Document Title

128Kx8 bit Low Power CMOS Static RAM

Revision History

<u>Revision No.</u> 0.0	<u>History</u> Initial draft	<u>Draft Data</u> July 15, 2002	<u>Remark</u> Preliminary
0.1	Revised - Deleted 32-TSOP1-0820R Package Type. - Added Commercial product.	December 4, 2002	Preliminary
0.2	Revised - Added Lead Free 32-SOP-525 Product	May 13, 2003	Preliminary
0.3	Revised - Added Lead Free 32-TSOP1-0820F Product	June 21, 2003	Preliminary
1.0	Finalized - Changed Icc from 10mA to 5mA - Changed Icc2 from 35mA to 25mA - Changed Isв from 3mA to 0.4mA - Changed IbR(industrial) from 15μA to 10μA - Changed IbR(Automotive) from 25μA to 20μA	September 16, 2003	Final
2.0	Revised - Changed Isв1 of Automotive product_from 25µA to 30µA - Deleted 55ns Automotive product	July 15, 2004	Final
3.0	Revised - Changed IsB1 of Automotive product from 30µA to 50µA - Changed IbR of Automotive product from 20µA to 25µA - Added Lead Free Products	March 27, 2005	Final

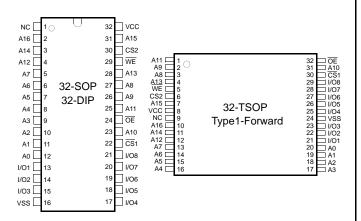
The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserves the right to change the specifications and products. SAMSUNG Electronics will answer to your questions. If you have any questions, please contact the SAMSUNG branch offices.

128Kx8 bit Low Power full CMOS Static RAM

FEATURES

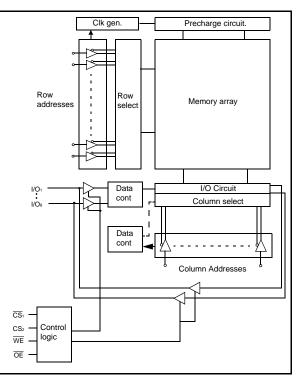
- Process Technology: Full CMOS
- Organization: 128K x 8
- Power Supply Voltage: 4.5~5.5V
- Low Data Retention Voltage: 2V(Min)
- Three state output and TTL Compatible
- Package Type: 32-DIP-600, 32-SOP-525, 32-SOP-525, 32-TSOP1-0820F

PRODUCT FAMILY


GENERAL DESCRIPTION

The K6X1008C2D families are fabricated by SAMSUNG's advanced CMOS process technology. The families support verious operating temperature ranges and have various package types for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

	Operating			Power Dissipation			
Product Family	Temperature	Vcc Range	e Speed Standby Operating (Isв1, Max) (Icc2, Max)		PKG Type		
K6X1008C2D-B	Commercial(0~70°C)	55 ¹⁾ /70ns		FF1)/70	10μΑ		32-DIP-600, 32-SOP-525,
K6X1008C2D-F	Industrial(-40~85°C)				32-SOP-525 32-TSOP1-0820F		
K6X1008C2D-Q	Automotive(-40~125°C)		70ns	50μΑ		32-SOP-525, 32-TSOP1-0820F	


1. The parameters are tested with 50pF test load

PIN DESCRIPTION

Name	Function
CS1, CS2	Chip Select Input
OE	Output Enable Input
WE	Write Enable Input
I/O1~I/O8	Data Inputs/Outputs
A0~A16	Address Inputs
Vcc	Power
Vss	Ground
NC	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial Products(0~70°C)		Industrial Pro	oducts(-40~85°C)	Automotive Pro	Automotive Products(-40~125°C)		
Part Name	Function	Part Name	Function	Part Name	Function		
K6X1008C2D-DB55 K6X1008C2D-DB70 K6X1008C2D-GB55 K6X1008C2D-GB70 K6X1008C2D-BB55 ¹) K6X1008C2D-BB70 ¹) K6X1008C2D-TB70 K6X1008C2D-TB70 K6X1008C2D-PB55 ¹) K6X1008C2D-PB70 ¹)	32-DIP, 55ns, LL 32-DIP, 70ns, LL 32-SOP, 55ns, LL 32-SOP, 70ns, LL 32-SOP, 70ns, LL, LF 32-SOP, 70ns, LL, LF 32-TSOP-F, 55ns, LL 32-TSOP-F, 70ns, LL 32-TSOP-F, 70ns, LL, LF 32-TSOP-F, 70ns, LL, LF	K6X1008C2D-DF55 K6X1008C2D-DF70 K6X1008C2D-GF55 K6X1008C2D-GF70 K6X1008C2D-BF70 ¹) K6X1008C2D-BF70 ¹) K6X1008C2D-TF55 K6X1008C2D-FF70 K6X1008C2D-PF55 ¹) K6X1008C2D-PF70 ¹	32-DIP, 55ns, LL 32-DIP, 70ns, LL 32-SOP, 55ns, LL 32-SOP, 70ns, LL 32-SOP, 55ns, LL 32-SOP, 70ns, LL 32-TSOP-F, 55ns, LL 32-TSOP-F, 55ns, LL 32-TSOP-F, 70ns, LL	K6X1008C2D-GQ70 K6X1008C2D-BQ70 ¹) K6X1008C2D-TQ70 K6X1008C2D-PQ70 ¹)	32-SOP, 70ns, L 32-SOP, 70ns, L, LF 32-TSOP-F, 70ns, L 32-TSOP-F, 70ns, L, LF		

