Document Title

128Kx8 bit Super Low Power and Low Voltage CMOS Static RAM

Revision History

Revision No.	<u>History</u>	<u>Draft Data</u>	Remark
0.0	Initial Draft	November 27, 2001	Preliminary
0.1	Revise - Changed Package Type : 48(36)-TBGA-6.00x7.00 to 32-TSOP1-0813.4F	December 13, 2001	Preliminary
1.0	Finalize	June 12, 2002	Final
2.0	Revise - Added Lead Free products	March 9, 2005	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserves the right to change the specifications and products. SAMSUNG Electronics will answer to your questions. If you have any questions, please contact the SAMSUNG branch offices.

128Kx8 bit Super Low Power and Low Voltage CMOS Static RAM

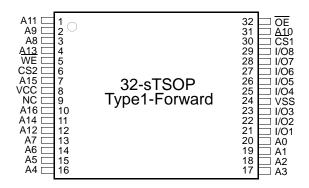
FEATURES

Process Technology: Full CMOS
Organization: 128K x8 bit
Power Supply Voltage: 3.0~3.6V
Low Data Retention Voltage: 1.5V(Min)

• Three State Outputs

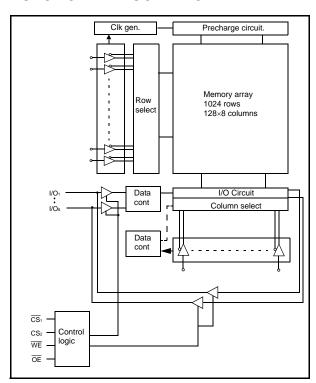
• Package Type: 32-TSOP1-0813.4F

GENERAL DESCRIPTION


The K6F1008V2C families are fabricated by SAMSUNG's advanced full CMOS process technology. The families support industrial temperature range and have various package types for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

				Power Di	ssipation	
Product Family	Operating Temperature	Vcc Range	Speed	Standby (Is _{B1} , Typ.)	Operating (Icc1, Max)	PKG Type
K6F1008V2C-F	Industrial(-40~85°C)	3.0~3.6V	55 ¹⁾ /70ns	0.5μA ²⁾	3mA	32-TSOP1-0813.4F


- 1. The parameter is measured with 30pF test load.
- 2. Typical values are measured at Vcc=3.3V, Ta=25°C and not 100% tested.

PIN DESCRIPTION

Name	Function	Name	Function
CS ₁ , CS ₂	Chip Select Inputs	I/O1~I/O8	Data Inputs/Outputs
ŌĒ	Output Enable Input	Vcc	Power
WE	Write Enable Input	Vss	Ground
A0~A16	Address Inputs	NC	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Industrial Temperature Products(-40~85°C)					
Part Name	Function				
K6F1008V2C-YF55 K6F1008V2C-YF70 K6F1008V2C-LF55 K6F1008V2C-LF70	32-sTSOP1-F, 55ns, 3.3V 32-sTSOP1-F, 70ns, 3.3V 32-sTSOP1-F, 55ns, 3.3V, L/F ¹⁾ 32-sTSOP1-F, 70ns, 3.3V, L/F				

^{1.} L/F: Lead Free Package

FUNCTIONAL DESCRIPTION

CS ₁	CS ₂	OE	WE	I/O	Mode	Power
Н	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
X ¹⁾	L	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	Н	High-Z	Output Disabled	Active
L	Н	L	Н	Dout	Read	Active
L	Н	X ¹⁾	L	Din	Write	Active

^{1.} X means don't care (Must be high or low states)

ABSOLUTE MAXIMUM RATINGS(1)

Item	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	VIN,VOUT	-0.2 to Vcc+0.3V	V
Voltage on Vcc supply relative to Vss	Vcc	-0.2 to 4.0V	V
Power Dissipation	Po	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	TA	-40 to 85	°C

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted within recommended operating condition. Exposure to absolute maximum rating conditions for extended period may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	3.0	3.3	3.6	V
Ground	Vss	0	0	0	٧
Input high voltage	Vih	2.2	-	Vcc+0.32)	V
Input low voltage	VIL	-0.3 ³⁾	-	0.6	V

Note:

- 1. Ta=-40 to 85°C, otherwise specified
- 2. Overshoot: Vcc+2.0V in case of pulse width \leq 20ns.
- 3. Undershoot: -2.0V in case of pulse width ≤20ns.
- 4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

