KA78XXE／KA78XXAE
 3－Terminal 1A Positive Voltage Regulator

Features

■ Output Current up to 1A
－Output Voltages of $5,6,8,9,10,12,15,18,24 \mathrm{~V}$
－Thermal Overload Protection
－Short Circuit Protection
－Output Transistor Safe Operating Area Protection

General Description

The KA78XXE／KA78XXAE series of three－terminal posi－ tive regulator are available in the TO－220／D－PAK package and with several fixed output voltages，making them use－ ful in a wide range of applications．Each type employs internal current limiting，thermal shut down and safe oper－ ating area protection，making it essentially indestructible． If adequate heat sinking is provided，they can deliver over 1A output current．Although designed primarily as fixed voltage regulators，these devices can be used with exter－ nal components to obtain adjustable voltages and cur－ rents．

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
KA7805E／KA7806E	$\pm 4 \%$	TO－220（Dual Gauge）	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
KA7808E／KA7809E			
KA7810E			
KA7812E／KA7815E			
KA7818E／KA7824E			
KA7805AE／KA7806AE	$\pm 2 \%$		
KA7808AE／KA7809AE			
KA7810AE			
KA7812AE／KA7815AE			
KA7818AE／KA7824AE			
KA7805ER／KA7806ER	$\pm 4 \%$	D-PAK	
KA7808ER／KA7809ER			
KA7812ER			

Block Diagram

Figure 1.

Pin Assignment

Figure 2.

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	
V_{I}	Input Voltage	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ to 18 V	35	V
		$\mathrm{~V}_{\mathrm{O}}=24 \mathrm{~V}$	40	
$\mathrm{R}_{\text {日JC }}$	Thermal Resistance Junction-Cases (TO-220)	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{R}_{\text {日JA }}$	Thermal Resistance Junction-Air (TO-220)	65	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{T}_{\mathrm{OPR}}$	Operating Temperature Range (KA78XXE/AE/ER)	0 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics (KA7805E/KA7805ER)
Refer to test circuit, $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7805E/ER			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		4.8	5.0	5.2	V
		$\begin{aligned} & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V} \text { to } 20 \mathrm{~V} \end{aligned}$		4.75	5.0	5.25	
Regline	Line Regulation ${ }^{(1)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=7 \mathrm{~V}$ to 25 V	-	4.0	100	mV
			$\mathrm{V}_{1}=8 \mathrm{~V}$ to 12 V	-	1.6	50	
Regload	Load Regulation ${ }^{(1)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}$ to 1.5 A	-	9	100	mV
			$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA	-	4	50	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.0	8.0	mA
Δ_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}$		-	0.03	0.5	mA
		$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { to } 25 \mathrm{~V}$		-	0.3	1.3	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(2)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-0.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	42	-	$\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}$
RR	Ripple Rejection ${ }^{(2)}$	$\mathrm{f}=120 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V}$ to 18 V		62	73	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
ro	Output Resistance ${ }^{(2)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	15	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{1}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	230	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(2)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

1. Load and line regulation are specified at constant junction temperature. Changes in V_{0} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
2. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7806E/KA7806ER) (Continued)
Refer to test circuit, $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=11 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7806E/ER			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		5.75	6.0	6.25	V
		$\begin{aligned} & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{I}}=8.0 \mathrm{~V} \text { to } 21 \mathrm{~V} \end{aligned}$		5.7	6.0	6.3	
Regline	Line Regulation ${ }^{(3)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=8 \mathrm{~V}$ to 25 V	-	5	120	mV
			$\mathrm{V}_{1}=9 \mathrm{~V}$ to 13 V	-	1.5	60	
Regload	Load Regulation ${ }^{(3)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A	-	9	120	mV
			$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA	-	3	60	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.0	8.0	mA
Δl_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 A		-	-	0.5	mA
		$\mathrm{V}_{1}=8 \mathrm{~V}$ to 25 V		-	-	1.3	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(4)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-0.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	45	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(4)}$	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & V_{1}=9 \mathrm{~V} \text { to } 19 \mathrm{~V} \end{aligned}$		59	75	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
r°	Output Resistance ${ }^{(4)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	19	-	$\mathrm{m} \Omega$
$I_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
I_{PK}	Peak Current ${ }^{(4)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

3. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
4. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7808E/KA7808ER) (Continued)
Refer to test circuit, $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=14 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7808E/ER			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		7.7	8.0	8.3	V
		$\begin{aligned} & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{I}}=10.5 \mathrm{~V} \text { to } 23 \mathrm{~V} \end{aligned}$		7.6	8.0	8.4	
Regline	Line Regulation ${ }^{(5)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=10.5 \mathrm{~V}$ to 25 V	-	5.0	160	mV
			$\mathrm{V}_{1}=11.5 \mathrm{~V}$ to 17 V	-	2.0	80	
Regload	Load Regulation ${ }^{(5)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}$ to 1.5 A	-	10	160	mV
			$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA	-	5.0	80	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.0	8.0	mA
Δ_{Q}	Quiescent CurrentChange	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	0.05	0.5	mA
		$\mathrm{V}_{1}=10.5 \mathrm{~A}$ to 25 V		-	0.5	1.0	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(6)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-0.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	52	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(6)}$	$\mathrm{f}=120 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{I}}=11.5 \mathrm{~V}$ to 21.5 V		56	73	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
ro	Output Resistance ${ }^{(6)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	17	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{1}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	230	-	mA
IPK	Peak Current ${ }^{(6)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:
5. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
6. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7809E/KA7809ER) (Continued)
Refer to test circuit, $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7809E/ER			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		8.65	9	9.35	V
		$\begin{aligned} & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{I}}=11.5 \mathrm{~V} \text { to } 24 \mathrm{~V} \end{aligned}$		8.6	9	9.4	
Regline	Line Regulation ${ }^{(7)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{I}}=11.5 \mathrm{~V}$ to 25 V	-	6	180	mV
			$\mathrm{V}_{1}=12 \mathrm{~V}$ to 17 V	-	2	90	
Regload	Load Regulation ${ }^{(7)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A	-	12	180	mV
			$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA	-	4	90	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.0	8.0	mA
Δ_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	-	0.5	mA
		$\mathrm{V}_{1}=11.5 \mathrm{~V}$ to 26 V		-	-	1.3	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(8)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	58	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(8)}$	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & V_{I}=13 \mathrm{~V} \text { to } 23 \mathrm{~V} \end{aligned}$		56	71	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
r_{0}	Output Resistance ${ }^{(8)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	17	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(8)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

7. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
8. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7810E) (Continued)
Refer to test circuit, $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=16 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7810E			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$		9.6	10.0	10.4	V
		$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{I}}=12.5 \mathrm{~V} \text { to } 25 \mathrm{~V} \end{aligned}$		9.5	10.0	10.5	
Regline	Line Regulation ${ }^{(9)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=12.5 \mathrm{~V}$ to 25 V	-	10.0	200	mV
			$\mathrm{V}_{1}=13 \mathrm{~V}$ to 25 V	-	3.0	100	
Regload	Load Regulation ${ }^{(9)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A	-	12.0	200	mV
			$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA	-	4.0	400	
I_{Q}	Quiescent Current	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$		-	5.1	8.0	mA
Δl_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 A		-	-	0.5	mA
		$\mathrm{V}_{1}=12.5 \mathrm{~V}$ to 29 V		-	-	1.0	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(10)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	58.0	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(10)}$	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & V_{O}=13 \mathrm{~V} \text { to } 23 \mathrm{~V} \end{aligned}$		56.0	71.0	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.0	-	V
r°	Output Resistance ${ }^{(10)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	17.0	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(10)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

9. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
10. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7812E/KA7812ER) (Continued)
Refer to test circuit, $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=19 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7812E/ER			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		11.5	12	12.5	V
		$\begin{aligned} & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{I}}=14.5 \mathrm{~V} \text { to } 27 \mathrm{~V} \end{aligned}$		11.4	12	12.6	
Regline	Line Regulation ${ }^{(11)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=14.5 \mathrm{~V}$ to 30 V	-	10	240	mV
			$\mathrm{V}_{1}=16 \mathrm{~V}$ to 22 V	-	3.0	120	
Regload	Load Regulation ${ }^{(11)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A	-	11	240	mV
			$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA	-	5.0	120	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.1	8.0	mA
Δ_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	0.1	0.5	mA
		$\mathrm{V}_{1}=14.5 \mathrm{~V}$ to 30 V		-	0.5	1.0	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output Voltage Driff ${ }^{(12)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	76	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(12)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{I}}=15 \mathrm{~V} \text { to } 25 \mathrm{~V} \end{aligned}$		55	71	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
${ }^{\text {r }}$	Output Resistance ${ }^{(12)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	18	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{1}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	230	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(12)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

11. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
12. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7815E) (Continued)
Refer to test circuit, $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=23 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7815E			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		14.4	15	15.6	V
		$\begin{aligned} & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{I}}=17.5 \mathrm{~V} \text { to } 30 \mathrm{~V} \end{aligned}$		14.25	15	15.75	
Regline	Line Regulation ${ }^{(13)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=17.5 \mathrm{~V}$ to 30 V	-	11	300	mV
			$\mathrm{V}_{1}=20 \mathrm{~V}$ to 26 V	-	3	150	
Regload	Load Regulation ${ }^{(13)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A	-	12	300	mV
			$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA	-	4	150	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.2	8.0	mA
Δl_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	-	0.5	mA
		$\mathrm{V}_{1}=17.5 \mathrm{~V}$ to 30 V		-	-	1.0	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output Voltage Driff ${ }^{(14)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	90	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(14)}$	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & V_{I}=18.5 \mathrm{~V} \text { to } 28.5 \mathrm{~V} \end{aligned}$		54	70	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
r_{0}	Output Resistance ${ }^{(14)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	19	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(14)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

13. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
14. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7818E) (Continued)
Refer to test circuit, $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=27 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7818E			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		17.3	18	18.7	V
		$\begin{aligned} & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{I}}=21 \mathrm{~V} \text { to } 33 \mathrm{~V} \end{aligned}$		17.1	18	18.9	
Regline	Line Regulation ${ }^{(15)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=21 \mathrm{~V}$ to 33 V	-	15	360	mV
			$\mathrm{V}_{1}=24 \mathrm{~V}$ to 30 V	-	5	180	
Regload	Load Regulation ${ }^{(15)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A	-	15	360	mV
			$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA	-	5.0	180	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.2	8.0	mA
Δl_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	-	0.5	mA
		$\mathrm{V}_{1}=21 \mathrm{~V}$ to 33 V		-	-	1	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output Voltage Driff ${ }^{(16)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	110	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(16)}$	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & V_{1}=22 \mathrm{~V} \text { to } 32 \mathrm{~V} \end{aligned}$		53	69	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
r_{0}	Output Resistance ${ }^{(16)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	22	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(16)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

15. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
16. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7824E) (Continued)
Refer to test circuit, $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=33 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7824E			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		23	24	25	V
		$\begin{aligned} & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{I}}=27 \mathrm{~V} \text { to } 38 \mathrm{~V} \end{aligned}$		22.8	24	25.25	
Regline	Line Regulation ${ }^{(17)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=27 \mathrm{~V}$ to 38 V	-	17	480	mV
			$\mathrm{V}_{1}=30 \mathrm{~V}$ to 36 V	-	6	240	
Regload	Load Regulation ${ }^{(17)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A	-	15	480	mV
			$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA	-	5.0	240	
I_{Q}	Quiescent Current	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$		-	5.2	8.0	mA
Δ_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	0.1	0.5	mA
		$\mathrm{V}_{1}=27 \mathrm{~V}$ to 38 V		-	0.5	1	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(18)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1.5	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	60	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(18)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{I}}=28 \mathrm{~V} \text { to } 38 \mathrm{~V} \end{aligned}$		50	67	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
r°	Output Resistance ${ }^{(18)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	28	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{1}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	230	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(18)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

17. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
18. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7805AE) (Continued)
Refer to the test circuits. $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~V}_{I}=10 \mathrm{~V}, \mathrm{C}_{I}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions			A7805		Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		4.9	5	5.1	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } \\ & \mathrm{V}_{\mathrm{I}}=7.5 \mathrm{~V} \text { to } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & 20 \mathrm{~V} \end{aligned}$	4.8	5	5.2	
Regline	Line Regulation ${ }^{(19)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7.5 \mathrm{~V} \text { to } \\ & \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \end{aligned}$		-	5	50	mV
		$\mathrm{V}_{1}=8 \mathrm{~V} \text { to } 12$		-	3	50	
		$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=7.3 \mathrm{~V}$ to 20 V	-	5	50	
			$\mathrm{V}_{1}=8 \mathrm{~V}$ to 12 V	-	1.5	25	
Regload	Load Regulation ${ }^{(19)}$	$\begin{aligned} & \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \end{aligned}$		-	9	100	mV
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 A		-	9	100	
		$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA		-	4	50	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.0	6.0	mA
Δ_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 A		-	-	0.5	mA
		$\mathrm{V}_{\mathrm{I}}=8 \mathrm{~V} \text { to } 25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$		-	-	0.8	
		$\mathrm{V}_{1}=7.5 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	-	0.8	
$\Delta \mathrm{V} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(20)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-0.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		-	10	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(20)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=8 \mathrm{~V} \text { to } 18 \mathrm{~V} \end{aligned}$		-	68	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
ro	Output Resistance ${ }^{(20)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	17	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(20)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:
19. Load and line regulation are specified at constant junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
20. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7806AE) (Continued)
Refer to the test circuits. $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=11 \mathrm{~V}, \mathrm{C}_{I}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7806AE			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		5.58	6	6.12	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } \\ & \mathrm{V}_{\mathrm{I}}=8.6 \mathrm{~V} \text { to } \end{aligned}$	$\mathrm{V}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W}$	5.76	6	6.24	
Regline	Line Regulation ${ }^{(21)}$	$\mathrm{V}_{1}=8.6 \mathrm{~V}$ to	$\mathrm{V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	-	5	60	mV
		$\mathrm{V}_{1}=9 \mathrm{~V}$ to 13		-	3	60	
		$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=8.3 \mathrm{~V}$ to 21 V	-	5	60	
			$\mathrm{V}_{1}=9 \mathrm{~V}$ to 13 V	-	1.5	30	
Regload	Load Regulation ${ }^{(21)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A		-	9	100	mV
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 A		-	9	100	
		$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA		-	5.0	50	
I_{Q}	Quiescent Current	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$		-	4.3	6.0	mA
Δ_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 A		-	-	0.5	mA
		$\mathrm{V}_{\mathrm{I}}=9 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$		-	-	0.8	
		$\mathrm{V}_{\mathrm{I}}=8.5 \mathrm{~V}$ to $21 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	-	0.8	
$\Delta \mathrm{V} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(22)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-0.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	10	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(22)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=9 \mathrm{~V} \text { to } 19 \mathrm{~V} \end{aligned}$		-	65	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
r_{0}	Output Resistance ${ }^{(22)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	17	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{1}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(22)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