1. Lead Free Product

FUNCTIONAL DESCRIPTION

CS ₁	CS2	OE	WE	I/O	Mode	Power
Н	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
X ¹⁾	L	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	Н	High-Z	Output Disabled	Active
L	Н	L	Н	Dout	Read	Active
L	Н	X ¹⁾	L	Din	Write	Active

1. X means don't care (Must be in high or low states)

ABSOLUTE MAXIMUM RATINGS¹⁾

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	Vin,Vout	-0.5 to Vcc+0.5V(Max. 7.0V)	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.3 to 7.0	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Tstg	-65 to 150	°C	-
		0 to 70	°C	K6X1008C2D-B
Operating Temperature	TA	-40 to 85	°C	K6X1008C2D-F
		-40 to 125	°C	K6X1008C2D-Q

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS¹⁾

ltem	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input high voltage	Vін	2.2	-	Vcc+0.5 ²⁾	V
Input low voltage	VIL	-0.5 ³⁾	-	0.8	V

Note:

Commercial Product: TA=0 to 70°C, Otherwise specified Industrial Product: TA=-40 to 85°C, Otherwise specified Automotive Product: TA=-40 to 125°C, Otherwise specified
Overshoot: Vcc+3.0V in case of pulse width≤30ns.

3. Undershoot: -3.0V in case of pulse width≤30ns.

4. Overshoot and undershoot are sampled, not 100% tested.

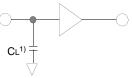
CAPACITANCE¹) (f=1MHz, TA=25°C)

ltem	Symbol	Test Condition	Min	Max	Unit
Input capacitance	Cin	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

1. Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions			Тур	Max	Unit
Input leakage current	Iц	VIN=Vss to Vcc	/IN=Vss to Vcc			1	μA
Output leakage current	Ilo	$\overline{CS}_{1}=V_{1H} \text{ or } CS_{2}=V_{1L} \text{ or } \overline{OE}=V_{1H} \text{ or } \overline{WE}=V_{1L},$	-1	-	1	μΑ	
Operating power supply current	Icc	IIO=0mA, CS1=VIL, CS2=VIH, VIN=VIH or VIL,	=0mA, CS1=VIL, CS2=VIH, VIN=VIH or VIL, Read				mA
Average operating current	ICC1	Cycle time=1µs, 100%duty, lio=0mA, CS1≤ Vin≤0.2V or Vin≥Vcc-0.2V	Cycle time=1µs, 100%duty, lio=0mA, CS1≤0.2V, CS2≥Vcc-0.2V, //in≤0.2V or Vin≥Vcc-0.2V		-	7	mA
	ICC2	Cycle time=Min, 100% duty, IIO=0mA, \overline{CS}_1 =VIL, CS2=VIH, VIN=VIH or VIL			-	25	mA
Output low voltage	Vol	IoL=2.1mA		-	-	0.4	V
Output high voltage	Vон	Іон=-1.0mA		2.4	-	-	V
Standby Current(TTL)	lsв	CS1=VIH, CS2=VIL, Other inputs=VIH or VIL		-	-	0.4	mA
Standby Current(CMOS)		CS1≥Vcc-0.2V, CS2≥Vcc-0.2V or CS2≤0.2V, Other inputs=0~Vcc	K6X1008C2D-B	-	-	10	μΑ
	ISB1		K6X1008C2D-F	-	-	15	μA
			K6X1008C2D-Q	-	-	50	μA



K6X1008C2D Family

CMOS SRAM

AC OPERATING CONDITIONS

TEST CONDITIONS(Test Load and Input/Output Reference) Input pulse level: 0.8 to 2.4V Input rising and falling time: 5ns Input and output reference voltage:1.5V Output load(see right): CL=100pF+1TTL CL=50pF+1TTL

