Document Title

128K x8 bit Low Power and Low Voltage CMOS Static RAM

Revision History

Revision No.	<u>History</u>	<u>Draft Data</u>	<u>Remark</u>
0.0	Initial draft	July 3, 1996	Preliminary
1.0	Finalize - Increased ISB, IDR Commercial part = $10\mu A$ Industrial part = $20\mu A$	December 16, 1996	Final
2.0	Revise - Change speed bin KM68V1000C Family: $70/85ns \rightarrow 70/100ns$ KM68U1000C Family: $70/100ns \rightarrow 85/100ns$ - Improved operating current: $40mA \rightarrow 35mA$ - Improved power dissipation PD: $0.7W \rightarrow 1.0W$ - Improved standby current Extended/Industrial: $20 \rightarrow 10\mu A$ - VIL: $0.4V \rightarrow 0.6V$	November 25, 1997	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserves the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

128K x8 bit Low Power and Low Voltage CMOS Static RAM

FEATURES

• Process Technology: 0.4μm CMOS

• Organization: 128K x8

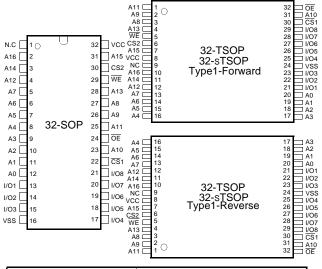
 Power Supply Voltage: K6T1008V2C family: 3.0~3.6V K6T1008U2C family: 2.7~3.3V

• Low Data Retention Voltage: 2V(Min)

• Three state output and TTL Compatible

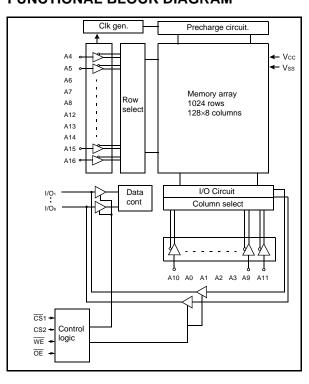
• Package Type: 32-SOP-525, 32-TSOP1-0820F/R,

32-TSOP1-0813.4F/R


GENERAL DESCRIPTION

The K6T1008V2C and K6T1008U2C families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature ranges and have various package types for user flexibility of system design. The families also supports low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY


				Power Di	ssipation	
Product Family	Operating Temperature	Vcc Range	Speed	Standby (ISB1, Max)	Operating (Icc2, Max)	PKG Type
K6T1008V2C-B	Commercial(0~70°C)	3.0~3.6V	70/100ns			
K6T1008U2C-B	Commercial(0~70 C)	2.7~3.3V	85/100ns	10μΑ	35mA	
K6T1008V2C-D	Extended(-25~85°C)	3.0~3.6V	70/100ns			32-SOP 32-TSOP1-F/R
K6T1008U2C-D	Extended(25-05 0)	2.7~3.3V	85/100ns		John	32-sTSOP1-F/R
K6T1008V2C-F	Industrial(-40~85°C)	3.0~3.6V	70/100ns			
K6T1008U2C-F	111dustriai(-40~05 C)	2.7~3.3V	85/100ns			

PIN DESCRIPTION

Name	Function
CS ₁ , CS ₂	Chip Select Inputs
ŌE	Output Enable Input
WE	Write Enable Input
A0~A16	Address Inputs
I/O1~I/O8	Data Inputs/Outputs
Vcc	Power
Vss	Ground
N.C.	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

