High Voltage LED Series Chip on Board

COB D-Gen. 3

。

High efficacy COB LED package well-suited for use in spotlight applications

Features \& Benefits

- Chip on Board (COB) solution makes it easy to design in
- Simple assembly reduces manufacturing cost
- Low thermal resistance
- InGaN/GaN MQW LED with long time reliability

Applications

- Spotlight / Downlight
- LED Retrofit Bulbs
- Outdoor Illumination

Table of Contents

1. Characteristics

\qquad 3
2. Product Code Information 11
3. Typical Characteristics Graphs 24
4. Outline Drawing \& Dimension 32
5. Reliability Test Items \& Conditions 35
6. Label Structure 36
7. Packing structure 37
8. Precautions in Handling \& Use 40

1. Characteristics
a) Absolute Maximum Rating

Item	Symbol	Model	Rating	Unit	Condition
Ambient / Operating Temperature	T_{a}	-	$-40 \sim+105$	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-	$-40 \sim+120$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	T_{J}	-	150	${ }^{\circ} \mathrm{C}$	-
Case Temperature	Tc	-	115	${ }^{\circ} \mathrm{C}$	-
Forward Current / Power Dissipation		LC003D	230 / 8.8	mA/ W	-
		LC006D	460 / 17.5		-
		LC009D	$690 / 26.3$		-
		LC013D	920 / 35.0		-
		LC016D	1150 / 43.8		-
	I_{F} / P_{D}	LC019D	1380 / 52.6		-
		LC026D	1840 / 70.1		-
		LC033D	$2300 / 87.6$		-
		LC040D	2760 / 105.1		-
		LC060D	2760 / 157.7		-
		LC080D	4140 / 236.5		-
ESD (HBM)	-	-	± 2	kV	-
ESD (MM)	-	-	± 0.5	kV	-

b) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=$ Sorting Current, $\mathrm{T}_{\mathrm{J}}=85{ }^{\circ} \mathrm{C}$)

Item	Unit	Model	Rank	Min.	Typ.	Max.
Forward Voltage (V_{F})	V	All model	YZ	31.0	34.0	37.0
			12	46.8	51.0	55.2
Color Rendering Index (R_{a})	-	All model	3	70	-	
			5	80	-	-
			7	90	-	-
Beam Angle	\bigcirc	-	-	-	115	-
Nominal Power / Sorting Current	W/mA	LC003D	-	-	3.1 / 90	-
		LC006D	-	-	6.1 / 180	-
		LC009D	-	-	$9.2 / 270$	-
		LC013D	-	-	$12.2 / 360$	-
		LC016D	-	-	15.3 / 450	-
		LC019D	-	-	18.4 / 540	-
		LC026D	-	-	24.5 / 720	-
		LC033D	-	-	30.6 / 900	-
		LC040D	-	-	$36.7 / 1080$	-
		LC060D	-	-	$55.1 / 1080$	-
		LC080D	-	-	$82.6 / 1620$	-
Thermal Resistance (Junction to chip case)	${ }^{\circ} \mathrm{C} / \mathrm{W}$	LC003D	-	-	2.43	-
		LC006D	-	-	1.41	-
		LC009D	-	-	0.94	-
		LC013D	-	-	0.81	-
		LC016D	-	-	0.64	-
		LC019D	-	-	0.57	-
		LC026D	-	-	0.45	-
		LC033D	-	-	0.38	-
		LC040D	-	-	0.30	-
		LC060D	-	-	0.23	-
		LC080D	-	-	0.15	-

Notes:

1) The COB is tested in pulsed condition at rated test current (10 ms pulse width) and rated temperature $\left(T_{J}=T_{C}=T_{a}=85^{\circ} \mathrm{C}\right.$)
2) Samsungmaintains measurement tolerance of: forward voltage $= \pm 5 \%, \mathrm{CRI}= \pm 1$
3) Refer to the derating curve, ' 3 . Typical Characteristics Graph'designed within the range.
c) Luminous Flux Characteristics ($\mathrm{I}_{\mathrm{F}}=$ Sorting Current)

