2M x 32 SDRAM

512K x 32bit x 4 Banks Synchronous DRAM LVTTL

Revision 1.0 January 2002

Samsung Electronics reserves the right to change products or specification without notice.

K4S643232F

Revision History

Revision 1.0 (January 16, 2002)

• Defined DC spec.

Revision 0.1 (September 03, 2001) - Preliminary

• Added K4S643232F-TC/L55

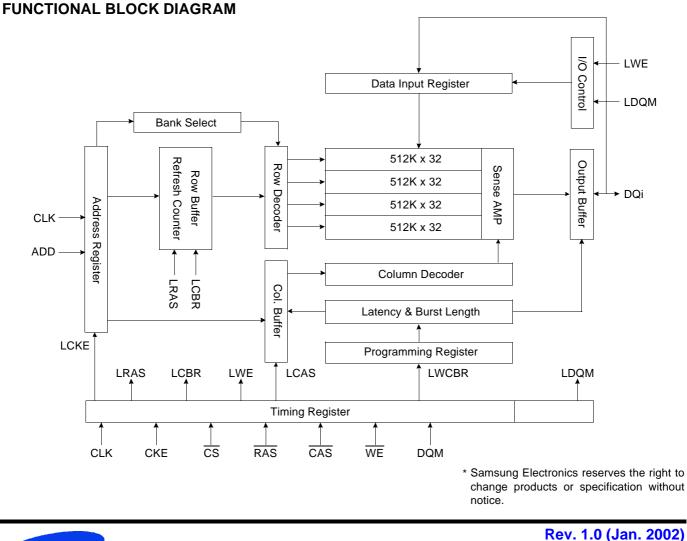
Revision 0.0 (September 03, 2001) - Target Spec

Initial draft

K4S643232F

512K x 32Bit x 4 Banks Synchronous DRAM

FEATURES


- 3.3V power supply
- · LVTTL compatible with multiplexed address
- · Four banks operation
- · MRS cycle with address key programs
 - -. CAS latency (2 & 3)
 - -. Burst length (1, 2, 4, 8 & Full page)
 - -. Burst type (Sequential & Interleave)
- · All inputs are sampled at the positive going edge of the system clock
- · Burst read single-bit write operation
- · DQM for masking
- · Auto & self refresh
- 15.6us refresh duty cycle

GENERAL DESCRIPTION

The K4S643232F is 67,108,864 bits synchronous high data rate Dynamic RAM organized as 4 x 524,288 words by 32 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock. I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst length and programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.

ORDERING INFORMATION

Part NO.	Max Freq.	Interface	Package
K4S643232F-TC/L45	222MHz		
K4S643232F-TC/L50	200MHz		86
K4S643232F-TC/L55	183MHz	LVTTL	TSOP(II)
K4S643232F-TC/L60	166MHz		1001 (11)
K4S643232F-TC/L70	143MHz		

ELECTRONICS

SAMSUNG

PIN CONFIGURATION (Top view)

VDD I O 86 Vss DQ0 2 85 DQ15 VDDQ 3 84 Vssq	1
DQ0 2 85 DQ15 VDDQ 3 84 Vssq	1
VDDQ 2 3 84 VSSQ	1
	1
	5
DQ3 C 7 80 DQ12	
DQ4 D 8 79 D Q1 ²	
VDDQ D 9 78 VSSQ	
DQ5 0 10 77 DQ10)
DQ6 1 1 76 D Q9	
Vssq 🖬 12 75 📮 Vdda	
DQ7 1 3 74 D Q8	
N.C 🗖 14 73 🗖 N.C	
VDD D 15 72 D Vss	
DQ <u>M0</u> 1 6 71 D QM	1
<u>WE</u> 1 7 70 D N.C	
CAS 🖬 18 69 🗖 N.C	
RAS D 19 68 CLK	
CS 0 20 67 CKE	
N.C 🖬 21 66 🖬 A9	
BA0 🗖 22 65 🗖 A8	
BA1 d 23 64 b A7	
A10/AP 1 24 63 1 A6	
A0 🗖 25 62 🗖 A5	
A1 1 26 61 1 A4	
A2 D 27 60 D A3	
DQM2 2 8 59 DQM	3
N.C 🗖 30 57 🗖 N.C	
DQ16 d 31 56 d DQ3 ²	1
Vssq 🗖 32 55 🗖 Vdda	
DQ17 D 33 54 D DQ30	
DQ18 D 34 53 D DQ29	9
VDDQ 235 52 VSSQ	
DQ19 I 36 51 DQ28	
DQ20 I 37 50 DQ27	
Vssq 🗖 38 49 🗖 Vdda	
DQ21 □ 39 48 □ DQ26	
$DQ22 \Box 40$ $47 \Box DQ22$	
DQ23 I 42 45 I DQ24	
VDD 4 3 44 V SS	