	nperature Products -70°C)		perature Products ~85°C)	Industrial Temperature Products (-40~85°C)			
Part Name	Function	Part Name	Function	Part Name	Function		
K6T1008V2C-GB70	32-SOP, 70ns, 3.3V	K6T1008V2C-GD70	32-SOP, 70ns, 3.3V	K6T1008V2C-GF70	32-SOP, 70ns, 3.3V		
K6T1008V2C-GB10	32-SOP, 100ns, 3.3V	K6T1008V2C-GD10	32-SOP, 100ns, 3.3V	K6T1008V2C-GF10	32-SOP, 100ns, 3.3V		
K6T1008V2C-TB70	32-TSOP F, 70ns, 3.3V	K6T1008V2C-TD70	32-TSOP F, 70ns, 3.3V	K6T1008V2C-TF70	32-TSOP F, 70ns, 3.3V		
K6T1008V2C-TB10	32-TSOP F, 100ns, 3.3V	K6T1008V2C-TD10	32-TSOP F, 100ns, 3.3V	K6T1008V2C-TF10	32-TSOP F, 100ns, 3.3V		
K6T1008V2C-RB70	32-TSOP R, 70ns, 3.3V	K6T1008V2C-RD70	32-TSOP R, 70ns, 3.3V	K6T1008V2C-RF70	32-TSOP R, 70ns, 3.3V		
K6T1008V2C-RB10	32-TSOP R, 100ns, 3.3V	K6T1008V2C-RD10	32-TSOP R, 100ns, 3.3V	K6T1008V2C-RF10	32-TSOP R, 100ns, 3.3V		
K6T1008U2C-GB85	32-SOP, 85ns, 3.0V	K6T1008U2C-GD85	32-SOP, 85ns, 3.0V	K6T1008U2C-GF85	32-SOP, 85ns, 3.0V		
K6T1008U2C-GB10	32-SOP, 100ns, 3.0V	K6T1008U2C-GD10	32-SOP, 100ns, 3.0V	K6T1008U2C-GF10	32-SOP, 100ns, 3.0V		
K6T1008U2C-TB85	32-TSOP F, 85ns, 3.0V	K6T1008U2C-TD85	32-TSOP F, 85ns, 3.0V	K6T1008U2C-TF85	32-TSOP F, 85ns, 3.0V		
K6T1008U2C-TB10	32-TSOP F, 100ns, 3.0V	K6T1008U2C-TD10	32-TSOP F, 100ns, 3.0V	K6T1008U2C-TF10	32-TSOP F, 100ns, 3.0V		
K6T1008U2C-RB85	32-TSOP R, 85ns, 3.0V	K6T1008U2C-RD85	32-TSOP R, 85ns, 3.0V	K6T1008U2C-RF85	32-TSOP R, 85ns, 3.0V		
K6T1008U2C-RB10	32-TSOP R, 100ns, 3.0V	K6T1008U2C-RD85	32-TSOP R, 100ns, 3.0V	K6T1008U2C-RF10	32-TSOP R, 100ns, 3.0V		
K6T1008V2C-YB70	32-sTSOP F, 70ns, 3.3V	K6T1008V2C-YD70	32-sTSOP F, 70ns, 3.3V	K6T1008V2C-YF70	32-sTSOP F, 70ns, 3.3V		
K6T1008V2C-YB10	32-sTSOP F, 100ns, 3.3V	K6T1008V2C-YD10	32-sTSOP F, 100ns, 3.3V	K6T1008V2C-YF10	32-sTSOP F, 100ns, 3.3V		
K6T1008V2C-NB70	32-sTSOP R, 70ns, 3.3V	K6T1008V2C-ND70	32-sTSOP R, 70ns, 3.3V	K6T1008V2C-NF70	32-sTSOP R, 70ns, 3.3V		
K6T1008V2C-NB10	32-sTSOP R, 100ns, 3.3V	K6T1008V2C-ND10	32-sTSOP R, 100ns, 3.3V	K6T1008V2C-NF10	32-sTSOP R, 100ns, 3.3V		
K6T1008U2C-YB85	32-sTSOP F, 85ns, 3.0V	K6T1008U2C-YD85	32-sTSOP F, 85ns, 3.0V	K6T1008U2C-YF85	32-sTSOP F, 85ns, 3.0V		
K6T1008U2C-YB10	32-sTSOP F, 100ns, 3.0V	K6T1008U2C-YD10	32-sTSOP F, 100ns, 3.0V	K6T1008U2C-YF10	32-sTSOP F, 100ns, 3.0V		
K6T1008U2C-NB85	32-sTSOP R, 85ns, 3.0V	K6T1008U2C-ND85	32-sTSOP R, 85ns, 3.0V	K6T1008U2C-NF85	32-sTSOP R, 85ns, 3.0V		
K6T1008U2C-NB10	32-sTSOP R, 100ns, 3.0V	K6T1008U2C-ND10	32-sTSOP R, 100ns, 3.0V	K6T1008U2C-NF10	32-sTSOP R, 100ns, 3.0V		

FUNCTIONAL DESCRIPTION

CS ₁	CS ₂	OE	WE	I/O Pin	Mode	Power
Н	X1)	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
X ¹⁾	L	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	Н	High-Z	Output Disabled	Active
L	Н	L	Н	Dout	Read	Active
L	Н	X ¹⁾	L	Din	Write	Active

^{1.} X means don't care(Must be in high or low status.)