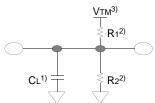
Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	=	10	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions	Min	Typ ¹⁾	Max	Unit
Input leakage current	I⊔	Vin=Vss to Vcc	-1	-	1	μΑ
Output leakage current	ILO	CS₁=VIH or CS₂=VIL or OE=VIH or WE=VIL, VIO=Vss to Vcc	-1	-	1	μА
Average operating current	ICC1	Cycle time=1 μ s, 100%duty, Iio=0mA, \overline{CS} 1 \leq 0.2V, CS2 \geq Vcc-0.2V, ViN \leq 0.2V or ViN \geq Vcc-0.2V	-	-	3	mA
	ICC2	Cycle time=Min, 100% duty, Iio=0mA, CS1=VIL, CS2=VIH, VIN=VIH or VIL	-	-	35	mA
Output low voltage	Vol	IoL=2.1mA	-	-	0.4	٧
Output high voltage	Vон	IOH=-1.0mA	2.4	-	-	٧
Standby Current(CMOS)	ISB1	CS₁≥Vcc-0.2V, CS₂≥Vcc-0.2V or CS₂≤0.2V, Other inputs=0~Vcc	-	0.5	5 ²⁾	μА

^{1.} Typical values are measured at Vcc=3.3V, Ta=25°C and not 100% tested.



^{2.} Super low power product=1μA with special handling.

AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Test Input/Output Reference)

Input pulse level: 0.4 to 2.2V
Input rising and falling time: 5ns
Input and output reference voltage: 1.5V
Output load (See right): CL= 100pF+1TTL
CL= 30pF+1TTL

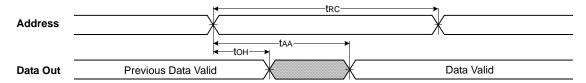
- 1. Including scope and jig capacitance
- 2. $R_1=3070\Omega$, $R_2=3150\Omega$
- 3. V_{TM} =2.8V

AC CHARACTERISTICS (Vcc=3.0~3.6V, Industrial product:TA=-40 to 85°C)

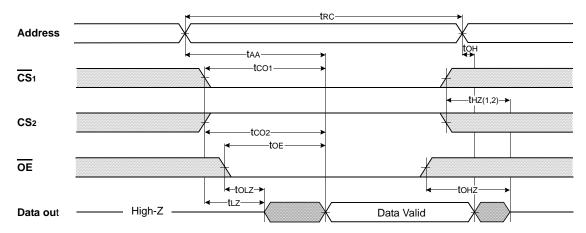
			Speed Bins				
	Parameter List	Symbol	55	ns¹)	70ns		Units
			Min	Max	Min	Max	
	Read Cycle Time	trc	55	-	70	-	ns
	Address Access Time	taa	-	55	-	70	ns
	Chip Select to Output	tco	-	55	-	70	ns
	Output Enable to Valid Output	toe	-	25	-	35	ns
Read	Chip Select to Low-Z Output	tLZ	10	-	10	-	ns
	Output Enable to Low-Z Output	tolz	5	-	5	-	ns
	Chip Disable to High-Z Output	tHZ	0	20	0	25	ns
	Output Disable to High-Z Output	tonz	0	20	0	25	ns
	Output Hold from Address Change	tон	10	-	10	-	ns
	Write Cycle Time	twc	55	-	70	-	ns
	Chip Select to End of Write	tcw	45	-	60	-	ns
	Address Set-up Time	tas	0	-	0	-	ns
	Address Valid to End of Write	taw	45	-	60	-	ns
Write	Write Pulse Width	twp	40	-	50	-	ns
VVIILE	Write Recovery Time	twr	0	-	0	-	ns
	Write to Output High-Z	twnz	0	20	0	20	ns
	Data to Write Time Overlap	tow	25	-	30	-	ns
	Data Hold from Write Time	toh	0	-	0	-	ns
	End Write to Output Low-Z	tow	5	-	5	-	ns

^{1.} The parameter is measured with 30pF test load.