86Pin TSOP (II) (400mil x 875mil) (0.5 mm Pin pitch)

PIN FUNCTION DESCRIPTION

Pin	Name	Input Function
CLK	System clock	Active on the positive going edge to sample all inputs.
CS	Chip select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQM.
CKE	Clock enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disables input buffers for power down mode.
A0 ~ A10	Address	Row/column addresses are multiplexed on the same pins. Row address : RA0 ~ RA10, Column address : CA0 ~ CA7
BA0,1	Bank select address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row address strobe	Latches row addresses on the positive going edge of the CLK with $\overline{\text{RAS}}$ low. Enables row access & precharge.
CAS	Column address strobe	Latches column addresses on the positive going edge of the CLK with $\overline{\text{CAS}}$ low. Enables column access.
WE	Write enable	Enables write operation and row precharge. Latches data in starting from CAS, WE active.
DQM0 ~ 3	Data input/output mask	Makes data output Hi-Z, tsHz after the clock and masks the output. Blocks data input when DQM active.
DQ0 ~ 31	Data input/output	Data inputs/outputs are multiplexed on the same pins.
VDD/VSS	Power supply/ground	Power and ground for the input buffers and the core logic.
Vddq/Vssq	Data output power/ground	Isolated power supply and ground for the output buffers to provide improved noise immunity.
NC	No Connection	This pin is recommended to be left No connection on the device.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	Vin, Vout	-1.0 ~ 4.6	V
Voltage on VDD supply relative to Vss	Vdd, Vddq	-1.0 ~ 4.6	V
Storage temperature	Tstg	-55 ~ +150	°C
Power dissipation	PD	1	W
Short circuit current	los	50	mA

Note : Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	Vdd, Vddq	3.0	3.3	3.6	V	
Input logic high voltage	Vін	2.0	3.0	Vddq+0.3	V	1
Input logic low voltage	VIL	-0.3	0	0.8	V	2
Output logic high voltage	Vон	2.4	-	-	V	Iон = -2mA
Output logic low voltage	Vol	-	-	0.4	V	IOL = 2mA
Input leakage current	lu	-10	-	10	uA	3

Notes : 1. VIH (max) = 5.6V AC. The overshoot voltage duration is \leq 3ns.

2. VIL (min) = -2.0V AC. The undershoot voltage duration is \leq 3ns.

3. Any input $0V \le VIN \le VDDQ$,

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with Tri-State outputs.

4. The VDD condition of K4S643232F-45/50/55/60 is 3.135V ~ 3.6V

$\label{eq:capacity} \textbf{CAPACITANCE} \quad (VDD = 3.3V, \ TA = 23^{\circ}C, \ f = 1 \\ MHz, \ VREF = 1.4V \pm 200 \ mV)$

Pin	Symbol	Min	Мах	Unit
Clock	Ссік	-	4	pF
RAS, CAS, WE, CS, CKE, DQM	CIN	-	4.5	pF
Address	Cadd	-	4.5	pF
DQ0 ~ DQ31	Соит	-	6.5	pF

