)ma x	tort(uvg)iii	tCK(avg)ma x + tJIT(per)ma x	iCK(avy)III	tCK(avg)ma x + tJIT(per)ma x	tCK(avg)mi n + tJIT(per)min	tCK(avg)ma x + tJIT(per)ma x	ps	
Average high pulse width	tCH(avg)	0.47	0.53	0.47	0.53	0.47	0.53	0.47	0.53	0.47	0.53	tCK(avg)	
Average low pulse width	tCL(avg)	0.47	0.53	0.47	0.53	0.47	0.53	0.47	0.53	0.47	0.53	tCK(avg)	
Clock Period Jitter	tJIT(per)	-100	100	-90	90	-80	80	-70	70	-60	60	ps	
Clock Period Jitter during DLL locking period	tJIT(per, lck)	-90	90	-80	80	-70	70	-60	60	-50	50	ps	
Cycle to Cycle Period Jitter	tJIT(cc)	2	00	1	80	1	60	1-	40	12	20	ps	
Cycle to Cycle Period Jitter during DLL locking period	tJIT(cc, lck)	1	80	1	60	1-	40	1:	20	10	00	ps	
Cumulative error across 2 cycles	tERR(2per)	- 147	147	- 132	132	- 118	118	-103	103	-88	88	ps	
Cumulative error across 3 cycles	tERR(3per)	- 175	175	- 157	157	- 140	140	-122	122	-105	105	ps	
Cumulative error across 4 cycles	tERR(4per)	- 194	194	- 175	175	- 155	155	-136	136	-117	117	ps	
Cumulative error across 5 cycles	tERR(5per)	- 209	209	- 188	188	- 168	168	-147	147	-126	126	ps	
Cumulative error across 6 cycles	tERR(6per)	- 222	222	- 200	200	- 177	177	-155	155	-133	133	ps	
Cumulative error across 7 cycles	tERR(7per)	- 232	232	- 209	209	- 186	186	-163	163	-139	139	ps	
Cumulative error across 8 cycles	tERR(8per)	- 241	241	- 217	217	- 193	193	-169	169	-145	145	ps	
Cumulative error across 9 cycles	tERR(9per)	- 249	249	- 224	224	- 200	200	-175	175	-150	150	ps	
Cumulative error across 10 cycles	tERR(10per)	- 257	257	- 231	231	- 205	205	-180	180	-154	154	ps	
Cumulative error across 11 cycles	tERR(11per)	- 263	263	- 237	237	- 210	210	-184	184	-158	158	ps	
Cumulative error across 12 cycles	tERR(12per)	- 269	269	- 242	242	- 215	215	-188	188	-161	161	ps	
Cumulative error across n = 13, 14 49, 50 cycles	tERR(nper)						tJIT(per)mir tJIT(per)ma		•			ps	24
Absolute clock HIGH pulse width	tCH(abs)	0.43	-	0.43	-	0.43	-	0.43	-	0.43	-	tCK(avg)	25
Absolute clock Low pulse width	tCL(abs)	0.43	-	0.43	-	0.43	-	0.43	-	0.43	-	tCK(avg)	26
Data Timing												1	
DQS, DQS to DQ skew, per group, per access	tDQSQ	-	200	-	150	-	125	-	100	-	85	ps	13
DQ output hold time from DQS, DQS	tQH	0.38	-	0.38	-	0.38	-	0.38	-	0.38	-	tCK(avg)	13, g
DQ low-impedance time from CK, CK	tLZ(DQ)	-800	400	-600	300	-500	250	-450	225	-390	195	ps	13,14, f
DQ high-impedance time from CK, \overline{CK}	tHZ(DQ)	-	400	-	300	-	250	-	225	-	195	ps	13,14, f
	tDS(base)			40			1.35V						4 47 00
	AC160 tDS(base)	90	-	40	-	-	-	-	-	-	-	ps	d, 17, 33
	AC135 tDS(base)	140	-	90	-	45	-	25	-	-	-	ps	d, 17, 33
Data setup time to DQS, DQS referenced to	AC125	-	-	-	-	-	-	-	-	115	-	ps	d, 17, 33
V _{IH} (AC)V _{IL} (AC) levels							1.5V						
	tDS(base) AC175	75	-	25	-	-	-	-	-			ps	d, 17, 33
	tDS(base) AC150	125	-	75	-	30	-	10	-	-	-	ps	d, 17, 33
	tDS(base) AC135	-	-	-	-	-	-	-	-	173	-	ps	d, 17, 33
		I	I	I	ı	ı	1.35V	<u> </u>	<u> </u>	ı	· <u> </u>	ı	
Data hold time from DQS, DQS referenced to	tDH(base) DC90	160	-	110	-	75	-	55	-	30	-	ps	d, 17, 33
V _{IH} (DC)V _{IL} (DC) levels							1.5V						
	tDH(base) DC100	150	-	100	-	65	-	45	-	20	-	ps	d, 17, 33
DQ and DM Input pulse width for each input	tDIPW	600	-	490	-	400	-	360	-	320	-	ps	28