ABSOLUTE MAXIMUM RATINGS¹⁾

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN, VOUT	-0.5 to Vcc+0.5	V	-
Voltage on Vcc supply relative to	Vcc	-0.3 to 4.6	V	-
Power Dissipation	Pb	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
		0 to 70	°C	K6T1008V2C-B/K6T1008U2C-B
Operating Temperature	TA	-25 to 85	°C	K6T1008V2C-D/K6T1008U2C-D
		-40 to 85	°C	K6T1008V2C-F/K6T1008U2C-F
Soldering temperature and time	TSOLDER	260°C, 10sec (Lead Only)	-	-

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS¹⁾

Item	Symbol	Product	Min	Тур	Max	Unit
Supply voltage	Vcc	K6T1008V2C Family	3.0	3.3	3.6	V
	VCC	K6T1008U2C Family	2.7	3.0	3.3	V
Ground	Vss	All Family	0	0	0	V
Input high voltage	ViH	K6T1008V2C, K6T1008U2C Family	2.2	-	Vcc+0.3 ²⁾	V
Input low voltage	VIL	K6T1008V2C, K6T1008U2C Family	-0.3 ³⁾	-	0.6	V

Commercial Product: TA=0 to 70°C, unless otherwise specified Extended Product: TA=-25 to 85°C, unless otherwise specified Industrial Product: TA=-40 to 85°C, unless otherwise specified

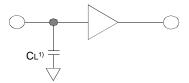
- 2. Overshoot: Vcc+3.0V in case of pulse width ≤30ns
- 3. Undershoot: -3.0V in case of pulse width ≤30ns
- 4. Overshoot and undershoot is sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	6	pF
Input/Output capacitance	Сю	Vio=0V	-	8	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS


Item	Symbol	Test Conditions	Min	Тур	Max	Unit		
Input leakage current	ILI	VIN=Vss to Vcc	-1	-	1	μΑ		
Output leakage current	ILO	S1=VIH or CS2=VIL or OE=VIH or WE=VIL, VIO=Vss to Vo	S1=VIH or CS2=VIL or OE=VIH or WE=VIL, VIO=Vss to Vcc					
Operating power supply	Icc	IIO=0mA, \overline{CS}_1 =VIL, CS ₂ =VIH, VIN=VIL or VIH, Read	IO=0mA, $\overline{\text{CS}}_1$ =VIL, CS ₂ =VIH, VIN=VIL or VIH, Read				mA	
	Icc1	Cycle time=1μs, 100% duty, Iιο=0mA,	Read	-	1.5	5	mA	
Average operating current	1001	CS1≤0.2V, CS2≥Vcc-0.2V, VIN≤0.2V or VIN≥Vcc-0.2V			10	15	ША	
	ICC2	Cycle time=Min, 100% duty, Iio=0mA, \overline{CS}_1 =ViL, CS_2 =ViH, ViN=ViL or ViH			25	35	mA	
Output low voltage	Vol	IoL=2.1mA		-	-	0.4	V	
Output high voltage	Voн	IOH=-1.0mA		2.2	-	-	V	
Standby Current(TTL)	Isb	CS₁=VIH, CS₂=VIL, Other inputs=VIL or VIH	-	-	0.3	mA		
Standby Current(CMOS)	ISB1	CS1≥Vcc-0.2V, CS2≥Vcc-0.2V or CS2≤0.2V, Other inputs	=0~Vcc	-	0.3	10	μΑ	

AC OPERATING CONDITIONS

TEST CONDITIONS(Test Load and Input/Output Reference)

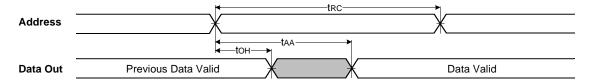
Input pulse level: 0.4 to 2.2V
Input rising and falling time: 5ns
Input and output reference voltage:1.5V
Output load(see right): CL=100pF+1TTL

1. Including scope and jig capacitance

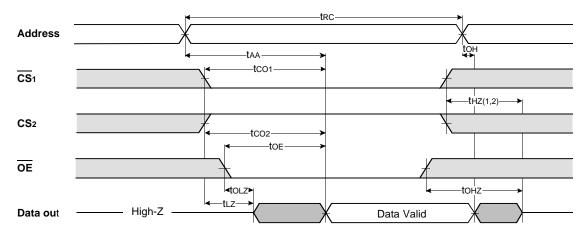
AC CHARACTERISTICS (Commercial product: Ta=0 to 70°C, Extended product: Ta=-25 to 85°C, Industrial product: Ta=-40 to 85°C K6T1008V2C Family: Vcc=3.0~3.6V, K6T1008U2C Family: Vcc=2.7~3.3V)