DATA RETENTION CHARACTERISTICS


Item	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	VDR	CS 1≥Vcc-0.2V ¹⁾	1.5	-	3.6	V
Data retention current	IDR	Vcc=1.5V, CS 1≥Vcc-0.2V ¹⁾	-	-	1.0	μА
Data retention set-up time	tsdr	See data retention waveform	0	-	-	ns
Recovery time	trdr	occ data retention waveform	tRC	-	-	113

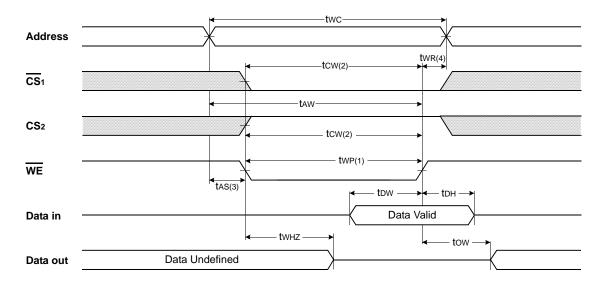
^{1.} $\overline{CS}_1 \ge Vcc$ -0.2V, $CS_2 \ge Vcc$ -0.2V(\overline{CS}_1 controlled) or $CS_2 \le 0.2V(CS_2$ controlled)



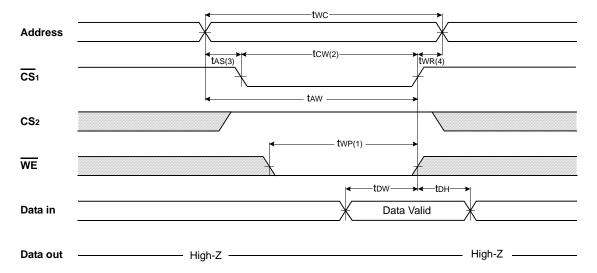
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS}_1 = \overline{OE} = V_{IL}$, $CS_2 = \overline{WE} = V_{IH}$)

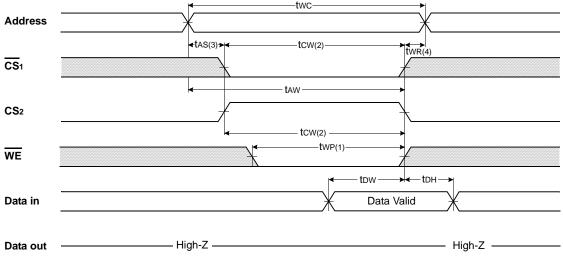
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

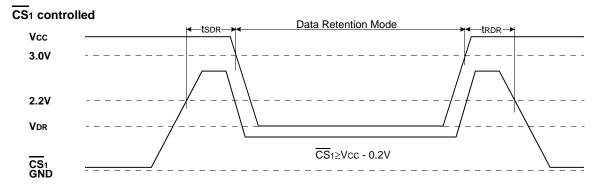
TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

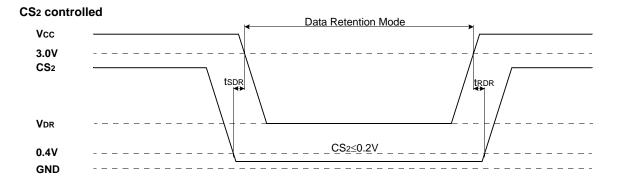


TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)

NOTES (WRITE CYCLE)

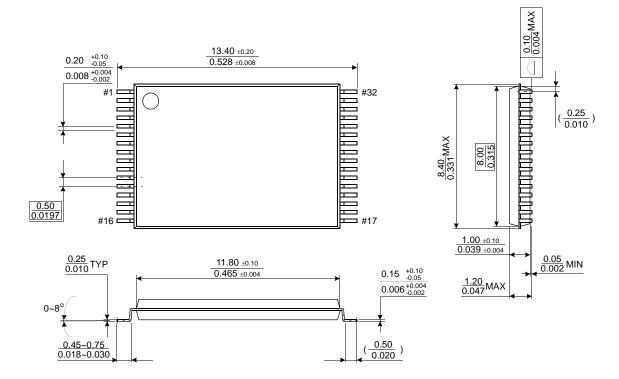

- 1. A write occurs during the overlap of a low \overline{CS}_1 , a high CS_2 and a low \overline{WE} . A write begins at the latest transition among \overline{CS}_1 going low, CS_2 going high and \overline{WE} going low: A write ends at the earliest transition among \overline{CS}_1 going high, CS_2 going low and \overline{WE} going high, twp is measured from the begining of write to the end of write.


 2. tow is measured from the address valid to the beginning of write.

 3. tas is measured from the end of write to the address change, two is applied in case a write ends with \overline{CS}_1 or \overline{WE} going high and

- 4. twx is measured from the end of write to the address change. twx1 is applied in case a write ends with $\overline{\text{CS}}_1$ or $\overline{\text{WE}}$ going high and twx2 is applied in case a write ends with CS2 going low.

DATA RETENTION WAVE FORM



PACKAGE DIMENSIONS

Units: millimeters(inches)

32 PIN THIN SMALL OUTLINE PACKAGE TYPE I (0813.4F)