21. Load and line regulation are specified at constant junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
22. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7808AE) (Continued)
Refer to the test circuits. $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=14 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions			7808		Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$		7.84	8	8.16	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } \\ & \mathrm{V}_{\mathrm{I}}=10.6 \mathrm{~V} \mathrm{tc} \end{aligned}$	$\begin{aligned} & \mathrm{A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & 23 \mathrm{~V} \end{aligned}$	7.7	8	8.3	
Regline	Line Regulation ${ }^{(23)}$	$\mathrm{V}_{1}=10.6 \mathrm{~V}$	$25 \mathrm{~V}, \mathrm{I}_{0}=500 \mathrm{~mA}$	-	6	80	mV
		$\mathrm{V}_{1}=11 \mathrm{~V}$ to		-	3	80	
		$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{I}}=10.4 \mathrm{~V}$ to 23 V	-	6	80	
			$\mathrm{V}_{1}=11 \mathrm{~V}$ to 17 V	-	2	40	
Regload	Load Regulation ${ }^{(23)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A		-	12	100	mV
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 A		-	12	100	
		$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA		-	5	50	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.0	6.0	mA
Δ_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 A		-	-	0.5	mA
		$\mathrm{V}_{\mathrm{I}}=11 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$		-	-	0.8	
		$\mathrm{V}_{1}=10.6 \mathrm{~V}$ to $23 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	-	0.8	
$\Delta \mathrm{V} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(24)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-0.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	10	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(24)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=11.5 \mathrm{~V} \text { to } 21.5 \mathrm{~V} \end{aligned}$		-	62	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2	-	V
r°	Output Resistance ${ }^{(24)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	18	-	$\mathrm{m} \Omega$
$I_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(24)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:
23. Load and line regulation are specified at constant junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
24. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7809AE) (Continued)
Refer to the test circuits. $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=15 \mathrm{~V}, \mathrm{C}_{I}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7809AE			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		8.82	9.0	9.18	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } \\ & \mathrm{V}_{\mathrm{I}}=11.2 \mathrm{~V} \mathrm{tc} \end{aligned}$	$\begin{aligned} & \mathrm{A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & 24 \mathrm{~V} \end{aligned}$	8.65	9.0	9.35	
Regline	Line Regulation ${ }^{(25)}$	$\mathrm{V}_{1}=11.7 \mathrm{~V}$ to	$\mathrm{V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	-	6	90	mV
		$\begin{aligned} & V_{I}=12.5 \mathrm{~V} t \\ & \hline \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \end{aligned}$	19V	-	4	45	
			$\mathrm{V}_{1}=11.5 \mathrm{~V}$ to 24 V	-	6	90	
			$\mathrm{V}_{1}=12.5 \mathrm{~V}$ to 19 V	-	2	45	
Regload	Load Regulation ${ }^{(25)}$	$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	12	100	mV
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	12	100	
		$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA		-	5	50	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.0	6.0	mA
Δl_{Q}	Quiescent Current Change	$\mathrm{V}_{\mathrm{I}}=11.7 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	-	0.8	mA
		$\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$		-	-	0.8	
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	-	0.5	
$\Delta \mathrm{V} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(26)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	10	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(26)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=12 \mathrm{~V} \text { to } 22 \mathrm{~V} \end{aligned}$		-	62	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.0	-	V
r°	Output Resistance ${ }^{(26)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	17	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
IPK	Peak Current ${ }^{(26)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