					Spee	d Bins			
	Parameter List	Symbol	70ns		85ns		100ns		Units
			Min	Max	Min	Max	Min	Max	
	Read cycle time	trc	70	-	85	-	100	-	ns
	Address access time	taa	-	70	-	85	-	100	ns
	Chip select to output	tco1, tco2	-	70	-	85	-	100	ns
	Output enable to valid output	toE	-	35	-	40	-	50	ns
Read	Chip select to low-Z output	tLZ	10	-	10	-	10	-	ns
	Output enable to low-Z output	toLz	5	-	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	25	0	25	0	30	ns
	Output disable to high-Z output	tonz	0	25	0	25	0	30	ns
	Output hold from address change	tон	10	-	15	-	15	-	ns
	Write cycle time	twc	70	-	85	-	100	-	ns
	Chip select to end of write	tcw	60	-	70	-	80	-	ns
	Address set-up time	tas	0	-	0	-	0	-	ns
	Address valid to end of write	taw	60	-	70	-	80	-	ns
Write	Write pulse width	twp	55	-	60	-	70	-	ns
vviile	Write recovery time	twr	0	-	0	-	0	-	ns
	Write to output high-Z	twnz	0	25	0	30	0	30	ns
	Data to write time overlap	tow	30	-	35	-	40	-	ns
	Data hold from write time	tDH	0	-	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	5	-	ns

DATA RETENTION CHARACTERISTICS


Item	Symbol	Test Condition ¹⁾	Min	Тур	Max	Unit
Vcc for data retention	VDR	<u>CS</u> 1¹)≥Vcc-0.2V	2.0	-	3.6	V
Data retention current	IDR	Vcc=3.0V, CS 1≥Vcc-0.2V, CS2≥Vcc-0.2V, or CS2≤0.2V	-	0.3	5	μΑ
Data retention set-up time	tsdr			-	-	mo
Recovery time	trdr	See data retention waveform	5	1	-	ms

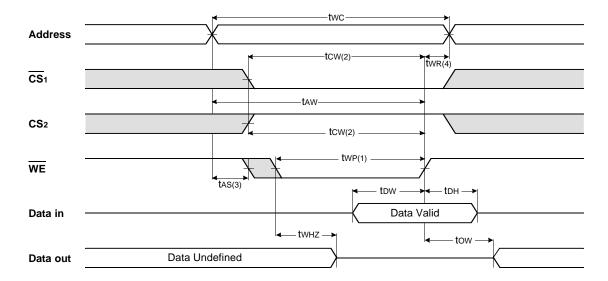
^{1.} CS₁≥Vcc-0.2V, CS₂≥Vcc-0.2V, or CS₂≤0.2V



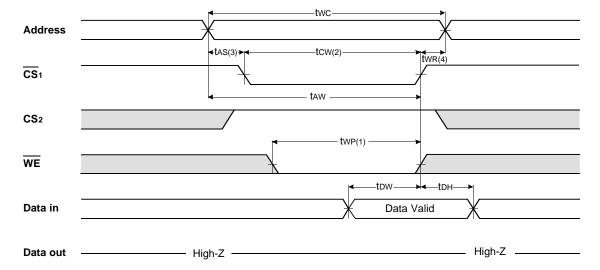
TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$)

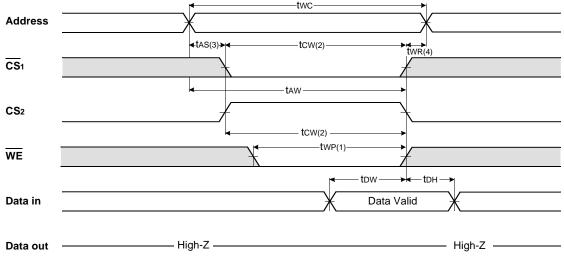
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

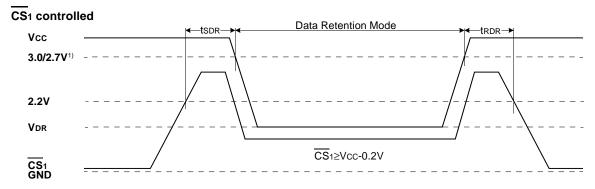
TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

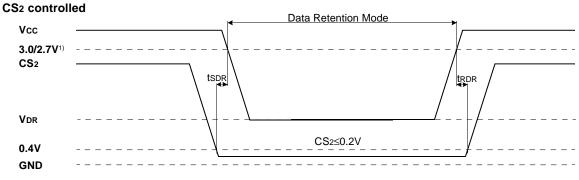


TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)

NOTES (WRITE CYCLE)