DC CHARACTERISTICS

Parameter	Symbol	Test Condition	CAS			Speed			Unit	Note
Farameter	Symbol	Test Condition	Latency	-45	-50	-55	-60	-70	Unit	Note
Operating Current		Burst Length =1	3	140	140 140		130	130	mA	2
(One Bank Active)	1001	$t_{RC} \ge t_{RC}(\tilde{min}), t_{CC} \ge t_{CC}(min), I_0 = 0mA$	2			110			ШA	2
Precharge Standby Current in	Icc2P	CKE ≤ VIL(max), tcc = 15ns				2			mA	
power-down mode	Icc2PS	CKE & CLK \leq VIL(max), tcc = ∞				2			ШA	
Precharge Standby Current	ICC2N	$\label{eq:cke} \begin{array}{l} CKE \geq ViH(min), \ \overline{CS} \geq ViH(min), \ tcc = 15 ns \\ Input \ signals \ are \ changed \ one \ time \ during \ 30 \\ \end{array}$	0ns			12			mA	
in non power-down mode	ICC2NS	$CKE \ge VIH(min), CLK \le VIL(max), tcc = \infty$ Input signals are stable			mA					
Active Standby Current	Icc3P	CKE ≤ VIL(max), tcc = 15ns				4			mA	
in power-down mode	Icc3PS	$CKE \leq VIL(max), tcc = \infty$								
Active Standby Current in non power-down mode	ICC3N	$\label{eq:cke} \begin{array}{l} CKE \geq ViH(min), \ \overline{CS} \geq ViH(min), \ tcc = 15 ns \\ Input \ signals \ are \ changed \ one \ time \ during \ 30 \\ \end{array}$			mA					
(One Bank Active)	Icc3NS	$CKE \ge VIH(min), CLK \le VIL(max), tcc = \infty$ Input signals are stable				mA				
Operating Current	ICC4	Io = 0 mA, Page Burst	3	180	170	160	150	140	mA	2
(Burst Mode)	1004	All bank Activated, tccD = tccD(min)	2			120			ШA	2
Refresh Current Iccs trc≥trc(min)		trc ≥ trc(min)	3	150	150	150	140	120	mA	3
	1000		2	120				ША	5	
Self Refresh Current	ICC6	CKE ≤ 0.2V	2						4	
						450			uA	5

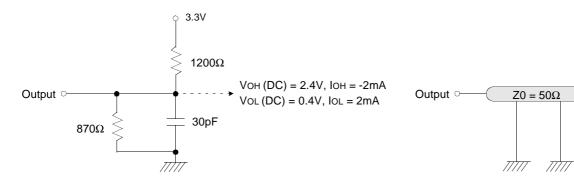
(Recommended operating condition unless otherwise noted, $T_A = 0$ to 70°C, VIH(min)/VIL(max)=2.0V/0.8V)

Notes: 1. Unless otherwise notes, Input level is CMOS(VIH/VIL=VDDQ/VSSQ) in LVTTL.

- 2. Measured with outputs open.
- 3. Refresh period is 64ms.
- 4. K4S643232F-TC**
- 5. K4S643232F-TL**

CMOS SDRAM

Vtt = 1.4V


 50Ω

30pF

ΠΠ

AC OPERATING TEST CONDITIONS (VDD = $3.3V \pm 0.3V$, TA = 0 to 70°C)

Parameter	Value	Unit
AC input levels (Vih/Vil)	2.4/0.4	V
Input timing measurement reference level	1.4	V
Input rise and fall time	tr/tf = 1/1	ns
Output timing measurement reference level	1.4	V
Output load condition	See Fig. 2	

(Fig. 1) DC output load circuit

(Fig. 2) AC output load circuit

Notes : 1. The VDD condition of K4S643232F-45/50/55/60 is 3.135V $\sim 3.6V$

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Devemeder		Cumhal					Ver	sion					Unit	Nata
Parameter		Symbol	-4	-45 -50 -55		-6	-60		70	Unit	Note			
CAS Latency		CL	3	2	3	2	3	2	3	2	3	2	CLK	
CLK cycle time		tCC(min)	4.5	10	5	10	5.5	10	6	10	7	10	ns	
Row active to row active	delay	tRRD(min)						2					CLK	1
RAS to CAS delay		tRCD(min)	4	2	3	2	3	2	3	2	3	2	CLK	1
Row precharge time	Row precharge time tRP(min) 4 2 3 2 <td>2</td> <td>CLK</td> <td>1</td>					2	CLK	1						
Row active time		tRAS(min)	9	5	8	5	7	5	7	5	7	5	CLK	1
		tRAS(max)	100									us		
Row cycle time		tRC(min)	13	7	11	7	10	7	10	7	10	7	CLK	1
Last data in to row prech	arge	tRDL(min)						2					CLK	2
Last data in to new col.ad	ddress delay	tCDL(min)						1					CLK	2
Last data in to burst stop		tBDL(min)	1									CLK	2	
Col. address to col. addre	ess delay	tCCD(min)						1					CLK	3
Mode Register Set cycle	Mode Register Set cycle time tMRS(min)			2									CLK	
Number of valid	CAS La	tency=3					2	2						
output data	CAS La	tency=2						1					ea	4

Note : 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer. Refer to the following ns-unit based AC table.