Speed		DDR3	3-800	DDR3	-1066	DDR3-	1333	DDR3	-1600	DDR3	1866		
Parameter	Symbol	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	Units	NOTE
Data Strobe Timing	Symbol	Willy	WIAA	Willy	MIAA	Willy	MIAA	Willy	WIAA	Willy	NIAA		
DQS, DQS differential READ Preamble	tRPRE	0.9	Note 19	0.9	Note 19	0.9	Note 19	0.9	Note 19	0.9	NOTE 19	tCK(avg)	13, 19, g
DQS, DQS differential READ Postamble	tRPST	0.3	Note 11	0.3	Note 11	0.3	Note 11	0.3	Note 11	0.3	NOTE 11	tCK(avg)	11, 13, b
DQS, DQS differential output high time	tQSH	0.38	-	0.38	-	0.4	-	0.4	-	0.4	-	tCK(avg)	13, g
DQS, DQS differential output low time	tQSL	0.38	-	0.38	-	0.4	-	0.4	-	0.4	-	tCK(avg)	13, g
DQS, DQS differential WRITE Preamble	tWPRE	0.9	-	0.9	-	0.9	-	0.9	-	0.9	-	tCK(avg)	.0, 9
DQS, DQS differential WRITE Postamble	tWPST	0.3	-	0.3	-	0.3	-	0.3	-	0.3	-	tCK(avg)	
DQS, DQS rising edge output access time from rising CK, CK	tDQSCK	-270	670	-170	570	-125	525	-95	495	-65	465	ps	13,f
DQS, DQS low-impedance time (Referenced from RL- 1)	tLZ(DQS)	-800	400	-600	300	-500	250	-450	225	-390	195	ps	13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2)	tHZ(DQS)	-	400	-	300	-	250	-	225	-	195	ps	12,13,14
DQS, DQS differential input low pulse width	tDQSL	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tCK(avg)	29, 31
DQS, DQS differential input high pulse width	tDQSH	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tCK(avg)	30, 31
DQS, DQS rising edge to CK, CK rising edge	tDQSS	-0.25	0.25	-0.25	0.25	-0.25	0.25	-0.27	0.27	-0.27	0.27	tCK(avg)	С
DQS, \overline{DQS} falling edge setup time to CK, \overline{CK} rising edge	tDSS	0.2	-	0.2	-	0.2	-	0.18	-	0.18	-	tCK(avg)	c, 32
DQS, $\overline{\text{DQS}}$ falling edge hold time to CK, $\overline{\text{CK}}$ rising edge	tDSH	0.2	-	0.2	-	0.2	-	0.18	-	0.18	-	tCK(avg)	c, 32
Command and Address Timing													
DLL locking time	tDLLK	512	-	512	-	512	-	512	-	512	-	nCK	
internal READ Command to PRECHARGE Command delay	tRTP	max (4nCK,7.5 ns)	-	max (4nCK,7.5 ns)	-	max (4nCK,7.5n s)	-	max (4nCK,7.5 ns)	-	max (4nCK,7.5 ns)	-		e
Delay from start of internal write transaction to internal read command	tWTR	max (4nCK,7.5 ns)	-	max (4nCK,7.5 ns)	-	max (4nCK,7.5n s)	-	max (4nCK,7.5 ns)	-	max (4nCK,7.5 ns)	-		e,18
WRITE recovery time	tWR	15	-	15	-	15	-	15	-	15	-	ns	е
Mode Register Set command cycle time	tMRD	4	-	4	-	4	-	4	-	4	-	nCK	
Mode Register Set command update delay	tMOD	max (12nCK,15 ns)	-	max (12nCK,15 ns)	-	max (12nCK,15 ns)	-	max (12nCK,15 ns)	-	max (12nCK,15 ns)	-		
CAS to CAS command delay	tCCD	4	-	4	-	4	-	4	-	4	-	nCK	
Auto precharge write recovery + precharge time	tDAL(min)			WR +	roundup (tRP / tCK(AV	/G))	•				nCK	
Multi-Purpose Register Recovery Time	tMPRR	1	-	1	-	1	-	1	-	1	-	nCK	22
ACTIVE to PRECHARGE command period	tRAS	See	"Speed Bi	ns and CL, t	RCD, tRP,	tRC and tRA	AS for corr	esponding E	Bin"			ns	е
ACTIVE to ACTIVE command period for 1KB page size	tRRD	max (4nCK,10n s)	-	max (4nCK,7.5 ns)	-	max (4nCK,6ns)	-	max (4nCK,6ns)	-	max (4nCK, 5ns)	-		e
ACTIVE to ACTIVE command period for 2KB page size	tRRD	max (4nCK,10n s)	-	max (4nCK,10n s)	-	max (4nCK,7.5n s)	-	max (4nCK,7.5 ns)	-	max (4nCK, 6ns)	-		e
Four activate window for 1KB page size	tFAW	40	-	37.5	-	30	-	30	-	27	-	ns	е
Four activate window for 2KB page size	tFAW	50	-	50	-	45	-	40	-	35	-	ns	е
		I		I			1.35V						
	tIS(base) AC160	215	-	140	-	80	-	60	-	-	-	ps	b,16
	tIS(base) AC135	365	-	290	-	205	-	185	-	-	-	ps	b,16,27
	tIS(base) AC125	-	-	-	-	-	-	-	-	75	-	ps	b,16,27
Command and Address setup time to CK, CK refer-							1.5V						
enced to $V_{IH}(AC) / V_{IL}(AC)$ levels	tIS(base) AC175	200	-	125	-	65	-	45	-			ps	b,16
	tIS(base) AC150	350	-	275	-	190	-	170	-	-	-	ps	b,16,27
	tIS(base) AC135	-	-	-	-	-	-	-	-	65	-	ps	b,16
	tIS(base) AC125	-	-	-	-	-	-	-	-	150	-	ps	b,16,27

Downloaded from Arrow.com.

K4B8G1646D

datasheet DDP DDR3L SDRAM

Speed		DDR	3-800	DDR	8-1066	DDR3	-1333	DDR3	-1600	DDR3	-1600	Unite	NOTE
Parameter	Symbol	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	Units	NOTE
Command and Address Timing													
			•	•	1	•	1.35V		-		1		
Command and Address hold time from CK, CK refer-	tlH(base) DC90	285	-	210	-	150	-	130	-	110	-	ps	b,16
enced to $V_{IH}(DC) / V_{IL}(DC)$ levels		ļ	ļ				1.5V						
	tlH(base)	275		200		140		120	-	100	-	ps	b,16
	DC100												
Control & Address Input pulse width for each input	tIPW	900	-	780	-	620	-	560	-	535	-	ps	28
Calibration Timing	1	1		1		1	1	1		max(512			
Power-up and RESET calibration time	tZQinitl	512	-	512	-	512	-	512	-	nCK,640 ns)	-	nCK	
Normal operation Full calibration time	tZQoper	256	-	256	-	256	-	256	-	max(256 nCK,320 ns)	-	nCK	
Normal operation short calibration time	tZQCS	64	-	64	-	64	-	64	-	max(64n CK,80ns)	-	nCK	23
Reset Timing	L	I			I		I	I	I		I	1	
										max(5nC			
Exit Reset from CKE HIGH to a valid command	tXPR	max(5nC K, tRFC + 10ns)	-	max(5nC K, tRFC + 10ns)	-	max(5nC K, tRFC + 10ns)	-	max(5nC K, tRFC + 10ns)	-	K, tRFC(mi n) + 10ns)	-		
Self Refresh Timing										TOIIS)			
		mente e		marile e		marile e		marile		max(5nC			
Exit Self Refresh to commands not requiring a locked DLL	tXS	max(5nC K,tRFC+ 10ns)	-	max(5nC K,tRFC+ 10ns)	-	max(5nC K,tRFC+ 10ns)	-	max(5nC K,tRFC + 10ns)	-	K,tRFC(min) + 10ns)	-		
Exit Self Refresh to commands requiring a locked DLL	tXSDLL	tDLLK(m in)	-	tDLLK(m in)	-	tDLLK(m in)	-	tDLLK(mi n)	-	tDLLK(mi n)	-	nCK	
Minimum CKE low width for Self refresh entry to exit timing	tCKESR	tCKE(mi n) + 1tCK	-	tCKE(mi n) + 1tCK	-	tCKE(mi n) + 1tCK	-	tCKE(mi n) + 1tCK	-	tCKE(mi n) + 1nCK	-		
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE)	tCKSRE	max(5nC K, 10ns)	-	max(5nC K, 10ns)	-	max(5nC K, 10ns)	-	max(5nC K, 10ns)	-	max(5nC K, 10ns)	-		
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit	tCKSRX	max(5nC K, 10ns)	-	max(5nC K, 10ns)	-	max(5nC K, 10ns)	-	max(5nC K, 10ns)	-	max(5nC K, 10ns)	-		
Power Down Timing		, í		, , , , , , , , , , , , , , , , , , ,		· ·				· · ·			
Exit Power Down with DLL on to any valid com- mand;Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL	tXP	max (3nCK, 7.5ns)	-	max (3nCK, 7.5ns)	-	max (3nCK,6 ns)	-	max (3nCK,6n s)	-	max(3nC K,6ns)	-		
Exit Precharge Power Down with DLL frozen to com- mands requiring a locked DLL	tXPDLL	max (10nCK, 24ns)	-	max (10nCK, 24ns)	-	max (10nCK, 24ns)	-	max (10nCK, 24ns)	-	max(10n CK,24ns)	-		2
CKE minimum pulse width	tCKE	max (3nCK, 7.5ns)	-	max (3nCK, 5.625ns)	-	max (3nCK, 5.625ns)	-	max (3nCK,5n s)	-	max(3nC K,5ns)	-		
Command pass disable delay	tCPDED	1	-	1	-	1	-	1	-	2	-	nCK	
Power Down Entry to Exit Timing	tPD	tCKE(mi n)	9*tREFI	tCKE(mi n)	9*tREFI	tCKE(mi n)	9*tREFI	tCKE(mi n)	9*tREFI	tCKE(mi n)	9*tREFI	tCK(avg)	15
Timing of ACT command to Power Down entry	tACTPDEN	1	-	1	-	1	-	1	-	1	-	nCK	20
Timing of PRE command to Power Down entry	tPRPDEN	1	-	1	-	1	-	1	-	1	-	nCK	20
Timing of RD/RDA command to Power Down entry	tRDPDEN	RL + 4 +1	-	RL + 4 +1	-	RL + 4 +1	-	RL + 4 +1	-	RL + 4 +1	-		
Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRPDEN	WL + 4 +(tWR/ tCK(avg))		WL + 4 +(tWR/ tCK(avg))	-	WL + 4 +(tWR/ tCK(avg))	-	WL + 4 +(tWR/ tCK(avg))	-	WL + 4 +(tWR/ tCK(avg))	-	nCK	9
Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRAPDEN	WL + 4 +WR +1	-	WL + 4 +WR +1	-	WL + 4 +WR +1	-	WL + 4 +WR +1	-	WL + 4 +WR +1	-	nCK	10
Timing of WR command to Power Down entry (BC4MRS)	tWRPDEN	WL + 2 +(tWR/ tCK(avg))	-	WL + 2 +(tWR/ tCK(avg))	-	WL + 2 +(tWR/ tCK(avg))	-	WL + 2 +(tWR/ tCK(avg))	-	WL + 2 +(tWR/ tCK(avg))	-	nCK	9
Timing of WRA command to Power Down entry (BC4MRS)	tWRAPDEN	WL +2 +WR +1	-	WL +2 +WR +1	-	WL +2 +WR +1	-	WL +2 +WR +1	-	WL +2 +WR +1	-	nCK	10
Timing of REF command to Power Down entry	tREFPDEN	1	-	1	-	1	-	1	-	1	-		20,21
<u> </u>						tMOD(mi	1	tMOD(mi		tMOD(mi			