Model	$\mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right)$ Min.	Nominal CCT (K)	Flux Rank	Flux@ $T_{j}=85{ }^{\circ} \mathrm{C}(\mathrm{lm})$		
				Min.	Typ.	Max.
LC003D	80	2700	D3	451	475	-
		3000	D3	474	499	-
		3500	D3	488	514	-
		4000	D3	498	524	-
		5000	D3	502	529	-
		5700	D3	502	529	-
		6500	D3	498	524	-
	90	2700	D3	386	407	-
		3000	D3	406	428	-
		3500	D3	419	441	-
		4000	D3	427	450	-
		5000	D3	431	453	-
LC006D	80	2700	D3	898	946	-
		3000	D3	944	994	-
		3500	D3	972	1023	-
		4000	D3	991	1043	-
		5000	D3	1000	1052	-
		5700	D3	1000	1052	-
		6500	D3	991	1043	-
	90	2700	D3	769	809	-
		3000	D3	809	851	-
		3500	D3	833	877	-
		4000	D3	850	895	-
		5000	D3	857	902	-

Notes:

1) The COB is tested in pulsed operating condition at rated test current (10 ms pulse width) and rated temperature ($\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$).
2) Samsungmaintains measurement tolerance of: Luminous flux $= \pm 7 \%, \mathrm{CRI}= \pm 1$

Model	$\text { CRI (} \mathrm{R}_{\mathrm{a}} \text {) }$ Min.	Nominal CCT (K)	Flux Rank	Flux@ $\mathrm{T}_{\mathrm{j}}=85^{\circ} \mathrm{C}(\mathrm{lm})$		
				Min.	Typ.	Max.
LC009D	70	3000	D3	1515	1594	-
		4000	D3	1543	1624	-
		5000	D3	1571	1653	-
	80	2700	D3	1334	1405	-
		3000	D3	1402	1476	-
		3500	D3	1443	1519	-
		4000	D3	1472	1550	-
		5000	D3	1485	1563	-
		5700	D3	1485	1563	-
		6500	D3	1472	1550	-
	90	2700	D3	1142	1202	-
		3000	D3	1201	1264	-
		3500	D3	1237	1302	-
		4000	D3	1263	1329	-
		5000	D3	1273	1340	-
LC013D	70	3000	D3	1989	2094	-
		4000	D3	2026	2133	-
		5000	D3	2063	2171	-
	80	2700	D3	1753	1845	-
		3000	D3	1842	1939	-
		3500	D3	1896	1996	-
		4000	D3	1934	2036	-
		5000	D3	1950	2053	-
		5700	D3	1950	2053	-
		6500	D3	1934	2036	-
	90	2700	D3	1500	1579	-
		3000	D3	1578	1661	-
		3500	D3	1625	1710	-
		4000	D3	1658	1745	-
		5000	D3	1672	1760	-

Notes:

2) The COB is tested in pulsed operating condition at rated test current (10 ms pulse width) and rated temperature ($\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$).
3) Samsungmaintains measurement tolerance of: Luminous flux $= \pm 7 \%, \mathrm{CRI}= \pm 1$

Model	$\begin{gathered} \mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right) \\ \text { Min. } \end{gathered}$	Nominal CCT (K)	Flux Rank	Flux@ $\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}(\mathrm{lm})$		
				Min.	Typ.	Max.
LC016D	70	3000	D3	2562	2697	-
		4000	D3	2609	2747	-
		5000	D3	2657	2797	-
	80	2700	D3	2257	2376	-
		3000	D3	2372	2497	-
		3500	D3	2442	2570	-
		4000	D3	2490	2622	-
		5000	D3	2511	2644	-
		5700	D3	2511	2644	-
		6500	D3	2490	2622	-
	90	2700	D3	1932	2033	-
		3000	D3	2032	2139	-
		3500	D3	2093	2203	-
		4000	D3	2136	2248	-
		5000	D3	2154	2267	-
LC019D	70	3000	D3	3059	3220	-
		4000	D3	3116	3280	-
		5000	D3	3172	3339	-
	80	2700	D3	2695	2837	-
		3000	D3	2833	2982	-
		3500	D3	2916	3069	-
		4000	D3	2974	3130	-
		5000	D3	2999	3157	-
		5700	D3	2999	3157	-
		6500	D3	2974	3130	-
	90	2700	D3	2307	2428	-
		3000	D3	2426	2554	-
		3500	D3	2499	2630	-
		4000	D3	2550	2684	-
		5000	D3	2572	2707	-