K4S643232F

CMOS SDRAM

Parameter	Symbol	Version										
Farameter	Symbol	-45	-50	-55	-60	-70	Unit					
Row active to row active delay	tRRD(min)	9	10	11	12	14	ns					
RAS to CAS delay	tRCD(min)	18	15	16.5	18	20	ns					
Row precharge time	tRP(min)	18	15	16.5	18	20	ns					
Row active time	tRAS(min)	40.5	40	38.5	42	49	ns					
Row active time	tRAS(max)		100									
Row cycle time	tRC(min)	58.5	55	55	60	70	ns					

2. Minimum delay is required to complete write.

3. All parts allow every cycle column address change.

4. In case of row precharge interrupt, auto precharge and read burst stop.

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Para	meter	Symbol	-4	45	-{	50	-{	55	-6	60	-70		Unit	Note
i aia	meter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Onne	Note
CLK cycle time	CAS Latency=3	tcc	4.5	1000	5	1000	5.5	1000	6	1000	7	1000	ns	1
CER Cycle line	CAS Latency=2		10	1000	10	1000	10	1000	10	1000	10	1000	115	
CLK to valid output delay	CAS Latency=3	tSAC	-	4.0	-	4.5	-	5.0	-	5.5	-	5.5	ns	1, 2
	CAS Latency=2	ISAC	-	6	-	6	-	6	-	6	-	6	115	1, 2
Output data hold time		tон	2	-	2	-	2	-	2	-	2	-	ns	2
CLK high pulse	CAS Latency=3	tсн	1.75	-	2	-	2	-	2.5	-	3	-	ns	3
width	CAS Latency=2		3	-	3	-	3	-	3	-	3	-	115	
CLK low	CAS Latency=3	tCL	1.75	-	2	-	2	-	2.5	-	3	-	ns	3
pulse width	CAS Latency=2	ICL	3	-	3	-	3	-	3	-	3	-	115	5
	CAS Latency=3	tss	1.2	-	1.5	-	1.5	-	1.5	-	1.75	-	ns	3
Input setup time	CAS Latency=2	155	2.5	-	2.5	-	2.5	-	2.5	-	2.5	-	115	3
Input hold time	•	tsн	1	-	1	-	1	-	1	-	1	-	ns	3
CLK to output in Lo	ow-Z	ts∟z	1	-	1	-	1	-	1	-	1	-	ns	2
CLK to output	CAS latency=3	tsнz	-	4.0	-	4.5	-	5.0	-	5.5	-	5.5	ne	_
in Hi-Z	CAS latency=2	1942	-	6	-	6	-	6	-	6	-	6	ns	-

Note: 1. Parameters depend on programmed CAS latency.

2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.

3. Assumed input rise and fall time (tr & tf)=1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered,

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

SIMPLIFIED TRUTH TABLE

C	Command		CKEn-1	CKEn	CS	RAS	CAS	WE	DQM	BA 0,1	A10/AP	, A9 ~ A0	Note
Register	Mode regist	ter set	Н	Х	L	L	L	L	Х		OP cod	e	1,2
	Auto refres	า	н	н		L	L	Н	х			3	
Refresh		Entry		L	L		L		^			3	
Reliesh	Self refresh	Exit	L	н	L	Н	Н	Н	x		х		3
		EXIL	L	п	н	Х	Х	Х	^		~		3
Bank active & row	addr.		н	Х	L	L	Н	Н	Х	V	Row a	ddress	
Read &	1 5		н	х	L	н	L	н	x	v	L	Column address	4
column address	Auto precha	arge enable		^	L	п		п	^	v	Н	(A0 ~ A7)	4,5
Write &	Auto precha	arge disable	н	х	L	н	L	L	x	v	L	Column address	4
column address	Auto precharge enable		П	^	L			L	^	v	Н	(A0 ~ A7)	4,5
Burst Stop			н	Х	L	Н	Н	L	Х		Х		6
Dracharga	Bank select	ion	н	х	L	L	н	L	x	V	L	Х	
Precharge	All banks			^	L		п	L	^	Х	Н	~	
		Entry	н	L	Н	Х	Х	Х	x				
Clock suspend or active power down	n	Entry	п	L	L	V	V	V	^		Х		
		Exit	L	Н	Х	Х	Х	Х	Х				
		Entry	н	L	Н	Х	Х	Х	х				
Dracharga nowar	down modo	Entry	п		L	Н	Н	Н			х		
Precharge power	down mode	Exit		н	Н	Х	Х	Х	x		^		
		EXIL	L	п	L	V	V	V					
DQM			Н		•	Х			V		Х		7
No operation com	mand		Ц	v	Н	Х	Х	Х	v		v		
No operation com	mand		Н	Х	L	Н	н	н	X	Х			