Speed		DDR	3-800	DDR3	8-1066	DDR3	-1333	DDR3	-1600	DDR3	-1600		
Parameter	Symbol	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	Units	NOTE
ODT Timing													
ODT high time without write command or with write command and BC4	ODTH4	4	-	4	-	4	-	4	-	4	-	nCK	
ODT high time with Write command and BL8	ODTH8	6	-	6	-	6	-	6	-	6	-	nCK	
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)	tAONPD	2	8.5	2	8.5	2	8.5	2	8.5	2	8.5	ns	
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)	tAOFPD	2	8.5	2	8.5	2	8.5	2	8.5	2	8.5	ns	
RTT turn-on	tAON	-400	400	-300	300	-250	250	-225	225	-195	295	ps	7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference	tAOF	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.8	tCK(avg)	8,f
RTT dynamic change skew	tADC	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.8	tCK(avg)	f
Write Leveling Timing													
First DQS/DQS rising edge after write leveling mode is programmed	tWLMRD	40	-	40	-	40	-	40	-	40	-	tCK(avg)	3
DQS/DQS delay after write leveling mode is programmed	tWLDQSEN	25	-	25	-	25	-	25	-	25	-	tCK(avg)	3
Write leveling setup time from rising CK, CK crossing to rising DQS, DQS crossing	tWLS	325	-	245	-	195	-	165	-	140	-	ps	
Write leveling hold time from rising DQS, DQS cross- ing to rising CK, CK crossing	tWLH	325	-	245	-	195	-	165	-	140	-	ps	
Write leveling output delay	tWLO	0	9	0	9	0	9	0	7.5	0	7.5	ns	
Write leveling output error	tWLOE	0	2	0	2	0	2	0	2	0	2	ns	

14.1 Jitter Notes

Specific Note a	Unit 'tCK(avg)' represents the actual tCK(avg) of the input clock under operation. Unit 'nCK' represents one clock cycle of the input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b	These parameters are measured from a command/address signal (CKE, \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} , ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK/ \overline{CK}) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not.
Specific Note c	These parameters are measured from a data strobe signal (DQS(L/U), $\overline{DQS}(L/U)$) crossing to its respective clock signal (CK, \overline{CK}) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d	These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe signal (DQS(L/U), DQS(L/U)) crossing.
Specific Note e	For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.
Specific Note f	When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock, where $2 \le m \le 12$. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!) Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where $2 \le n \le 12$.
Specific Note g	When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = -72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/ max usage!)

14.2 Timing Parameter Notes

- 1. Actual value dependant upon measurement level definitions see "Device Operation & Timing Diagram Datasheet".
- 2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
- 3. The max values are system dependent.
- 4. WR as programmed in mode register
- 5. Value must be rounded-up to next higher integer value
- 6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
- 7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
- 8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
- 9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
- 10. WR in clock cycles as programmed in MR0
- 11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing Diagram Datasheet.
- Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated 12 by 14.1-Jitter Notes on page 56
- 13. Value is only valid for RON34
- 14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
- 15. tREFI depends on T_{OPER}
- 16. tlS(base) and tlH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals, V_{REF}(DC) = V_{REF}DQ(DC). For input only pins except RESET, V_{REF}(DC)=V_{REF}CA(DC). See Address/Command Setup, Hold and Derating : on page 58.
- tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals, V_{REF}(DC)= V_{REF}DQ(DC). For input only pins except RESET, V_{REF}(DC)=V_{REF}CA(DC).
- See Data Setup, Hold and Slew Rate Derating : on page 67. 18. Start of internal write transaction is defined as follows ; For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL. For BC4 (fixed by MRS) : Rising clock edge 4 clock cycles after WL For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
- 19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram Datasheet"
- 20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations
- 21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
- 22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
- 23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the 'Output Driver Voltage and Temperature Sensitivity' and 'ODT Voltage and Temperature Sensitivity' tables. The appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula:
 - ZQCorrection

(TSens x Tdriftrate) + (VSens x Vdriftrate)

where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.

For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as:

$$\frac{0.5}{(1.5 \times 1) + (0.15 \times 15)} = 0.133 \approx 128 \text{ms}$$

- 24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
- 25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
- 26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
- 27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].
- 28. Pulse width of a input signal is defined as the width between the first crossing of V_{REF}(DC) and the consecutive crossing of V_{REF}(DC)
- 29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
- 30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
- 31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
- 32. tDSH. act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
- 33. This parameter applies to monolithic devices only: stacked devices are not covered here.

14.3 Address/Command Setup, Hold and Derating :

For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table 53) to the Δ tIS and Δ tIH derating value (see Table) respectively.

Example: tIS (total setup time) = tIS(base) + Δ tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V_{REF}(DC) and the first crossing of V_{IH}(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V_{REF}(DC) and the first crossing of V_{IL}(AC)max. If the actual signal is always earlier than the nominal slew rate line between shaded 'V_{REF}(DC) to ac region', use nominal slew rate for derating value (see Figure 21). If the actual signal is later than the nominal slew rate line anywhere between shaded VREF(DC) to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 23).

Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V_{II} (DC)max and the first crossing of V_{RFF}(DC). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V_{IH}(DC)min and the first crossing of V_{REF}(DC). If the actual signal is always later than the nominal slew rate line between shaded 'dc to V_{REF}(DC) region', use nominal slew rate for derating value (see Figure 22). If the actual signal is earlier than the nominal slew rate line anywhere between shaded 'dc to V_{REF}(DC) region', the slew rate of a tangent line to the actual signal from the dc level to V_{REF}(DC) level is used for derating value (see Figure 24).

For a valid transition the input signal has to remain above/below V_{IH/IL}(AC) for some time tVAC (see Table 51).

Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V_{IH/L}(AC) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).

For slew rates in between the values listed in Table , the derating values may obtained by linear interpolation.

These values are typically not subject to production test. They are verified by design and characterization.