25. Load and line regulation are specified at constant junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
26. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7810AE) (Continued)
Refer to the test circuits. $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=16 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7810AE			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		9.8	10.0	10.2	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } \\ & \mathrm{V}_{\mathrm{I}}=12.8 \mathrm{~V} \mathrm{tc} \end{aligned}$	$\begin{aligned} & \mathrm{A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & 25 \mathrm{~V} \end{aligned}$	9.6	10.0	10.4	
Regline	Line Regulation ${ }^{(27)}$	$\mathrm{V}_{1}=12.8 \mathrm{~V}$ to	$\mathrm{V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	-	8.0	100	mV
		$\mathrm{V}_{1}=13 \mathrm{~V}$ to 20 V		-	4.0	50.0	
		$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=12.5 \mathrm{~V}$ to 25 V	-	8.0	100	
			$\mathrm{V}_{1}=13 \mathrm{~V}$ to 20 V	-	3.0	50.0	
Regload	Load Regulation ${ }^{(27)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A		-	12.0	100	mV
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 mA		-	12.0	100	
		$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA		-	5.0	50.0	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.0	6.0	mA
Δl_{Q}	Quiescent Current Change	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1 A		-	-	0.5	mA
		$\mathrm{V}_{\mathrm{I}}=12.8 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$		-	-	0.8	
		$\mathrm{V}_{\mathrm{I}}=13 \mathrm{~V}$ to $26 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	-	0.5	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(28)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	10.0	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(28)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=14 \mathrm{~V} \text { to } 24 \mathrm{~V} \end{aligned}$		-	62.0	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.0	-	V
r°	Output Resistance ${ }^{(28)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	17.0	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
IPK	Peak Current ${ }^{(28)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:
27. Load and line regulation are specified at constant junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
28. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7812AE) (Continued)
Refer to the test circuits. $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~V}_{I}=19 \mathrm{~V}, \mathrm{C}_{I}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7812AE			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		11.75	12	12.25	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } \\ & \mathrm{V}_{\mathrm{I}}=14.8 \mathrm{~V} \text { tc } \end{aligned}$	$\begin{aligned} & \mathrm{A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & 27 \mathrm{~V} \end{aligned}$	11.5	12	12.5	
Regline	Line Regulation ${ }^{(29)}$	$\mathrm{V}_{\mathrm{I}}=14.8 \mathrm{~V}$	$0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	-	10	120	mV
		$\mathrm{V}_{1}=16 \mathrm{~V}$ to 22 V		-	4	120	
		$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{I}}=14.5 \mathrm{~V}$ to 27 V	-	10	120	
			$\mathrm{V}_{1}=16 \mathrm{~V}$ to 22 V	-	3	60	
Regload	Load Regulation ${ }^{(29)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A		-	12	100	mV
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	12	100	
		$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA		-	5	50	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.1	6.0	mA
Δ_{Q}	Quiescent Current Change	$\mathrm{V}_{\mathrm{I}}=15 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	-	0.8	mA
		$\mathrm{V}_{\mathrm{I}}=14 \mathrm{~V}$ to $27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$		-	-	0.8	
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	-	0.5	
$\Delta \mathrm{V} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(30)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	10	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(30)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=14 \mathrm{~V} \text { to } 24 \mathrm{~V} \end{aligned}$		-	60	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.0	-	V
r_{0}	Output Resistance ${ }^{(30)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	18	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{1}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(30)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:
29. Load and line regulation are specified at constant junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
30. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7815AE) (Continued)
Refer to the test circuits. $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~V}_{I}=23 \mathrm{~V}, \mathrm{C}_{I}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions			A7815		Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		14.7	15	15.3	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } \\ & \mathrm{V}_{\mathrm{I}}=17.7 \mathrm{~V} \mathrm{tc} \end{aligned}$	$\begin{aligned} & \mathrm{A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \\ & 30 \mathrm{~V} \end{aligned}$	14.4	15	15.6	
Regline	Line Regulation ${ }^{(31)}$	$\mathrm{V}_{1}=17.9 \mathrm{~V}$	$0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	-	10	150	mV
		$\mathrm{V}_{1}=20 \mathrm{~V}$ to		-	5	150	
		$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=17.5 \mathrm{~V}$ to 30 V	-	11	150	
			$\mathrm{V}_{1}=20 \mathrm{~V}$ to 26 V	-	3	75	
Regload	Load Regulation ${ }^{(31)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A		-	12	100	mV
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	12	100	
		$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA		-	5	50	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.2	6.0	mA
Δ_{Q}	Quiescent Current Change	$\mathrm{V}_{1}=17.5 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	-	0.8	mA
		$\mathrm{V}_{\mathrm{I}}=17.5 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$		-	-	0.8	
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	-	0.5	
$\Delta \mathrm{V} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(32)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	10	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(32)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=18.5 \mathrm{~V} \text { to } 28.5 \mathrm{~V} \end{aligned}$		-	58	-	dB
$V_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.0	-	V
r°	Output Resistance ${ }^{(32)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	19	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
lPK	Peak Current ${ }^{(32)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