Notes:

3) The COB is tested in pulsed operating condition at rated test current (10 ms pulse width) and rated temperature ($\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$).
4) Samsungmaintains measurement tolerance of: Luminous flux $= \pm 7 \%, \mathrm{CRI}= \pm 1$

Model	$\begin{gathered} \text { CRI }\left(R_{\mathrm{a}}\right) \\ \text { Min. } \end{gathered}$	Nominal CCT (K)	Flux Rank	Flux@ $\mathrm{T}_{1}=85^{\circ} \mathrm{C}(1 \mathrm{~m})$		
				Min.	Typ.	Max.
LC026D	70	3000	D3	4019	4230	-
		4000	D3	4093	4308	-
		5000	D3	4167	4387	-
	80	2700	D3	3541	3727	-
		3000	D3	3721	3917	-
		3500	D3	3830	4032	-
		4000	D3	3907	4112	-
		5000	D3	3939	4147	-
		5700	D3	3939	4147	-
		6500	D3	3907	4112	-
	90	2700	D3	3030	3190	-
		3000	D3	3187	3355	-
		3500	D3	3282	3455	-
		4000	D3	3350	3526	-
		5000	D3	3379	3556	-
LC033D	70	3000	D3	4973	5235	-
		4000	D3	5065	5332	-
		5000	D3	5157	5429	-
	80	2700	D3	4382	4612	-
		3000	D3	4605	4847	-
		3500	D3	4740	4989	-
		4000	D3	4834	5089	-
		5000	D3	4875	5132	-
		5700	D3	4875	5132	-
		6500	D3	4834	5089	-
	90	2700	D3	3750	3947	-
		3000	D3	3944	4152	-
		3500	D3	4062	4276	-
		4000	D3	4146	4364	-
		5000	D3	4181	4401	-

Notes:

4) The COB is tested in pulsed operating condition at rated test current (10 ms pulse width) and rated temperature ($\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$).
5) Samsungmaintains measurement tolerance of: Luminous flux $= \pm 7 \%, \mathrm{CRI}= \pm 1$

Model	$\begin{aligned} & \mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right) \\ & \text { Min. } \end{aligned}$	Nominal CCT (K)	Flux Rank	Flux@ $\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}(\mathrm{lm})$		
				Min.	Typ.	Max.
LC040D	70	3000	D3	6118	6440	-
		4000	D3	6232	6560	-
		5000	D3	6345	6679	-
	80	2700	D3	5391	5675	-
		3000	D3	5665	5963	-
		3500	D3	5831	6138	-
		4000	D3	5948	6261	-
		5000	D3	5998	6313	-
		5700	D3	5998	6313	-
		6500	D3	5948	6261	-
	90	2700	D3	4614	4856	-
		3000	D3	4853	5108	-
		3500	D3	4997	5260	-
		4000	D3	5100	5369	-
		5000	D3	5144	5415	-
LC060D	70	3000	D3	9042	9518	-
		4000	D3	9209	9694	-
		5000	D3	9377	9870	-
	80	2700	D3	7967	8386	-
		3000	D3	8372	8813	-
		3500	D3	8617	9071	-
		4000	D3	8790	9253	-
		5000	D3	8864	9330	-
		5700	D3	8864	9330	-
		6500	D3	8790	9253	-
	90	2700	D3	6818	7177	-
		3000	D3	7172	7549	-
		3500	D3	7385	7774	-
		4000	D3	7537	7934	-
		5000	D3	7602	8002	-

Notes:

5) The COB is tested in pulsed operating condition at rated test current (10 ms pulse width) and rated temperature $\left(T_{J}=T_{C}=85^{\circ} \mathrm{C}\right.$).
6) Samsungmaintains measurement tolerance of: Luminous flux $= \pm 7 \%, \mathrm{CRI}= \pm 1$

Model	$\begin{aligned} & \mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right) \\ & \text { Min. } \end{aligned}$	Nominal CCT (K)	Flux Rank	Flux@ $\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$ (1m)		
				Min.	Typ.	Max.
		3000	D3	13409	14115	-
	70	4000	D3	13657	14376	-
		5000	D3	13906	14637	-
		2700	D3	11815	12437	-
		3000	D3	12416	13069	-
		3500	D3	12779	13452	-
	80	4000	D3	13035	13721	-
LC080D		5000	D3	13144	13836	-
		5700	D3	13144	13836	-
		6500	D3	13035	13721	-
		2700	D3	10111	10643	-
		3000	D3	10635	11195	-
	90	3500	D3	10952	11529	-
		4000	D3	11178	11766	-
		5000	D3	11273	11867	-

Notes:

6) The COB is tested in pulsed operating condition at rated test current (10 ms pulse width) and rated temperature ($\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$).
7) Samsungmaintains measurement tolerance of: Luminous flux $= \pm 7 \%, \mathrm{CRI}= \pm 1$
2. Product Code Information

1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
S		P	H	W	H	A	H	D	N	G	2	5	Y	Z	W	3	D	3
Digit			PKG Information				Code	Specification										
	2		Samsung Package High Power				SPH											
4			Color				WH	White										
6			Product Version				A											
78			Form Factor				HD	COB										
9			Lens Type				N	No lens										
10			Wattage or Model				A B C D E F G H K L M	LC003DLC006DLC009DLC013DLC016DLC019DLC026DLC033DLC040DLC060DLC080D										
11			Internal Code				2											
12			CRI \& Sorting Temperature				$\begin{aligned} & 3 \\ & 5 \\ & 7 \end{aligned}$	Min. 70 $\left(85^{\circ} \mathrm{C}\right)$ Min. 80 $\left(85^{\circ} \mathrm{C}\right)$ Min. 90 $\left(85^{\circ} \mathrm{C}\right)$										
1314			Forward Voltage (V)				$\begin{aligned} & Y Z \\ & 1 Z \end{aligned}$	$\begin{aligned} & 31.0 \sim 37.0 \\ & 46.8 \sim 55.2 \end{aligned}$										
15			CCT (K)				$\begin{gathered} \mathrm{W} \\ \mathrm{v} \\ \mathrm{U} \\ \mathrm{~T} \\ \mathrm{R} \\ \mathrm{Q} \\ \mathrm{P} \end{gathered}$	2700K 3000K 3500K 4000K 5000K 5700K 6500K										
16			MacAdam Step				$\begin{aligned} & 2 \\ & 3 \end{aligned}$	MacAdam 2-step MacAdam 3-step										
17	18		Luminous Flux (Lm)				D3	COB D-series Gen. 3 level										

a) Binning Structure
※ LCoo3D $\left(\mathrm{I}_{\mathrm{F}}=90 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=8{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$

$※ L C o 06 D\left(I_{F}=180 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$