[Table 53] ADD/CMD Setup and Hold Base-Values for 1V/ns (1.35V)

	[ps]	DDR3L-800	DDR3L-1066	DDR3L-1333	DDR3L-1600	DDR3L-1866	reference	Note
	tlS(base) AC160	215	140	80	60	-	V _{IH/L(AC)}	1
DDR3L	tIS(base) AC135	365	290	205	185	65	V _{IH/L(AC)}	1,2
DDRJL	tlS(base) AC125	-	-	-	-	150	V _{IH/L(AC)}	1,3
	tlH(base)-DC90	285	210	150	130	110	V _{IH/L(DC)}	1

NOTE

1. AC/DC referenced for 1V/ns Address/Command slew rate and 2 V/ns differential CK-CK# slew rate

2. The tIS(base) AC135 specifications are adjusted from the tIS(base) AC160 specification by adding an additional 125 ps for DDR3L-800/1066 or 100ps for DDR3L-1333/1600 of derating to accommodate for the lower alternate threshold of 135 mV and another 25 ps to account for the earlier reference point [(160mv - 135 mV) / 1 V/ns]. 3. The tlS(base) AC125 specifications are adjusted from the tlS(base) AC135 specification by adding an additional 75 ps for DDR3L-1866 of derating to accommodate for the

lower alternate threshold of 135 mV and another 10 ps to account for the earlier reference point [(135mv - 125 mV) / 1 V/ns].

I	Table 54	ADD/CMD Setu	p and Hold Base-	Values for 1V/ns (1.5V)
		7.000,000,000,00	p ana mora Baoo	

	[ps]	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	DDR3-1866	reference
	tlS(base) AC175	200	125	65	45	-	V _{IH/L(AC)}
	tIS(base) AC150	350	275	190	170	-	V _{IH/L(AC)}
DDR3	tlS(base) AC135	-	-	-	-	65	V _{IH/L(AC)}
	tIS(base) AC125	-	-	-	-	150	V _{IH/L(AC)}
	tIS(base) AC100	275	200	140	120	100	V _{IH/L(DC)}

NOTE:

1.AC/DC referenced for 1V/ns Address/Command slew rate and 2 V/ns differential CK-CK# slew rate

2.The tIS(base) AC150 specifications are adjusted from the tIS(base) AC175 specification by adding an additional 125 ps for DDR3-800/1066 or 100ps for DDR3-1333/1600 of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 my - 150 mV) / 1 V/ns]. 3. The tIS(base) AC125 specifications are adjusted from the tIS(base) AC135 specification by adding an additional 75 ps for DDR3-1866 and 65ps for DDR3-2133 to

accommodate for the lower alternate threshold of 125 mV and another 10 ps to account for the earlier reference point [(135 mv - 125 mV) / 1 V/ns].

[Table 55] Derating values DDR3L-800/1066/1333/1600 tlS/tlH-AC/DC based AC160 Threshold(1.35V)

				AC160	Thresho			Derating V _{REF} (DC			ed (C) = V _R	_{EF} (DC) -	160mV				
								CLK,CL	K Differ	ential SI	ew Rate						
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6	V/ns	1.4\	//ns	1.2	//ns	1.0\	//ns
	Atls AtlH 2.0 800 450 800 450 800 600 600 112 79															∆tIH	
														120	95		
	1.5	53	30	53	30	53	30	61	38	69	46	77	54	85	64	93	80
1.0 0 0 0 0 0 8 8 16 16 24 24													24	32	32	40	50
CMD/ ADD	0.9	-1	-3	-1	-3	-1	-3	7	5	15	13	23	21	31	31	39	47
Slew	0.8	-3	-8	-3	-8	-3	-8	5	1	13	9	21	17	29	27	37	43
rate V/ns	0.7	-5	-13	-5	-13	-5	-13	3	-5	11	3	19	11	27	21	35	37
V/113	0.6	-8	-20	-8	-20	-8	-20	0	-12	8	-4	16	4	24	14	32	30
	0.5	-20	-30	-20	-30	-20	-30	-12	-22	-4	-14	4	-6	12	4	20	20
	0.4	-40	-45	-40	-45	-40	-45	-32	-37	-24	-29	-16	-21	-8	-11	0	5

[Table 56] Derating values DDR3L-800/1066/1333/1600 tlS/tlH-AC/DC based - Alternate AC135 Threshold(1.35V)

			Alte	rnate AC	C135 Thi				[ps] AC _F (DC) +			= V _{REF} (I	DC) - 13	5mV			
								CLK,CL	K Differ	ential SI	ew Rate						
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6	V/ns	1.4\	//ns	1.2	//ns	1.0\	//ns
	Atls AtlH 2.0 6.8 4.5 6.8 4.5 7.6 5.3 8.4 6.1 9.2															∆tIH	
	2.0	68	45	68	45	68	45	76	53	84	61	92	69	100	79	108	95
	1.5	45	30	45	30	45	30	53	38	61	46	69	54	77	64	85	80
	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	32	40	50
CMD/ ADD	0.9	2	-3	2	-3	2	-3	10	5	18	13	26	21	34	31	42	47
Slew	0.8	3	-8	3	-8	3	-8	11	1	19	9	27	17	35	27	43	43
rate V/ns	0.7	6	-13	6	-13	6	-13	14	-5	22	3	30	11	38	21	46	37
V/113	0.6	9	-20	9	-20	9	-20	17	-12	25	-4	33	4	41	14	49	30
	0.5	5	-30	5	-30	5	-30	13	-22	21	-14	29	-6	37	4	45	20
	0.4	-3	-45	-3	-45	-3	-45	6	-37	14	-29	22	-21	30	-11	38	5

[Table 57] Derating values DDR3L-1866 tlS/tlH-AC/DC based - Alternate AC125 Threshold (1.35V)

			Alte	rnate A0	C135 Thi			-	[ps] AC _{EF} (DC) +			= V _{REF} (DC) - 12	5mV			
								CLK,CL	K Differ	ential SI	ew Rate						
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6	V/ns	1.4\	//ns	1.2	//ns	1.0\	//ns
																∆tIH	
	2.0	63	45	63	45	63	45	71	53	79	61	87	69	95	79	103	95
	1.5	42	30	42	30	42	30	50	38	58	46	66	54	74	64	82	80
	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
CMD/ ADD	0.9	3	-3	3	-3	3	-3	11	5	19	13	27	21	35	31	43	47
Slew	0.8	6	-8	6	-8	6	-8	14	1	22	9	30	17	38	27	46	43
rate V/ns	0.7	10	-13	10	-13	10	-13	18	-5	26	3	34	11	42	21	50	37
V/113	0.6	16	-20	16	-20	16	-20	24	-12	32	4	40	-4	48	14	56	30
	0.5	15	-30	15	-30	15	-30	23	-22	31	-14	39	-6	47	4	55	20
	0.4	13	-45	13	-45	13	-45	21	-37	29	-29	37	-21	45	-11	53	5

[Table 58] Derating values DDR3-800/1066/1333/1600 tlS/tlH-AC/DC based AC175 Threshold(1.5V)

			Alte	rnate AC	C175 Th				[ps] AC _F (DC) +			= V _{REF} (I	DC) - 17	5mV			
								CLK,CL	K Differ	ential SI	ew Rate						
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6	V/ns	1.4\	//ns	1.2	//ns	1.0\	//ns
															∆tIH		
													74	120	84	128	100
	1.5	59	34	59	34	59	34	67	42	75	50	83	58	91	68	99	84
	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
CMD/ ADD	0.9	-2	-4	-2	-4	-2	-4	6	4	14	12	22	20	30	30	38	46
Slew	0.8	-6	-10	-6	-10	-6	-10	2	-2	10	6	18	14	26	24	34	40
rate V/ns	0.7	-11	-16	-11	-16	-11	-16	-3	-8	5	0	13	8	21	18	29	34
v/113	0.6	-17	-26	-17	-26	-17	-26	-9	-18	-1	-10	7	-2	15	8	23	24
	0.5	-35	-40	-35	-40	-35	-40	-27	-32	-19	-24	-11	-16	-2	-6	5	10
	0.4	-62	-60	-62	-60	-62	-60	-54	-52	-46	-44	-38	-36	-30	-26	-22	-10