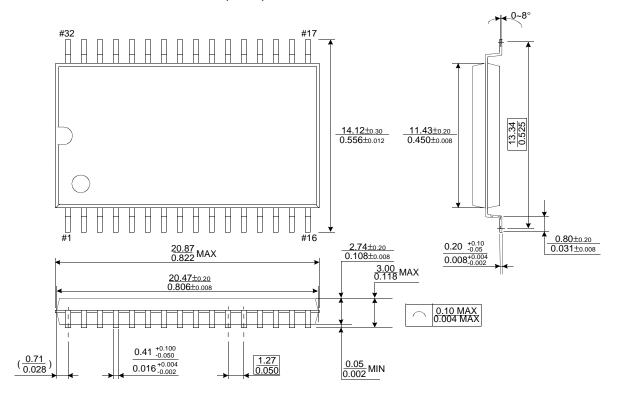

- 1. A write occurs during the overlap of a low $\overline{CS_1}$, a high $\overline{CS_2}$ and a low \overline{WE} . A write begins at the latest transition among $\overline{CS_1}$ goes low, $\overline{CS_2}$ going high and \overline{WE} going low: A write end at the earliest transition among $\overline{CS_1}$ going high, $\overline{CS_2}$ going low and \overline{WE} going high, two is measured from the beginning of write to the end of write.


 2. tcw is measured from the $\overline{CS_1}$ going low or $\overline{CS_2}$ going high to the end of write.

 3. tAS is measured from the address valid to the beginning of write.

- 4. twrk is measured from the end of write to the address change. twrk(1) applied in case a write ends as CS1 or WE going high twrk(2) applied in case a write ends as CS2 going to low.

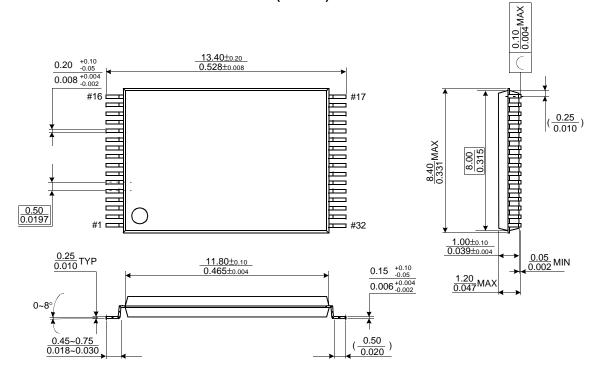
DATA RETENTION WAVE FORM


1. 3.0V for K6T1008V2C Family, 2.7V for K6T1008U2C Family

PACKAGE DIMENSIONS

Units: millimeter(inch)

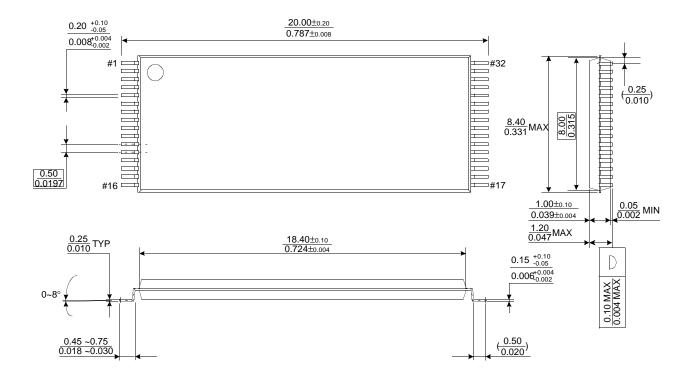
32 PIN PLASTIC SMALL OUTLINE PACKAGE (525mil)

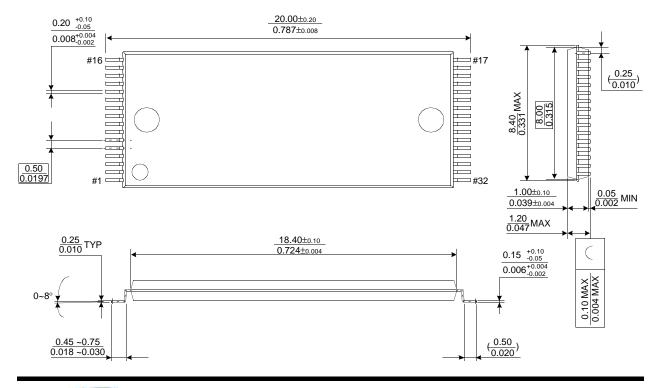

PACKAGE DIMENSIONS

Units: millimeter(inch)

32 PIN THIN SMALL OUTLINE PACKAGE TYPE I (0813.4F)

32 PIN THIN SMALL OUTLINE PACKAGE TYPE I (0813.4R)




PACKAGE DIMENSIONS

Units: millimeter(inch)

32 PIN THIN SMALL OUTLINE PACKAGE TYPE I (0820F)

32 PIN THIN SMALL OUTLINE PACKAGE TYPE I (0820R)