$\begin{gathered} \mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right) \\ \mathrm{Min} . \end{gathered}$	Nominal CCT(K)	Product Code	V_{F} Rank	Color Rank	Flux Rank	Flux Range ($\Phi_{\mathrm{v}}, \mathrm{Im}$)
	2700	SPHWHAHDNB25YZW2D3	YZ	W2	D3	898 ~
				W3		
		SPHWHAHDNB25YZW3D3				
	3000	SPHWHAHDNB25YZV2D3	YZ	V2	D3	944 ~
		SPHWHAHDNB25YZV3D3		V3		
80	3500	SPHWHAHDNB25YZU2D3	YZ	U2	D3	972 ~
		SPHWHAHDNB25YZU3D3		U3		
	4000	SPHWHAHDNB25YZT2D3	YZ	T2	D3	991 ~
		SPHWHAHDNB25YZT3D3		T3		
	5000	SPHWHAHDNB25YZR3D3	YZ	R2	D3	1000 ~
	5700	SPHWHAHDNB25YZQ3D3	YZ	Q2	D3	1000 ~
	6500	SPHWHAHDNB25YZP3D3	YZ	P2	D3	991 ~
	2700	SPHWHAHDNB27YZW2D3	YZ	W2	D3	769 ~
		SPHWHAHDNB27YZW3D3		W3		
90	3000	SPHWHAHDNB27YZV2D3	YZ	V2	D3	809 ~
		SPHWHAHDNB27YZV3D3		V3		
	3500	SPHWHAHDNB27YZU2D3	YZ	U2	D3	833 ~
		SPHWHAHDNB27YZU3D3		U3		
	4000	SPHWHAHDNB27YZT2D3	YZ	T2	D3	850 ~
		SPHWHAHDNB27YZT3D3		T3		
	5000	SPHWHAHDNB27YZR3D3	YZ	R3	D3	857 ~

$※ L \operatorname{Coog} D\left(I_{F}=270 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=85{ }^{\circ} \mathrm{C}\right)$

※ LCo13D $\left(I_{F}=360 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=85{ }^{\circ} \mathrm{C}\right)$

$\begin{gathered} \mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right) \\ \mathrm{Min} . \end{gathered}$	Nominal CCT(K)	Product Code	V_{F} Rank	Color Rank	Flux Rank	Flux Range $\left(\Phi_{\mathrm{v}}, \mathrm{Im}\right)$
70	3000	SPHWHAHDND23YZV3D3	YZ	V3	D3	1989 ~
	4000	SPHWHAHDND23YZT3D3	YZ	T3	D3	2026 ~
	5000	SPHWHAHDND23YZR3D3	YZ	R3	D3	2063 ~
80	2700	SPHWHAHDND25YZW2D3	YZ	W2	D3	1753 ~
		SPHWHAHDND25YZW3D3		W3		
	3000	SPHWHAHDND25YZV2D3	YZ	V2	D3	1842 ~
		SPHWHAHDND25YZV3D3		V3		
	3500	SPHWHAHDND25YZU2D3	YZ	U2	D3	1896 ~
		SPHWHAHDND25YZU3D3		U3		
	4000	SPHWHAHDND25YZT2D3	YZ	T2	D3	1934 ~
		SPHWHAHDND25YZT3D3		T3		
	5000	SPHWHAHDND25YZR3D3	YZ	R3	D3	1950 ~
	5700	SPHWHAHDND25YZQ3D3	YZ	Q3	D3	1950 ~
	6500	SPHWHAHDND25YZP3D3	YZ	P3	D3	1934 ~
	2700	SPHWHAHDND27YZW2D3	YZ	W2	D3	1500 ~
		SPHWHAHDND27YZW3D3		W3		
90	3000	SPHWHAHDND27YZV2D3	YZ	V2	D3	1578 ~
		SPHWHAHDND27YZV3D3		V3		
	3500	SPHWHAHDND27YZU2D3	YZ	U2	D3	1625 ~
		SPHWHAHDND27YZU3D3		U3		
	4000	SPHWHAHDND27YZT2D3	YZ	T2	D3	1658 ~
		SPHWHAHDND27YZT3D3		T3		
	5000	SPHWHAHDND27YZR3D3	YZ	R3	D3	1672 ~

※ LCo16D $\left(I_{F}=450 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=85{ }^{\circ} \mathrm{C}\right)$

※ LCo1gD $\left(I_{F}=540 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=85{ }^{\circ} \mathrm{C}\right)$

※ LCo26D $\left(I_{F}=720 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=85^{\circ} \mathrm{C}\right)$

※ LCo33D($\left.\mathrm{I}_{\mathrm{F}}=900 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=8{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$

※ LCo40D $\left(\mathrm{I}_{\mathrm{F}}=1080 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=85{ }^{\circ} \mathrm{C}\right)$

※ LCo6oD $\left(I_{F}=1080 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=8{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$