31. Load and line regulation are specified at constant junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
32. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7818AE) (Continued)
Refer to the test circuits. $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~V}_{I}=27 \mathrm{~V}, \mathrm{C}_{I}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7818AE			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		17.64	18	18.36	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } \\ & \mathrm{V}_{\mathrm{I}}=21 \mathrm{~V} \text { to } \end{aligned}$	$\mathrm{A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W}$	17.3	18	18.7	
Regline	Line Regulation ${ }^{(33)}$	$\mathrm{V}_{1}=21 \mathrm{~V}$ to	$\mathrm{V}, \mathrm{I}_{0}=500 \mathrm{~mA}$	-	15	180	mV
		$\mathrm{V}_{1}=21 \mathrm{~V}$ to		-	5	180	
		$\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=20.6 \mathrm{~V}$ to 33 V	-	15	180	
			$\mathrm{V}_{1}=24 \mathrm{~V}$ to 30 V	-	5	90	
Regload	Load Regulation ${ }^{(33)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A		-	15	100	mV
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	15	100	
		$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA		-	7	50	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.2	6.0	mA
Δl_{Q}	Quiescent Current Change	$\mathrm{V}_{\mathrm{I}}=21 \mathrm{~V}$ to $33 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	-	0.8	mA
		$\mathrm{V}_{\mathrm{I}}=21 \mathrm{~V}$ to $33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$		-	-	0.8	
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	-	0.5	
$\Delta \mathrm{V} / \Delta \mathrm{T}$	Output Voltage Driff ${ }^{(34)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	10	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(34)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=22 \mathrm{~V} \text { to } 32 \mathrm{~V} \end{aligned}$		-	57	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.0	-	V
r°	Output Resistance ${ }^{(34)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	19	-	$\mathrm{m} \Omega$
ISC	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
IPK	Peak Current ${ }^{(34)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:
33. Load and line regulation are specified at constant junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
34. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7824AE) (Continued)
Refer to the test circuits. $0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~V}_{I}=33 \mathrm{~V}, \mathrm{C}_{I}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions		KA7824AE			Unit
				Min.	Typ.	Max.	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		23.5	24	24.5	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \text { to } \\ & \mathrm{V}_{\mathrm{I}}=27.3 \mathrm{~V} \mathrm{tc} \end{aligned}$	$\mathrm{A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W}$ $38 \mathrm{~V}$	23	24	25	
Regline	Line Regulation ${ }^{(35)}$	$\mathrm{V}_{1}=27 \mathrm{~V}$ to	$\mathrm{V}, \mathrm{I}=500 \mathrm{~mA}$	-	18	240	mV
		$\mathrm{V}_{1}=21 \mathrm{~V}$ to		-	6	240	
		$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}=26.7 \mathrm{~V}$ to 38 V	-	18	240	
			$\mathrm{V}_{1}=30 \mathrm{~V}$ to 36 V	-	6	120	
Regload	Load Regulation ${ }^{(35)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A		-	15	100	mV
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	15	100	
		$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ to 750 mA		-	7	50	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	5.2	6.0	mA
$\Delta \mathrm{l}_{\mathrm{Q}}$	Quiescent Current Change	$\mathrm{V}_{\mathrm{I}}=27.3 \mathrm{~V}$ to $38 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	-	0.8	mA
		$\mathrm{V}_{\mathrm{I}}=27.3 \mathrm{~V} \text { to } 38 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$		-	-	0.8	
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.0 A		-	-	0.5	
$\Delta \mathrm{V} / \Delta \mathrm{T}$	Output Voltage Drift ${ }^{(36)}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		-	-1.5	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{N}	Output Noise Voltage	$\mathrm{f}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-	10	-	$\mu \mathrm{V} / \mathrm{Vo}$
RR	Ripple Rejection ${ }^{(36)}$	$\begin{aligned} & \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=28 \mathrm{~V} \text { to } 38 \mathrm{~V} \end{aligned}$		-	54	-	dB
$\mathrm{V}_{\text {Drop }}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.0	-	V
r_{0}	Output Resistance ${ }^{(36)}$	$\mathrm{f}=1 \mathrm{kHz}$		-	20	-	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-	250	-	mA
$\mathrm{I}_{\text {PK }}$	Peak Current ${ }^{(36)}$	$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$		-	2.2	-	A

Notes:

35. Load and line regulation are specified at constant junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.
36. These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

Figure 3. Quiescent Current

Figure 5. Output Voltage

Figure 4. Peak Output Current

Figure 6. Quiescent Current

Typical Applications

Figure 7. DC Parameters

Figure 8. Load Regulation

Figure 9. Ripple Rejection

Figure 10. Fixed Output Regulator

Figure 11. Constant Current Regulator
Notes:

1. To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
2. C_{l} is required if regulator is located an appreciable distance from power Supply filter.
3. C_{O} improves stability and transient response.