[Table 59] Derating values DDR3-800/1066/1333/1600 tlS/tlH-AC/DC based AC150 Threshold (1.5V)

			Alte	rnate AC	C150 Thi			Derating C) = V _{RE}				= V _{REF} (I	DC) - 15	0mV			
								СК,СК	Differe	ntial Slev	w Rate						
		4.0	V/ns	3.0 \	//ns	2.0	V/ns	1.8	V/ns	1.6 \	V/ns	1.4\	//ns	1.2	//ns	1.0\	//ns
															∆tIH		
	2.0	75	50	75	50	75	50	83	58	91	66	99	74	107	84	115	100
	1.5	50	34	50	34	50	34	58	42	66	50	74	58	82	68	90	84
	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
CMD/ ADD	0.9	0	-4	0	-4	0	-4	8	4	16	12	24	20	32	30	40	46
Slew	0.8	0	-10	0	-10	0	-10	8	-2	16	6	24	14	32	24	40	40
rate V/ns	0.7	0	-16	0	-16	0	-16	8	-8	16	0	24	8	32	18	40	34
V/113	0.6	-1	-26	-1	-26	-1	-26	7	-18	15	-10	23	-2	31	8	39	24
	0.5	-10	-40	-10	-40	-10	-40	-2	-32	6	-24	14	-16	22	-6	30	10
	0.4	-25	-60	-25	-60	-25	-60	-17	-52	-9	-44	-1	-36	7	-26	15	-10

[Table 60] Derating values DDR3-1866 tlS/tlH-AC/DC based Alternate AC135 Threshold (1.5V)

			Alte	rnate AC	C125 Th			-	[ps] AC _F (DC) +			= V _{REF} (I	DC) - 13	5mV			
								CLK,CL	K Differ	ential SI	ew Rate						
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6	V/ns	1.4\	//ns	1.2\	//ns	1.0\	V/ns
																∆tIH	
														84	108	100	
	1.5	45	34	45	34	45	34	53	42	61	50	69	58	77	68	85	84
	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
CMD/ ADD	0.9	2	-4	2	-4	2	-4	10	4	18	12	26	20	34	30	42	46
Slew	0.8	3	-10	3	-10	3	-10	11	-2	19	6	27	14	35	24	43	40
rate V/ns	0.7	6	-16	6	-16	6	-16	14	-8	22	0	30	8	38	18	46	34
V/113	0.6	9	-26	9	-26	9	-26	17	-18	25	-10	33	-2	41	8	49	24
	0.5	5	-40	5	-40	5	-40	13	-32	21	-24	29	-16	37	-6	45	10
	0.4	-3	-60	-3	-60	-3	-60	6	-52	14	-44	22	-36	30	-26	38	-10

SAMSUNG

[Table 61] Derating values DDR3-1866 tIS/tIH-AC/DC based - Alternate AC125 Threshold

			Alte	rnate AC	C125 Thi			Derating C) = V _{RE}			ed V _{IL} (AC)	= V _{REF} (DC) - 12	5mV			
								CLK,CL	K Differ	ential SI	ew Rate						
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6	V/ns	1.4\	//ns	1.2	//ns	1.0\	V/ns
																∆tIH	
	2.0	63	50	63	50	63	50	71	58	79	66	87	74	95	84	103	100
	1.5	42	34	42	34	42	34	50	42	58	50	66	58	74	68	82	84
	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
CMD/ ADD	0.9	4	-4	4	-4	4	-4	12	4	20	12	28	20	36	30	44	46
Slew	0.8	6	-10	6	-10	6	-10	14	-2	22	6	30	14	38	24	46	40
rate V/ns	0.7	11	-16	11	-16	11	-16	19	-8	27	0	35	8	43	18	51	34
V/113	0.6	16	-26	16	-26	16	-26	24	-18	32	-10	40	-2	48	8	56	24
	0.5	15	-40	15	-40	15	-40	23	-32	31	-24	39	-16	47	-6	55	10
	0.4	13	-60	13	-60	13	-60	21	-52	29	-44	37	-36	45	-26	53	-10

[Table 62] Required time t_{VAC} above $V_{IH}(AC)$ {blow $V_{IL}(AC)\}$ for valid ADD/CMD transition (1.35V)

				1.3	35V			
Slow Date[]//ma]		DDR3L-800/1	066/1333/1600			DDR3	L-1866	
Slew Rate[V/ns]	t _{VAC} @16	0mV [ps]	t _{VAC} @13	5mV [ps]	t _{VAC} @13	5mV [ps]	t _{VAC} @12	5mV [ps]
	min	max	min	max	min	max	min	max
>2.0	200	-	213	-	200	-	205	-
2.0	200	-	213	-	200	-	205	-
1.5	173	-	190	-	178	-	184	-
1.0	120	-	145	-	133	-	143	-
0.9	102	-	130	-	118	-	129	-
0.8	80	-	111	-	99	-	111	-
0.7	51	-	87	-	75	-	89	-
0.6	13	-	55	-	43	-	59	-
0.5	Note	-	10	-	Note	-	18	-
< 0.5	Note	-	10	-	Note	-	18	-

NOTE : Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.

[Table 63] Required time t_{VAC} above $V_{IH}(AC)$ {blow $V_{IL}(AC)$ } for valid ADD/CMD transition (1.5V)

				1.	5V			
Slow Date N//nel		DDR3-800/10	66/1333/1600			DDR3	3-1866	
Slew Rate[V/ns]	t _{VAC} @17	5mV [ps]	t _{VAC} @15	0mV [ps]	t _{VAC} @13	5mV [ps]	t _{VAC} @12	5mV [ps]
	min	max	min	max	min	max	min	max
>2.0	75	-	175	-	168	-	173	-
2.0	57	-	170	-	168	-	173	-
1.5	50	-	167	-	145	-	152	-
1.0	38	-	130	-	100	-	110	-
0.9	34	-	113	-	85	-	96	-
0.8	29	-	93	-	66	-	79	-
0.7	22	-	66	-	42	-	56	-
0.6	Note	-	30	-	10	-	27	-
0.5	Note	-	Note	-	Note	-	Note	-
< 0.5	Note	-	Note	-	Note	-	Note	-

NOTE : Note: Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.

on a different time scale.

NOTE :Clock and Strobe are drawn on a different time scale.

СК

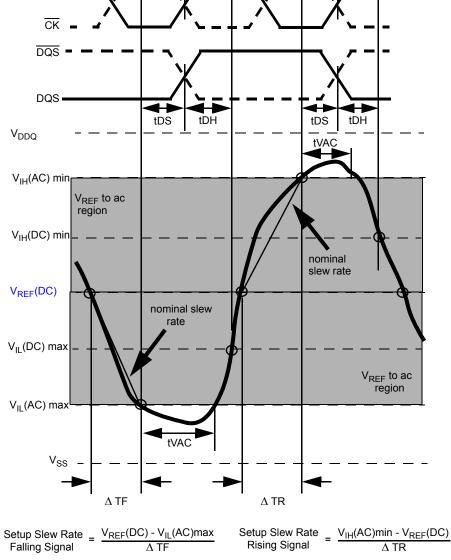


Figure 21. Illustration of nominal slew rate and t_{VAC} for setup time t_{DS} (for DQ with respect to strobe) and t_{IS} (for ADD/CMD with respect to clock).