1. Including scope and jig capacitance

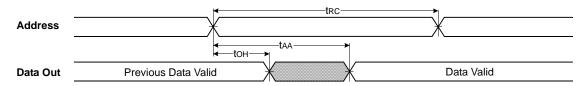
AC CHARACTERISTICS

(Vcc=4.5~5.5V, Commercial product: TA=0 to 70°C, Industrial product: TA=-40 to 85°C, Automotive product: TA=-40~125°C)

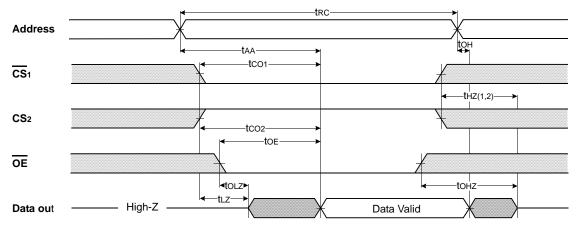
				Speed	d Bins		
	Parameter List	Symbol	55ns ¹⁾		70ns		Units
			Min	Max	Min	Max]
Pood	Read Cycle Time	tRC	55	-	70	-	ns
	Address Access Time	taa	-	55	-	70	ns
	Chip Select to Output	tco	-	55	-	70	ns
	Output Enable to Valid Output	tOE	-	25	-	35	ns
Read	Chip Select to Low-Z Output	t∟z	10	-	10	-	ns
	Output Enable to Low-Z Output	toLz	5	-	5	-	ns
	Chip Disable to High-Z Output	tHZ	0	20	0	25	ns
	Output Disable to High-Z Output	tонz	0	20	0	25	ns
	Output Hold from Address Change	tон	10	-	10	-	ns
	Write Cycle Time	twc	55	-	70	-	ns
	Chip Select to End of Write	tcw	45	-	60	-	ns
	Address Set-up Time	tas	0	-	0	-	ns
	Address Valid to End of Write	tAW	45	-	60	-	ns
Write	Write Pulse Width	tWP	40	-	50	-	ns
white	Write Recovery Time	twr	0	-	0	-	ns
	Write to Output High-Z	twnz	0	20	0	25	ns
	Data to Write Time Overlap	tDW	20	-	25	-	ns
	Data Hold from Write Time	tDH	0	-	0	-	ns
	End Write to Output Low-Z	tow	5	-	5	-	ns

1. The parameter is tested with 50pF test load. Commercial & Industrial Products only.

DATA RETENTION CHARACTERISTICS


Item	Symbol	Test Condition			Тур	Max	Unit
Vcc for data retention	Vdr	CS1≥Vcc-0.2V ¹)		2.0	-	5.5	V
Data retention current			K6X1008C2D-B	-	-	10	μΑ
	IDR	Vcc=3.0V, CS1≥Vcc-0.2V ¹⁾	K6X1008C2D-F	-	-	10	μΑ
			K6X1008C2D-Q	-	-	25	μA
Data retention set-up time	tSDR	See data retention waveform	0	-	-	ms	
Recovery time	trdr		5	-	-	1115	

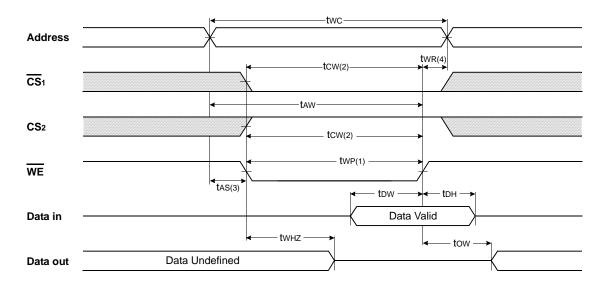
1. $\overline{CS}_1 \ge Vcc-0.2V$, $CS_2 \ge Vcc-0.2V$, or $CS_2 \le 0.2V$



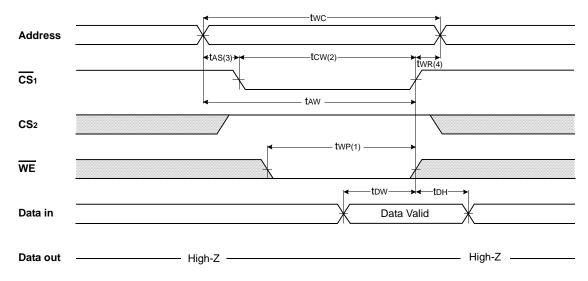
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS1=OE=VIL, CS2=WE=VIH)

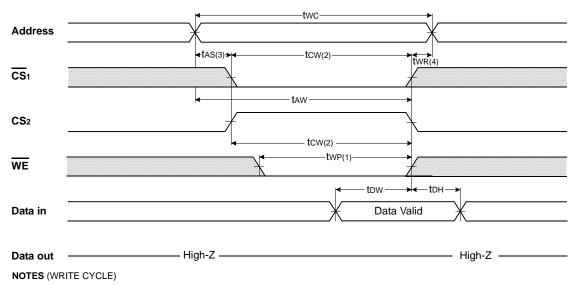
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