※ $\mathrm{LCo8oD}\left(\mathrm{I}_{\mathrm{F}}=1620 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=8{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$

b) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=$ Sorting Current, $\mathrm{T}_{\mathrm{J}}=8{ }^{\circ} \mathrm{C}$ C)

MacAdam Ellipse (W2, W3)					
Step	CIE x	CIE y	θ	a	b
2-step	0.4578	0.4101	53.70	0.0054	0.0028
3-step	0.4578	0.4101	53.70	0.0081	0.0042

MacAdam Ellipse (V2, V3)						
Step	CIE x	CIE y	0	a	b	
2-step	0.4338	0.403	53.22	0.0056	0.0027	
3-step	0.4338	0.4030	53.22	0.0083	0.0041	

MacAdam Ellipse (U2, U3)						
Step	CIE x	CIE y	0	a	b	
2-step	0.4073	0.3917	54.00	0.0062	0.0028	
3-step	0.4073	0.3917	54.00	0.0093	0.0041	

MacAdam Ellipse (T2, T3)						
Step	CIE x	CIE y	θ	a	b	
2 -step	0.3818	0.3797	53.72	0.0063	0.0027	
$3-$-step	0.3818	0.3797	53.72	0.0094	0.0040	

MacAdam Ellipse (R3)					
Step	CIE x	CIE y	θ	a	b
3-step	0.3447	0.3553	59.62	0.0082	0.0035

MacAdam Ellipse (Q3)						
Step	CIE x	CIE y	θ	a	b	
3-step	0.3287	0.3417	59.0950	0.0075	0.0032	

MacAdam Ellipse (P3)						
Step	CIE x	CIE y	0	a	b	
3-step	0.3123	0.3282	58.5700	0.0067	0.0029	

Note:

Samsung maintains measurement tolerance of: $\quad \mathrm{Cx}, \mathrm{Cy}= \pm 0.005$
3. Typical Characteristics Graphs
a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=$ Sorting Current, $\mathrm{T}_{\mathrm{J}}=85{ }^{\circ} \mathrm{C}$)

CRI Ra 80+

CRI Ra $90+$

CRI Ra 70+

b) Forward Current Characteristics ($\mathrm{T}_{\mathrm{J}}=8{ }^{\circ}{ }^{\circ} \mathrm{C}$)
1)LC003D

2) LC 006 D

3) LC009D

4) LC 013 D

5) LC016D

6) LC019D

7) LC026D

8) LC033D

9) LC 040 D

10) LC060D

11) LC080D

c) Temperature Characteristics($\mathrm{IF}_{\mathrm{F}}=$ Sorting Current)

d) Color Shift Characteristics ($\mathrm{T}_{\mathrm{J}}=85{ }^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=$ Sorting Current, CRI =80+)

e) Beam Angle Characteristics ($\mathrm{I}_{\mathrm{F}}=$ Sorting Current, $\mathrm{T}_{\mathrm{J}}=85{ }^{\circ} \mathrm{C}$)

f) Derating Characteristics

1) LC 003 D
2) $L C 006 D$

3) LC009D4) LC0013D

4) LC016D

5) LC0019D

6) LCO26D
7) LC0033D

8) LCO40D

9) LC060D

10) LC080D

1. Unit: mm
2. Tolerance: $\pm 0.3 \mathrm{~mm}$

Item	Dimension	Tolerance	Unit
Length	13.5	± 0.30	mm
Width	13.5	± 0.30	mm
Height	1.50	± 0.20	mm
Light Emitting Surface (LES) Diameter	9.8	± 0.30	mm

Note: Denoted product information above is only an example
(LC013D38030 :LC013D, Gen3, Ra80, 3000K)

Model : LC016D, LC019D, LC026D, LC033D

1. Unit: mm
2. Tolerance: $\pm 0.3 \mathrm{~mm}$

Item	Dimension	Tolerance	Unit
Length	19.0	± 0.30	mm
Width	19.0	± 0.30	mm
Height	1.50	± 0.20	mm
Light Emitting Surface (LES) Diameter	14.5	± 0.30	mm