 $\Delta \, \mathrm{TF}$

 $\begin{array}{l} \mbox{Hold Slew Rate} \\ \mbox{Falling Signal} \end{array} = \ \frac{\mbox{V}_{IH}(DC)\mbox{min - V}_{REF}(DC)}{\Delta\ TF} \end{array}$

tIS

tIH tIH СК CK DQS DQS tDS tDH tDS tDH V_{DDQ} V_{IH}(AC) min V_{IH}(DC) min dc to V_{REF} nominal I region slew rate V_{REF}(DC) nominal dc to V_{REF} slew rate region V_{IL}(DC) max-V_{IL}(AC) max V_{SS} $\Delta\,{\rm TR}$

tIS

NOTE : Clock and Strobe are drawn on a different time scale.

Figure 22. Illustration of nominal slew rate for hold time t_{DH} (for DQ with respect to strobe) and t_{H} (for ADD/CMD with respect to clock).

 $\frac{\text{Hold Slew Rate}}{\text{Rising Signal}} = \frac{V_{\text{REF}}(\text{DC}) - V_{\text{IL}}(\text{DC})\text{max}}{\Delta \text{ TR}}$

 $\Delta \, \mathrm{TR}$

NOTE :Clock and Strobe are drawn on a different time scale.

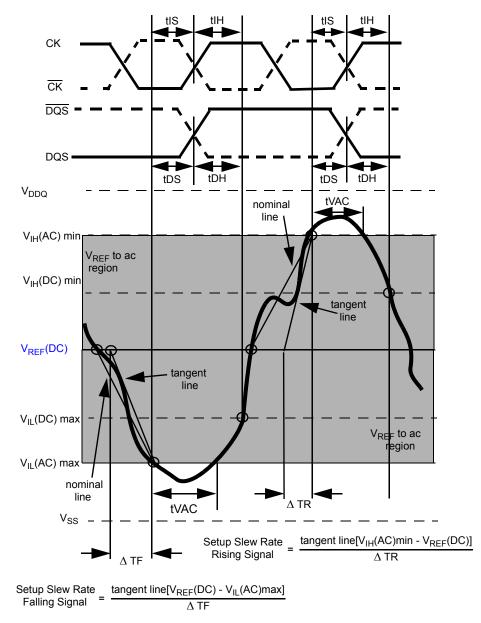


Figure 23. Illustration of tangent line for setup time t_{DS} (for DQ with respect to strobe) and t_{IS} (for ADD/CMD with respect to clock)

NOTE : Clock and Strobe are drawn on a different time scale.

Figure 24. Illustration of tangent line for hold time t_{DH} (for DQ with respect to strobe) and t_{H} (for ADD/CMD with respect to clock)

14.4 Data Setup, Hold and Slew Rate Derating :

For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see Table 64) to the Δ tDS and Δ tDH (see Table 55) derating value respectively. Example: tDS (total setup time) = tDS(base) + Δ tDS. Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V_{REF}(DC) and the first crossing of V_{IH}(AC)min.

Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V_{REF}(DC) and the first crossing of V_{IL}(AC)max (see Figure 25). If the actual signal is always earlier than the nominal slew rate line between shaded 'V_{RFF}(DC) to ac region', use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between shaded 'V_{REF}(DC) to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see

Figure 27)

Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V_{IL}(DC)max and the first crossing of V_{REF}(DC). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{IH}(DC)$ min and the first crossing of $V_{RFF}(DC)$ (see Figure). If the actual signal is always later than the nominal slew rate line between shaded 'dc level to V_{REF}(DC) region', use nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded 'dc to V_{REF}(DC) region', the slew rate of a tangent line to the actual signal from the dc level to $V_{REF}(DC)$ level is used for derating value (see Figure 28).

For a valid transition the input signal has to remain above/below V_{IH/IL}(AC) for some time tVAC (see Table 56).

Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V_{IH/I}(AC) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).

For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.

These values are typically not subject to production test. They are verified by design and characterization.

	[ps]	reference	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	DDR3-1866	NOTE
	tDS(base) AC175	V _{IH/L} (AC)SR=1V/ns	75	25	-	-	-	2
	tDS(base) AC150	V _{IH/L} (AC)SR=1V/ns	125	75	30	10	-	2
DDR3	tDS(base) AC135	V _{IH/L} (AC)SR=1V/ns	165	115	60	40	-	2,3
DDI(3	tDS(base) AC135	V _{IH/L} (AC)SR=2V/ns	-	-	-	-	68	1
	tDH(base) DC100	V _{IH/L} (DC)SR=1V/ns	150	100	65	45	-	3
	tDH(base) DC100	V _{IH/L} (DC)SR=2V/ns	-	-	-	-	70	1
	tDS(base) AC160	V _{IH/L} (DC)SR=1V/ns	90	40	-	-	-	2
	tDS(base) AC135	V _{IH/L} (DC)SR=1V/ns	140	90	45	25	-	2
DDR3L	tDS(base) AC135	V _{IH/L} (DC)SR=2V/ns	-	-	-	-	70	1
	tDH(base) DC90	V _{IH/L} (DC)SR=1V/ns	160	110	75	55	-	2
	tDH(base) DC90	V _{IH/L} (DC)SR=2V/ns	-	-	-	-	75	1

[Table 64] Data Setup and Hold Base-Values

NOTE

1. AC/DC referenced for 2V/ns DQ-slew rate and 4V/ns DQS slew rate

2. AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate 3. Optional in DDR3 SDRAM

4. This parameter applies to monolithic devices only: stacked devices are not covered here.

[Table 65] Derating values DDR3L-800/1066 tDS/tDH-AC/DC based - AC160(1.35V)

				AC	160 Thr		> VIH(ac		dc)+160	mV, VIL	oased ¹ (ac)=VRI ew Rate	EF(dc)-1	60mV				
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6 \	V/ns	1.4\	//ns	1.2\	//ns	1.0\	//ns
		AtDS AtDH AtDS AtDH <th< td=""><td>∆tDH</td></th<>															∆tDH
	2.0 80 45 80 45 80 45															-	
1.5 53 30 53 30 53 30 61 38 - <th< td=""><td>-</td></th<>															-		
DO 1.0 0 0 0 0 0 8 8 16 16															-		
Slew	0.9	-	-	-1	-3	-1	-3	7	5	15	13	23	21	-	-	-	-
rate	0.8	-	-	-	-	-3	-8	5	1	13	9	21	17	29	27	-	-
V/ns	0.7	-	-	-	-	-	-	3	-5	11	3	19	11	27	21	35	37
V/113	0.6	-	-	-	-	-	-	-	-	8	-4	16	4	24	14	32	30
	0.5	-	-	-	-	-	-	-	-	-	-	4	-6	12	4	20	20
	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-8	-11	0	5

NOTE : 1. Cell contents shaded in red are defined as 'not supported'.

SAMSUNG

[Table 66] Derating values for DDR3L-800/1066/1333/1600 tDS/tDH - AC135 (1.35V)

				Alternat	te AC13		old -> V	IH(ac <u>)=V</u>		+135mV	oased ¹ /, VIL(ac) ew Rate		dc)-135r	nV			
		4.0	4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4V/ns 1.2V/ns 1.0V/ns														
		∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH
	2.0	68	45	68	45	68	45	-	-	-	-	-	-	-	-	-	-
	1.5	45	30	45	30	45	30	53	38	-	-	-	-	-	-	-	-
DQ	1.0	0	0	0	0	0	0	8	8	16	16	-	-	-	-	-	-
Slew	0.9	-	-	2	-3	2	-3	10	5	18	13	26	21	-	-	-	-
rate	0.8	-	-	-	-	3	-8	11	1	19	9	27	17	35	27	-	-
V/ns	0.7	-	-	-	-	-	-	14	-5	22	3	30	11	38	21	46	37
v/115	0.6	-	-	-	-	-	-	-	-	25	-4	33	4	41	14	49	30
	0.5	-	-	-	-	-	-	-	-	-	-	29	-6	37	4	45	20
	0.4	-	-	-	-	-	-	-	-	-	-	-	-	30	-11	38	5

NOTE : 1. Cell contents shaded in red are defined as 'not supported'.