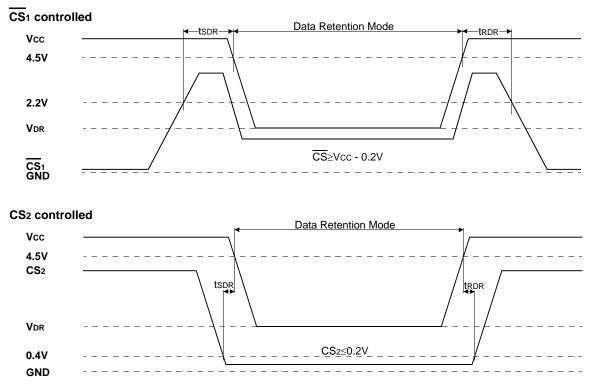
NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)



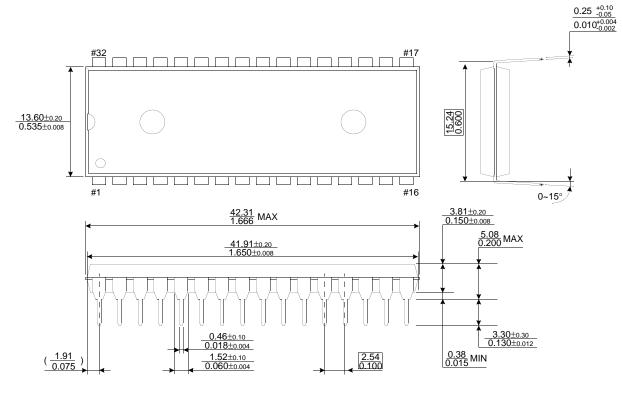
TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)

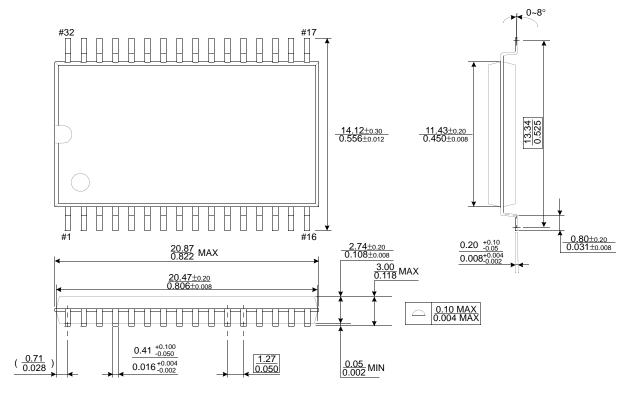

TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)

A write occurs during the overlap of a low CS1, a high CS2 and a low WE. A write begins at the latest transition among CS1 goes low, CS2 going high and WE going low: A write end at the earliest transition among CS1 going high, CS2 going low and WE going low; A write end at the earliest transition among CS1 going high, CS2 going low and WE going high, twp is measured from the begining of write to the end of write.
tcw is measured from the CS1 going low or CS2 going high to the end of write.
tas is measured from the address valid to the beginning of write.

4. two is measured from the end of write to the address change. two applied in case a write ends as \overline{CS}_1 or \overline{WE} going high two applied in case a write ends as \overline{CS}_1 or \overline{WE} going high two applied in case a write ends as \overline{CS}_2 going to low.

DATA RETENTION WAVE FORM

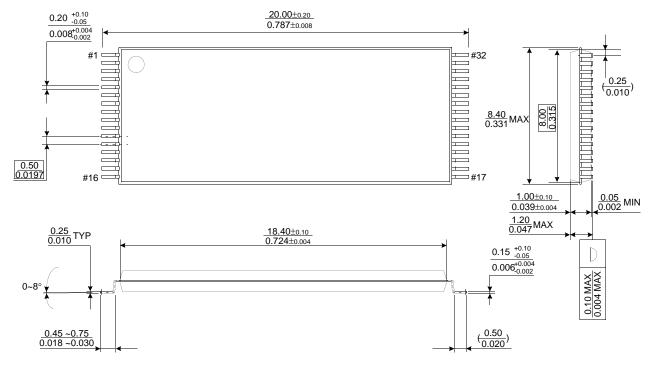



PACKAGE DIMENSIONS

32 DUAL INLINE PACKAGE (600mil)

Units: millimeters(inches)

32 PLASTIC SMALL OUTLINE PACKAGE (525mil)


Downloaded from Arrow.com.

CMOS SRAM

PACKAGE DIMENSIONS

32 PIN THIN SMALL OUTLINE PACKAGE TYPE I (0820F)

Units: millimeters(inches)