(V=Valid, X=Don't care, H=Logic high, L=Logic low)

Notes :1. OP Code : Operand code

A0 ~ A10 & BA0 ~ BA1 : Program keys. (@ MRS)

2. MRS can be issued only at all banks precharge state.

A new command can be issued after 2 CLK cycles of MRS.

3. Auto refresh functions are as same as CBR refresh of DRAM. The automatical precharge without row precharge command is meant by "Auto". Auto/self refresh can be issued only at all banks precharge state.

4. BA0 ~ BA1 : Bank select addresses.

If both BA0 and BA1 are "Low" at read, write, row active and precharge, bank A is selected.

If both BA0 is "Low" and BA1 is "High" at read, write, row active and precharge, bank B is selected.

If both BA0 is "High" and BA1 is "Low" at read, write, row active and precharge, bank C is selected.

- If both BA0 and BA1 are "High" at read, write, row active and precharge, bank D is selected.
- If A10/AP is "High" at row precharge, BA0 and BA1 is ignored and all banks are selected.

5. During burst read or write with auto precharge, new read/write command can not be issued. Another bank read/write command can be issued after the end of burst. New row active of the associated bank can be issued at tRP after the end of burst.

- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (Write DQM latency is 0), but makes Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)

MODE REGISTER FIELD TABLE TO PROGRAM MODES

Register Programmed with MRS

Address	BA0 ~ BA1	A10/AP	A9	A8	A7	A6	A5	A4	Аз	A2	A1	Ao
Function	RFU	RFU	W.B.L	ТМ			AS Latend	су	BT B		urst Lengtl	า

Test Mode				CAS	Laten	су	Bu	Burst Length						
A8	A7	Туре	A6 A5 A4 Latency		Аз	Туре	A2	A1	A0	BT = 0	BT = 1			
0	0	Mode Register Set	0 0 0 Reserved		0	Sequential	0	0	0	1	1			
0	1	Reserved	0 0		1	Reserved	1	Interleave	0	0	1	2	2	
1	0	Reserved	0	1	0	2		•	0	1	0	4	4	
1	1	Reserved	0	1	1	3			0	1	1	8	8	
	Write Burst Length		1	0	0	Reserved			1	0	0	Reserved	Reserved	
A9	A9 Length		1	0	1	Reserved			1	0	1	Reserved	Reserved	
0	0 Burst		1	1	0	Reserved			1	1	0	Reserved	Reserved	
1	Single Bit		1	1	1	Reserved			1	1	1	Full Page	Reserved	

Full Page Length : x32 (256)

POWER UP SEQUENCE

SDRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.

1. Apply power and start clock. Must maintain CKE= "H", DQM= "H" and the other pins are NOP condition at the inputs.

- 2. Maintain stable power, stable clock and NOP input condition for a minimum of 200us.
- 3. Issue precharge commands for all banks of the devices.
- 4. Issue 2 or more auto-refresh commands.
- 5. Issue a mode register set command to initialize the mode register.
- cf.) Sequence of 4 & 5 is regardless of the order.

The device is now ready for normal operation.

- $\label{eq:Note: 1. If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.$
 - 2. RFU (Reserved for future use) should stay "0" during MRS cycle.

BURST SEQUENCE (BURST LENGTH = 4)

Initial A	Address		Segu	ential		Interleave							
A1	Ao		Oequ	ential		Intelleave							
0	0	0	1	2	3	0	1	2	3				
0	1	1	2	3	0	1	0	3	2				
1	0	2	3	0	1	2	3	0	1				
1	1	3	0	1	2	3	2	1	0				

BURST SEQUENCE (BURST LENGTH = 8)

Ini		Sequential									Interleave								
A2	A1	Ao				Sequ	ential			interleave									
0	0	0	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	
0	0	1	1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6	
0	1	0	2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5	
0	1	1	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4	
1	0	0	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	
1	0	1	5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2	
1	1	0	6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1	
1	1	1	7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0	