[Table 67] Derating values for DDR3L-1866 tDS/tDH - AC130 (1.35V)

					Alter	nate A	AC130				Derat IH(ac)						=VRE	F(dc))-130n	nV					
	DQS,DQS DIGS,DQS Differential Slew Rate 8.0 V/ns 7.0 V/ns 6.0 V/ns 5.0 V/ns 4.0 V/ns 3.0 V/ns 1.8 V/ns 1.6 V/ns 1.4V/ns 1.2V/ns 1.0V/ns																								
		8.0	//ns	7.0	V/ns	6.0	//ns	5.0	V/ns	4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	//ns	1.6	V/ns	1.4\	//ns	1.2	//ns	1.0\	//ns
		∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH
	4.0	33	23	33	23	33	23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3.5	28	19	28	19	28	19	28	19	-	-	-	I	-	-	-	I	-	-	I	-	I	-	I.	-
	3.0	22	15	22	15	22	15	22	15	22	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2.5	-	-	13	9	13	9	13	9	13	9	13	9	-	-	-	-	-	-	-	-	-	-	-	-
DQ	2.0	-	-	-	-	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-
Slew	1.5	-	-	-	-	-	-	-22	-15	-22	-15	-22	-15	-22	-15	-14	-7	-	-	-	-	-	-	-	-
rate	1.0	-	-	-	-	-	-	-	-	-65	-45	-65	-45	-65	-45	-57	-37	-49	-29	-	-	-	-	-	-
V/ns	0.9	-	-	-	-	-	-	-	-	-	-	-62	-48	-62	-48	-54	-40	-46	-32	-38	-24	-	-	-	-
V/113	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-61	-53	-53	-45	-45	-37	-37	-29	-29	-19	-	-
	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-49	-50	-41	-42	-33	-34	-25	-24	-17	-8
	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-37	-49	-29	-41	-21	-31	-13	-15
	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-31	-51	-23	-41	-15	-25
	0.4	-	I	-	-	-	-	-	I.	-	-	I	-	-	-	-	-	I	-	-	I	-28	-56	-20	-40

NOTE : 1. Cell contents shaded in red are defined as 'not supported'.

[Table 68] Derating values DDR3-800/1066 tDS/tDH - AC175 (1.5V)

	∆tDS, ∆tDH Derating in [ps] AC/DC based ¹ DQS.DQS Differential Siew Rate																
								DQS,DC	S Differ	ential SI	ew Rate						
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8	V/ns	1.6	V/ns	1.4	//ns	1.2	//ns	1.0\	//ns
		∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH
	2.0	88	50	88	50	88	50	-	-	-	-	-	-	-	-	-	-
	1.5	59	34	59	34	59	34	67	42	-	-	-	-	-	-	-	-
DQ	1.0	0	0	0	0	0	0	8	8	16	16	-	-	-	-	-	-
Slew	0.9	-	-	-2	-4	-2	-4	6	4	14	12	22	20	-	-	-	-
rate	0.8	-	-	-	-	-6	-10	2	-2	10	6	18	14	26	24	-	-
V/ns	0.7	-	-	-	-	-	-	-3	-8	5	0	13	8	21	18	29	34
v/113	0.6	-	-	-	-	-	-	-	-	-1	-10	7	-2	15	8	23	24
	0.5	-	-	-	-	-	-	-	-	-	-	-11	-16	-2	-6	6	10
	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-30	-26	-22	-10

NOTE : 1. Cell contents shaded in red are defined as 'not supported'.

[Table 69] Derating values for DDR3-800/1066/1333/1600 tDS/tDH - AC150 (1.5V)

	∆tDS, ∆tDH Derat <u>ing i</u> n [ps] AC/DC based ¹ DQS,DQS Differential Slew Rate																
								DQS,DC	S Differ	ential SI	ew Rate						
		4.0	V/ns	3.0	V/ns	2.0	V/ns	1.8 \	V/ns	1.6	V/ns	1.4	//ns	1.2\	//ns	1.0\	//ns
		∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH
	2.0	75	50	75	50	75	50	-	-	-	-	-	-	-	-	-	-
	1.5	50	34	50	34	50	34	58	42	-	-	-	-	-	-	-	-
DQ	1.0	0	0	0	0	0	0	8	8	16	16	-	-	-	-	-	-
Slew	0.9	-	-	0	-4	0	-4	8	4	16	12	24	20	-	-	-	-
rate	0.8	-	-	-	-	0	-10	8	-2	16	6	24	14	32	24	-	-
V/ns	0.7	-	-	-	-	-	-	8	-8	16	0	24	8	32	18	40	34
v/115	0.6	-	-	-	-	-	-	-	-	15	-10	23	-2	31	8	39	24
	0.5	-	-	-	-	-	-	-	-	-	-	14	-16	22	-6	30	10
	0.4	-	-	-	-	-	-	-	-	-	-	-	-	7	-26	15	-10

NOTE : 1. Cell contents shaded in red are defined as 'not supported'.

[Table 70] Derating values for DDR3-1866 tDS/tDH - AC135 (1.5V)

									resho	old ->	VIH(a	c)=VF	in [ps REF(do REF(d	c)+13	5mV, \	/IL(ad									
	DQS,DQS Differential Slew Rate 8.0 V/ns 7.0 V/ns 6.0 V/ns 5.0 V/ns 4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4V/ns 1.2V/ns 1.0V/ns																								
														-			-	-	-		-		-	-	-
		∆tDS	∆tDH	∆tDS	-	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH
	4.0	34	25	34	25	34	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3.5	29	21	29	21	29	21	29	21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3.0	23	17	23	17	23	17	23	17	23	17	-	-	-	-	-	-	-	-	-	-	I	-	I	-
	2.5	-	-	14	10	14	10	14	10	14	10	14	10	-	-	-	-	-	-	-	-	I	-	I	-
DQ	2.0	-	-	-	-	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-
Slew	1.5	-	-	-	-	-	-	-23	-17	-23	-17	-23	-17	-23	-17	-15	-9	-	-	-	-	-	-	-	-
rate	1.0	-	-	-	-	-	-	-	-	-68	-50	-68	-50	-68	-50	-60	-42	-52	-34	-	-	-	-	-	-
V/ns	0.9	-	-	-	-	-	-	-	-	-	-	-66	-54	-66	-54	-58	-46	-50	-38	-42	-30	-	-	-	-
v/113	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-64	-60	-56	-52	-48	-44	-40	-36	-32	-36	-	-
	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-53	-59	-45	-51	-37	-43	-29	-33	-21	-17
	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-43	-61	-35	-53	-27	-43	-19	-27
	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-39	-66	-31	-56	-23	-40
	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-38	-76	-30	-60

NOTE : 1. Cell contents shaded in red are defined as 'not supported'.