Note: Denoted product information above is only an example
(LC026D38030 : LC026D, Gen3, CRI80+, 3000K)

Model : LC040D, LC060D, LC080D

1. Unit: mm
2. Tolerance: $\pm 0.3 \mathrm{~mm}$

Item	Dimension	Tolerance	Unit
Length	28.0	± 0.30	mm
Width	28.0	± 0.30	mm
Height	1.50	± 0.20	mm
Light Emitting Surface (LES) Diameter	22.0	± 0.30	mm

Note: Denoted product information above is only an example
(LC040D38030 : LC040D, Gen3, CRI80+, 3000K)
5. Reliability Test Items \& Conditions
a) Test Items

Test Item	Test Condition	Test Hour / Cycle
Wet High Temperature Operating Life Test (WHTOL)	$60{ }^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$, , DC Derating, $\mathrm{IF}^{\text {c }}$	1000 h
High Temperature Operating Life Test (HTOL)	$85{ }^{\circ} \mathrm{C}, \mathrm{DC}$ Derating, I_{F}	1000 h
Low Temperature Operating Life Test (LTOL)	$-40{ }^{\circ} \mathrm{C}, \mathrm{DC}$, Derating ${ }_{F}$	1000 h
High Temperature Storage	$110{ }^{\circ} \mathrm{C}$	1000 h
Low Temperature Storage	$-40{ }^{\circ} \mathrm{C}$	1000 h
Wet High Temperature Storage Test	$85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	1000h
Temperature Cycling	$-45^{\circ} \mathrm{C} / 15 \min \sim 125{ }^{\circ} \mathrm{C} / 15 \min$ Temperature change within 5 min	500 cycle
Powered Temperature Cycle (PTC)	$-40{ }^{\circ} \mathrm{C} / 85{ }^{\circ} \mathrm{C}$ each $10 \mathrm{~min}, 20 \mathrm{~min}$ transfer power on/off each $5 \mathrm{~min}, \mathrm{DC}$ Derating, $\mathrm{I}_{\mathrm{F}}=\max$	100 cycles
ESD (HBM)	$\begin{array}{lc} \mathrm{R}_{1}: & 10 \mathrm{M} \Omega \\ \mathrm{R}_{2}: & 1.5 \mathrm{k} \Omega \\ \mathrm{C}: & 100 \mathrm{pF} \\ \mathrm{~V}: & \pm 2 \mathrm{kV} \end{array}$	5 times
ESD (MM)	R_{1} : $10 \mathrm{M} \Omega$ $\mathrm{R}_{2}: 0 \mathrm{k} \Omega$ C: 200 pF V: $\pm 0.5 \mathrm{kV}$	5 times
Vibrations Variable Frequency	$\begin{aligned} & 20 \sim 80 \mathrm{~Hz} \text { (displacement: } 0.06 \text { inch, max. } 20 \mathrm{~g} \text {) } \\ & 80 \sim 2 \mathrm{kHz}(\text { max. } 20 \mathrm{~g}) \\ & \text { min. frequency } \leftrightarrow \text { max. frequency } 4 \text { min transfer } \end{aligned}$	4 times
Mechanical Shock Test	$\begin{aligned} & 1500 \mathrm{~g}, 0.5 \mathrm{~ms} \\ & \text { each of the } 6 \text { surfaces (} 3 \text { axis } \times 2 \text { sides) } \end{aligned}$	5 times
Hydrogen Sulphide(H2S)	$25{ }^{\circ} \mathrm{C} 75 \%$ R.H. $\mathrm{H}_{2} \mathrm{~S}$ concentration 15 ppm	504h

b) Criteria for Judging the Damage

Item	Symbol	Test Condition$\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	Limit	
			Min.	Max.
Forward Voltage	$V_{\text {F }}$	$\mathrm{I}_{\mathrm{F}}=$ Sorting Current	L.S.L. * 0.9	U.S.L. * 1.1
Luminous Flux	Φ_{v}	$I_{F}=$ Sorting Current	L.S.L * 0.7	U.S.L * 1.3