Figure 12. Circuit for Increasing Output Voltage

Figure 13. Adjustable Output Regulator (7 to 30V)

Figure 14. High Current Voltage Regulator

Figure 15. High Output Current with Short Circuit Protection

Figure 16. Tracking Voltage Regulator

Figure 17. Split Power Supply ($\pm 15 \mathrm{~V}-1 \mathrm{~A}$)

Figure 18. Negative Output Voltage Circuit

Figure 19. Switching Regulator

Mechanical Dimensions

Dimensions in millimeters
TO-220 [DUAL GAUGE]

Mechanical Dimensions (Continued)

Dimensions in millimeters

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

$2 \mathrm{Cool}{ }^{\text {™ }}$	FPS ${ }^{\text {™ }}$		The Power Franchise ${ }^{(\otimes)}$
AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$		the wer
Auto-SPM ${ }^{\text {™ }}$	FRFET ${ }^{\text {® }}$		wer
AX-CAP ${ }^{\text {™ }}$	Global Power Resource ${ }^{\text {SM }}$	PowerTrench ${ }^{\text {® }}$	franchise
BitSiC ${ }^{\text {™ }}$	GreenBridge ${ }^{\text {TM }}$	PowerXS ${ }^{\text {TM }}$ Pregrem	TinyBuck ${ }^{\text {™ }}$
Build it $\mathrm{Now}^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {™ }}$	TinyCalc™
CorePLUS ${ }^{\text {™ }}$	Green FPS $^{\text {TM }}$ e-Series ${ }^{\text {™ }}$	QFET ${ }^{\text {® }}$	TinyLogic ${ }^{\text {® }}$
CorePOWER ${ }^{\text {TM }}$	Gmax ${ }^{\text {M }}$	QS ${ }^{\text {TM }}$	TINYOPTO'м
CROSSVOLT ${ }^{\text {TM }}$	GTOTM	Quiet Series ${ }^{\text {™ }}$	TinyPower ${ }^{\text {TM }}$
CTL' ${ }^{\text {m }}$	IntelliMAX ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
Current Transfer Logic ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	$\bigcirc{ }^{\text {TM }}$	TinyWire ${ }^{\text {m }}$
DEUXPEED ${ }^{\text {® }}$	Making Small Speakers Sound Louder	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TranSiC ${ }^{\text {™ }}$
Dual Cool ${ }^{\text {TM }}$	${ }^{\text {and Better }}{ }^{\text {TM }}$	SignalWise ${ }^{\text {™ }}$	TriFault Detect ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {® }}$	MegaBuck ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {®** }}$
EfficientMax ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {™ }}$
${ }_{5}{ }^{\text {ESM }}$	MicroPak ${ }^{\text {m }}$	Solutions for Your Success ${ }^{\text {TM }}$	M
	MicroPak2 ${ }^{\text {TM }}$		SerDes*
Fairchild ${ }^{(8)}$	MillerDrive ${ }^{\text {TM }}$	SuperFET ${ }^{\text {S }}$	UHC ${ }^{\text {U }}$ Frat ${ }^{\text {a }}$
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-3	Ultra FRFET ${ }^{\text {UniFET }}$
FACT Quiet Series ${ }^{\text {TM }}$ $\mathrm{FACT}^{\text {® }}$	Motion-SPM ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$ - 6	VCX ${ }^{\text {™ }}$
$\mathrm{FAST}^{\text {® }}$	mWSaver ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-8	VisualMax ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	OptoHiT ${ }^{\text {m }}$ OPTOLOGIC ${ }^{\circledR}$	SupreMOS ${ }^{\text {® }}$	VoltagePlus ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	OPTOPLANAR ${ }^{\text {® }}$	SyncFET ${ }^{\text {TM }}$	XS ${ }^{\text {TM }}$
FlashWriter ${ }^{\text {®** }}$	OPTOPLANAR	Sync-Lock ${ }^{\text {TM }}$	
		ك SYSTEM	

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