[Table 71] Derating values for DDR3-800/1066/1333/1600 tDS/tDH - AC135 (1.5V)

						5 Thresh	old -> V old -> V	l derating IH(ac)=V IH(dc <u>)=V</u> DQS,DC	REF(dc)	+135mV)+100m\	/, VIL(ac) /, VIL(dc)=VREF(
		4.0	V/ns	3.0	V/ns	2.0		1.8			V/ns	1.4	//ns	1.2	//ns	1.0\	//ns
		∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH
	2.0	68	50	68	50	68	50	-	-	-	-	-	-	-	-	-	-
	1.5	45	34	45	34	45	34	53	42	-	-	-	-	-	-	-	-
DQ	1.0	0	0	0	0	0	0	8	8	16	16	-	-	-	-	-	-
Slew	0.9	-	-	2	-4	2	-4	10	4	18	12	26	20	-	-	-	-
rate	0.8	-	-	-	-	3	-10	11	-2	19	6	27	14	35	24	-	-
V/ns	0.7	-	-	-	-	-	-	14	-8	22	0	30	8	38	18	46	34
0,110	0.6	-	-	-	-	-	-	-	-	25	-10	33	-2	41	8	49	24
	0.5	-	-	-	-	-	-	-	-	-	-	29	-16	37	-6	45	10
	0.4	-	-	-	-	-	-	-	-	-	-	-	-	30	-26	38	-10

NOTE : 1. Cell contents shaded in red are defined as 'not supported'.

[Table 72] Required time t_{VAC} above $V_{IH}(AC)$ {blow $V_{IL}(AC)$ } for valid DQ transition (1.35V)

			1.3	5V		
Slew Rate[V/ns]	DDR3L-800/1	066 (AC160)	DDR3L-800/1066/1	333/1600 (AC135)	DDR3L-186	66 (AC130)
Siew Rate[v/iis]	t _{VAC}	[ps]	t _{VAC}	[ps]	t _{VAC}	[ps]
	min	max	min	max	min	max
>2.0	165	-	113	-	95	-
2.0	165	-	113	-	95	-
1.5	138	-	90	-	73	-
1.0	85	-	45	-	30	-
0.9	67	-	30	-	16	-
0.8	45	-	11	-	Note	-
0.7	16	-	Note	-	-	-
0.6	Note	-	Note	-	-	-
0.5	Note	-	Note	-	-	-
<0.5	Note	-	Note	-	-	-

NOTE : Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.

[Table 73] Required time t_{VAC} above $V_{IH}(AC)$ {blow $V_{IL}(AC)$ } for valid DQ transition (1.5V)

Slew Rate[V/ns]	t _{VAC} [ps] DDF (AC1		t _{VAC} [ps] DDF 1333/1600			R3-800/1066/ 0 (AC135)	t _{VAC} [ps] DDR3-1866 (AC135)		
	min	max	min	max	min	max	min	max	
>2.0	75	-	105	-	113	-	93	-	
2.0	57	-	105	-	113	-	93	-	
1.5	50	-	80	-	90	-	70	-	
1.0	38	-	30	-	45	-	25	-	
0.9	34	-	13	-	30	-	note	-	
0.8	29	-	note	-	11	-	note	-	
0.7	note	-	note	-	note	-	-	-	
0.6	note	-	note	-	note	-	-	-	
0.5	note	-	note	-	note	-	-	-	
<0.5	note	-	note	-	note	-	-	-	

NOTE : Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.

tIH tIH tIS tIS СК CK DQS DQS tDS tDH tDS tDH V_{DDQ} tVAC V_{IH}(AC) min V_{REF} to ac region V_{IH}(DC) min nominal slew rate V_{REF}(DC) nominal slew rate V_{IL}(DC) max V_{REF} to ac region V_{IL}(AC) max tVAC V_{SS} $\Delta\,{\rm TF}$ $\Delta\,{\rm TR}$ $\begin{array}{l} \text{Setup Slew Rate}_{\text{Rising Signal}} = \frac{\text{V}_{\text{IH}}(\text{AC})\text{min} - \text{V}_{\text{REF}}(\text{DC})}{\Delta \text{ TR}} \end{array}$ Setup Slew Rate_ V_{REF}(DC) - V_{IL}(AC)max Falling Signal $\Delta \, \mathrm{TF}$

NOTE :Clock and Strobe are drawn on a different time scale.

Figure 25. Illustration of nominal slew rate and t_{VAC} for setup time t_{DS} (for DQ with respect to strobe) and t_{IS} (for ADD/CMD with respect to clock).

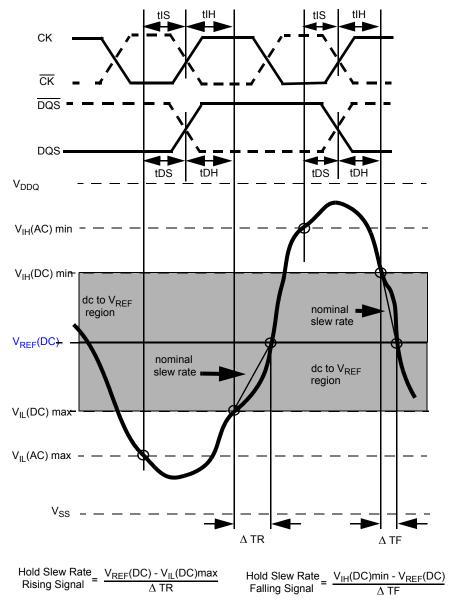


Figure 26. Illustration of nominal slew rate for hold time t_{DH} (for DQ with respect to strobe) and t_{H} (for ADD/CMD with respect to clock).

NOTE :Clock and Strobe are drawn on a different time scale.

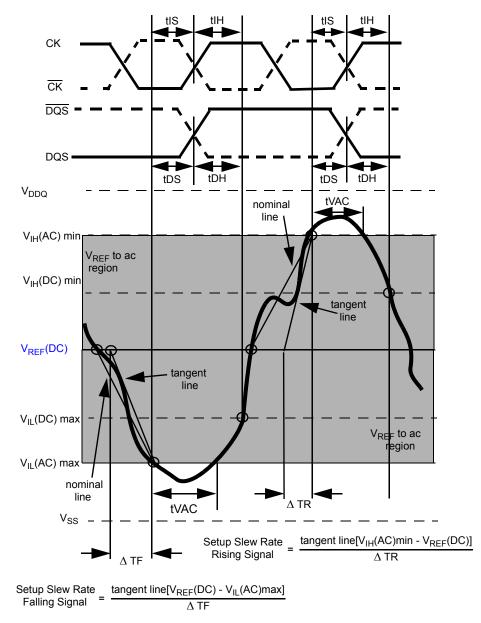


Figure 27. Illustration of tangent line for setup time t_{DS} (for DQ with respect to strobe) and t_{IS} (for ADD/CMD with respect to clock)

NOTE :Clock and Strobe are drawn on a different time scale.

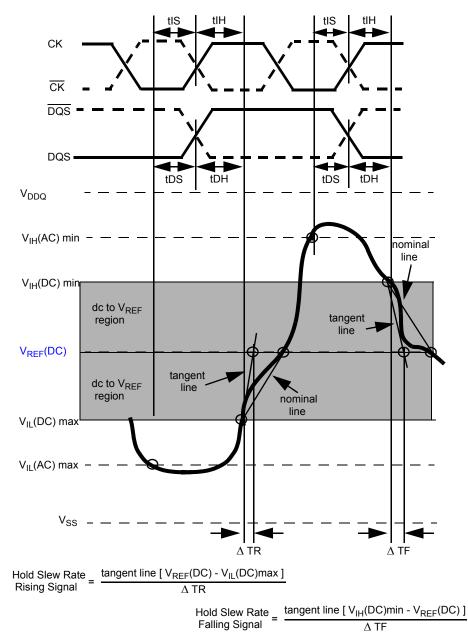


Figure 28. Illustration of tangent line for hold time t_{DH} (for DQ with respect to strobe) and t_{H} (for ADD/CMD with respect to clock)