6. Label Structure
a) Label Structure

Note: Denoted bincode and product code above is only an example (see description on page 5)

Bin Code:
(a) (b): Forward Voltage bin (refer to page 9)
(C)(d): Chromaticity bin (refer to page 21)
(e)f: Luminous Flux bin (refer to page 5-8)
b) Lot Number

The lot number is composed of the following characters:

$\mathrm{CH}_{\text {US }}$	LC026D RA80 2700K YZW3D3																																												
SPHWHAH	5YZW3D3 YZW3D3																																												
\|	II																																												
(1)(2)(3)(4)(5)(6)(8)(8)/1 (a)(b) $\mathrm{C} / \mathrm{xxxx} \mathrm{pcs}$																																													
\|																																													
SתMSUN																																													

(1) (3)(4)(5)(6)(7)8(9) / (a)(b)(c) $/ x x x x p c s$
(1) : Production site (S: Giheung, Korea, G: Tianjin, China)
(2) : 4(LED)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (Z: 2015, A: 2016, B: 2017...)
(5) : Month (1~9, A, B, C)
(6)(7)(8) 9 : Day (1~9, A, B~V)
(a)(b) : Product serial number (001 ~ 999)
7. Packing Structure
※ Model : L003D, LC006D, LC009D, LC013D

Packing material	Max. quantity in pos of COB	Dimension(mm)			
		Length	Width	Height	Tolerance
Tray	50	200	200	8	1
Anti-Static Bag	250 (5 trays)	320	270	-	+/- 0.5
Outer Box (Small)	500 (2 bags)	225	225	65	5
Outer Box (Middle)	1000 (4 bags)	225	225	130	5

a) Packing Structure

b) Tray

| | Max. quantity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| in pos of COB | |

a) Packing Structure

※ Small Box

4 bags / box

※ Middle Box
b) Tray

※ Model : LC040D, LC060D, LC080D

Packing material	Max. quantity in pos of COB	Dimension(mm)			
		Length	Width	Height	Tolerance
Tray	16	200	200	8	1
Anti-Static Bag	80 (5 trays)	320	270	-	+/-0.5
Outer Box (Small)	160 (2 bags)	225	225	65	5
Outer Box (Middle)	320 (4 bags)	225	225	130	5

a) Packing Structure

※ Small Box

4 bags / box
b) Tray

8. Precautions in Handling \& Use

1) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
2) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed with a nitrogen-filled container (shelf life of sealed bags is 12 months at temperature $0 \sim 40{ }^{\circ} \mathrm{C}, 0 \sim 90 \% \mathrm{RH}$).
3) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be: a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30{ }^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or b. Stored at <10 \% RH
4) Repack unused products with anti-moisture packing, fold to close any opening and then store in a dry place.
5) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5{ }^{\circ} \mathrm{C}$.
6) Devices must be baked for 1 hour at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
7) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
8) The thermal management is one of the most critical factors for the LED lighting system. Especially the LED junction temperature should not exceed the absolute maximum rating while operation of LED lighting system.

For more information, please refer to Application Note 'Mechanical \& Thermal Guide for COB'.
9) In case of driving LEDsaround the minimum current level (If_min), chips might exhibit different brightness due to the variation in I-V characteristics of each one. This is normal and does not adversely affect the performance of product.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.
11) The resin area is very sensitive, please do not handle, press, touch, rub, clean, or pick by with tweezers on it. Instead, please pick at the handling area as indicated below.

Legal and additional information.

Abstract

About Samsung Electronics Co., Ltd Samsung Electronics Co., Ltd. inspires the world and shapes the future with transformative ideas and technologies, redefining the worlds of TVs, smartphones, wearable devices, tablets, cameras, digital appliances printers, medical equipment, network systems and semiconductors. We are also leading in the Internet of Things space through, among others, our Digital Health and Smart Home initiatives. We employ 307,000 people across 84 countries. To discover more, please visit our official website at www.samsung.com and our official blog at global.samsungtomorrow.com.

Copyright © 2015 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
95, Samsung 2-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA
www.samsungled.com

